/* * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000 * * Copyright (c) 1999-2000 Andre Hedrick * May be copied or modified under the terms of the GNU General Public License */ /* * Special Thanks to Mark for his Six years of work. * * Copyright (c) 1995-1998 Mark Lord * May be copied or modified under the terms of the GNU General Public License */ /* * This module provides support for the bus-master IDE DMA functions * of various PCI chipsets, including the Intel PIIX (i82371FB for * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset) * ("PIIX" stands for "PCI ISA IDE Xcellerator"). * * Pretty much the same code works for other IDE PCI bus-mastering chipsets. * * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). * * By default, DMA support is prepared for use, but is currently enabled only * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single), * or which are recognized as "good" (see table below). Drives with only mode0 * or mode1 (multi/single) DMA should also work with this chipset/driver * (eg. MC2112A) but are not enabled by default. * * Use "hdparm -i" to view modes supported by a given drive. * * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling * DMA support, but must be (re-)compiled against this kernel version or later. * * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting. * If problems arise, ide.c will disable DMA operation after a few retries. * This error recovery mechanism works and has been extremely well exercised. * * IDE drives, depending on their vintage, may support several different modes * of DMA operation. The boot-time modes are indicated with a "*" in * the "hdparm -i" listing, and can be changed with *knowledgeable* use of * the "hdparm -X" feature. There is seldom a need to do this, as drives * normally power-up with their "best" PIO/DMA modes enabled. * * Testing has been done with a rather extensive number of drives, * with Quantum & Western Digital models generally outperforming the pack, * and Fujitsu & Conner (and some Seagate which are really Conner) drives * showing more lackluster throughput. * * Keep an eye on /var/adm/messages for "DMA disabled" messages. * * Some people have reported trouble with Intel Zappa motherboards. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0, * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe * (thanks to Glen Morrell for researching this). * * Thanks to "Christopher J. Reimer" for * fixing the problem with the BIOS on some Acer motherboards. * * Thanks to "Benoit Poulot-Cazajous" for testing * "TX" chipset compatibility and for providing patches for the "TX" chipset. * * Thanks to Christian Brunner for taking a good first crack * at generic DMA -- his patches were referred to when preparing this code. * * Most importantly, thanks to Robert Bringman * for supplying a Promise UDMA board & WD UDMA drive for this work! * * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports. * * ATA-66/100 and recovery functions, I forgot the rest...... * */ #include #include #include #include #include #include #include #include #include #include #include #include #include static const struct drive_list_entry drive_whitelist [] = { { "Micropolis 2112A" , NULL }, { "CONNER CTMA 4000" , NULL }, { "CONNER CTT8000-A" , NULL }, { "ST34342A" , NULL }, { NULL , NULL } }; static const struct drive_list_entry drive_blacklist [] = { { "WDC AC11000H" , NULL }, { "WDC AC22100H" , NULL }, { "WDC AC32500H" , NULL }, { "WDC AC33100H" , NULL }, { "WDC AC31600H" , NULL }, { "WDC AC32100H" , "24.09P07" }, { "WDC AC23200L" , "21.10N21" }, { "Compaq CRD-8241B" , NULL }, { "CRD-8400B" , NULL }, { "CRD-8480B", NULL }, { "CRD-8482B", NULL }, { "CRD-84" , NULL }, { "SanDisk SDP3B" , NULL }, { "SanDisk SDP3B-64" , NULL }, { "SANYO CD-ROM CRD" , NULL }, { "HITACHI CDR-8" , NULL }, { "HITACHI CDR-8335" , NULL }, { "HITACHI CDR-8435" , NULL }, { "Toshiba CD-ROM XM-6202B" , NULL }, { "TOSHIBA CD-ROM XM-1702BC", NULL }, { "CD-532E-A" , NULL }, { "E-IDE CD-ROM CR-840", NULL }, { "CD-ROM Drive/F5A", NULL }, { "WPI CDD-820", NULL }, { "SAMSUNG CD-ROM SC-148C", NULL }, { "SAMSUNG CD-ROM SC", NULL }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL }, { "_NEC DV5800A", NULL }, { "SAMSUNG CD-ROM SN-124", "N001" }, { "Seagate STT20000A", NULL }, { "CD-ROM CDR_U200", "1.09" }, { NULL , NULL } }; /** * ide_dma_intr - IDE DMA interrupt handler * @drive: the drive the interrupt is for * * Handle an interrupt completing a read/write DMA transfer on an * IDE device */ ide_startstop_t ide_dma_intr (ide_drive_t *drive) { u8 stat = 0, dma_stat = 0; dma_stat = HWIF(drive)->ide_dma_end(drive); stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */ if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { if (!dma_stat) { struct request *rq = HWGROUP(drive)->rq; if (rq->rq_disk) { ide_driver_t *drv; drv = *(ide_driver_t **)rq->rq_disk->private_data; drv->end_request(drive, 1, rq->nr_sectors); } else ide_end_request(drive, 1, rq->nr_sectors); return ide_stopped; } printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n", drive->name, dma_stat); } return ide_error(drive, "dma_intr", stat); } EXPORT_SYMBOL_GPL(ide_dma_intr); static int ide_dma_good_drive(ide_drive_t *drive) { return ide_in_drive_list(drive->id, drive_whitelist); } #ifdef CONFIG_BLK_DEV_IDEDMA_PCI /** * ide_build_sglist - map IDE scatter gather for DMA I/O * @drive: the drive to build the DMA table for * @rq: the request holding the sg list * * Perform the PCI mapping magic necessary to access the source or * target buffers of a request via PCI DMA. The lower layers of the * kernel provide the necessary cache management so that we can * operate in a portable fashion */ int ide_build_sglist(ide_drive_t *drive, struct request *rq) { ide_hwif_t *hwif = HWIF(drive); struct scatterlist *sg = hwif->sg_table; BUG_ON((rq->cmd_type == REQ_TYPE_ATA_TASKFILE) && rq->nr_sectors > 256); ide_map_sg(drive, rq); if (rq_data_dir(rq) == READ) hwif->sg_dma_direction = PCI_DMA_FROMDEVICE; else hwif->sg_dma_direction = PCI_DMA_TODEVICE; return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction); } EXPORT_SYMBOL_GPL(ide_build_sglist); /** * ide_build_dmatable - build IDE DMA table * * ide_build_dmatable() prepares a dma request. We map the command * to get the pci bus addresses of the buffers and then build up * the PRD table that the IDE layer wants to be fed. The code * knows about the 64K wrap bug in the CS5530. * * Returns the number of built PRD entries if all went okay, * returns 0 otherwise. * * May also be invoked from trm290.c */ int ide_build_dmatable (ide_drive_t *drive, struct request *rq) { ide_hwif_t *hwif = HWIF(drive); unsigned int *table = hwif->dmatable_cpu; unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0; unsigned int count = 0; int i; struct scatterlist *sg; hwif->sg_nents = i = ide_build_sglist(drive, rq); if (!i) return 0; sg = hwif->sg_table; while (i) { u32 cur_addr; u32 cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); /* * Fill in the dma table, without crossing any 64kB boundaries. * Most hardware requires 16-bit alignment of all blocks, * but the trm290 requires 32-bit alignment. */ while (cur_len) { if (count++ >= PRD_ENTRIES) { printk(KERN_ERR "%s: DMA table too small\n", drive->name); goto use_pio_instead; } else { u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff); if (bcount > cur_len) bcount = cur_len; *table++ = cpu_to_le32(cur_addr); xcount = bcount & 0xffff; if (is_trm290) xcount = ((xcount >> 2) - 1) << 16; if (xcount == 0x0000) { /* * Most chipsets correctly interpret a length of 0x0000 as 64KB, * but at least one (e.g. CS5530) misinterprets it as zero (!). * So here we break the 64KB entry into two 32KB entries instead. */ if (count++ >= PRD_ENTRIES) { printk(KERN_ERR "%s: DMA table too small\n", drive->name); goto use_pio_instead; } *table++ = cpu_to_le32(0x8000); *table++ = cpu_to_le32(cur_addr + 0x8000); xcount = 0x8000; } *table++ = cpu_to_le32(xcount); cur_addr += bcount; cur_len -= bcount; } } sg = sg_next(sg); i--; } if (count) { if (!is_trm290) *--table |= cpu_to_le32(0x80000000); return count; } printk(KERN_ERR "%s: empty DMA table?\n", drive->name); use_pio_instead: pci_unmap_sg(hwif->pci_dev, hwif->sg_table, hwif->sg_nents, hwif->sg_dma_direction); return 0; /* revert to PIO for this request */ } EXPORT_SYMBOL_GPL(ide_build_dmatable); /** * ide_destroy_dmatable - clean up DMA mapping * @drive: The drive to unmap * * Teardown mappings after DMA has completed. This must be called * after the completion of each use of ide_build_dmatable and before * the next use of ide_build_dmatable. Failure to do so will cause * an oops as only one mapping can be live for each target at a given * time. */ void ide_destroy_dmatable (ide_drive_t *drive) { struct pci_dev *dev = HWIF(drive)->pci_dev; struct scatterlist *sg = HWIF(drive)->sg_table; int nents = HWIF(drive)->sg_nents; pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction); } EXPORT_SYMBOL_GPL(ide_destroy_dmatable); /** * config_drive_for_dma - attempt to activate IDE DMA * @drive: the drive to place in DMA mode * * If the drive supports at least mode 2 DMA or UDMA of any kind * then attempt to place it into DMA mode. Drives that are known to * support DMA but predate the DMA properties or that are known * to have DMA handling bugs are also set up appropriately based * on the good/bad drive lists. */ static int config_drive_for_dma (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct hd_driveid *id = drive->id; if (drive->media != ide_disk) { if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA) return 0; } /* * Enable DMA on any drive that has * UltraDMA (mode 0/1/2/3/4/5/6) enabled */ if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f)) return 1; /* * Enable DMA on any drive that has mode2 DMA * (multi or single) enabled */ if (id->field_valid & 2) /* regular DMA */ if ((id->dma_mword & 0x404) == 0x404 || (id->dma_1word & 0x404) == 0x404) return 1; /* Consult the list of known "good" drives */ if (ide_dma_good_drive(drive)) return 1; return 0; } /** * dma_timer_expiry - handle a DMA timeout * @drive: Drive that timed out * * An IDE DMA transfer timed out. In the event of an error we ask * the driver to resolve the problem, if a DMA transfer is still * in progress we continue to wait (arguably we need to add a * secondary 'I don't care what the drive thinks' timeout here) * Finally if we have an interrupt we let it complete the I/O. * But only one time - we clear expiry and if it's still not * completed after WAIT_CMD, we error and retry in PIO. * This can occur if an interrupt is lost or due to hang or bugs. */ static int dma_timer_expiry (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = hwif->INB(hwif->dma_status); printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n", drive->name, dma_stat); if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */ return WAIT_CMD; HWGROUP(drive)->expiry = NULL; /* one free ride for now */ /* 1 dmaing, 2 error, 4 intr */ if (dma_stat & 2) /* ERROR */ return -1; if (dma_stat & 1) /* DMAing */ return WAIT_CMD; if (dma_stat & 4) /* Got an Interrupt */ return WAIT_CMD; return 0; /* Status is unknown -- reset the bus */ } /** * ide_dma_host_off - Generic DMA kill * @drive: drive to control * * Perform the generic IDE controller DMA off operation. This * works for most IDE bus mastering controllers */ void ide_dma_host_off(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 unit = (drive->select.b.unit & 0x01); u8 dma_stat = hwif->INB(hwif->dma_status); hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status); } EXPORT_SYMBOL(ide_dma_host_off); #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ /** * ide_dma_off_quietly - Generic DMA kill * @drive: drive to control * * Turn off the current DMA on this IDE controller. */ void ide_dma_off_quietly(ide_drive_t *drive) { drive->using_dma = 0; ide_toggle_bounce(drive, 0); drive->hwif->dma_host_off(drive); } EXPORT_SYMBOL(ide_dma_off_quietly); /** * ide_dma_off - disable DMA on a device * @drive: drive to disable DMA on * * Disable IDE DMA for a device on this IDE controller. * Inform the user that DMA has been disabled. */ void ide_dma_off(ide_drive_t *drive) { printk(KERN_INFO "%s: DMA disabled\n", drive->name); ide_dma_off_quietly(drive); } EXPORT_SYMBOL(ide_dma_off); #ifdef CONFIG_BLK_DEV_IDEDMA_PCI /** * ide_dma_host_on - Enable DMA on a host * @drive: drive to enable for DMA * * Enable DMA on an IDE controller following generic bus mastering * IDE controller behaviour */ void ide_dma_host_on(ide_drive_t *drive) { if (drive->using_dma) { ide_hwif_t *hwif = HWIF(drive); u8 unit = (drive->select.b.unit & 0x01); u8 dma_stat = hwif->INB(hwif->dma_status); hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status); } } EXPORT_SYMBOL(ide_dma_host_on); #endif /** * ide_dma_on - Enable DMA on a device * @drive: drive to enable DMA on * * Enable IDE DMA for a device on this IDE controller. */ void ide_dma_on(ide_drive_t *drive) { drive->using_dma = 1; ide_toggle_bounce(drive, 1); drive->hwif->dma_host_on(drive); } EXPORT_SYMBOL(ide_dma_on); #ifdef CONFIG_BLK_DEV_IDEDMA_PCI /** * ide_dma_setup - begin a DMA phase * @drive: target device * * Build an IDE DMA PRD (IDE speak for scatter gather table) * and then set up the DMA transfer registers for a device * that follows generic IDE PCI DMA behaviour. Controllers can * override this function if they need to * * Returns 0 on success. If a PIO fallback is required then 1 * is returned. */ int ide_dma_setup(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct request *rq = HWGROUP(drive)->rq; unsigned int reading; u8 dma_stat; if (rq_data_dir(rq)) reading = 0; else reading = 1 << 3; /* fall back to pio! */ if (!ide_build_dmatable(drive, rq)) { ide_map_sg(drive, rq); return 1; } /* PRD table */ if (hwif->mmio) writel(hwif->dmatable_dma, (void __iomem *)hwif->dma_prdtable); else outl(hwif->dmatable_dma, hwif->dma_prdtable); /* specify r/w */ hwif->OUTB(reading, hwif->dma_command); /* read dma_status for INTR & ERROR flags */ dma_stat = hwif->INB(hwif->dma_status); /* clear INTR & ERROR flags */ hwif->OUTB(dma_stat|6, hwif->dma_status); drive->waiting_for_dma = 1; return 0; } EXPORT_SYMBOL_GPL(ide_dma_setup); static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command) { /* issue cmd to drive */ ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry); } void ide_dma_start(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_cmd = hwif->INB(hwif->dma_command); /* Note that this is done *after* the cmd has * been issued to the drive, as per the BM-IDE spec. * The Promise Ultra33 doesn't work correctly when * we do this part before issuing the drive cmd. */ /* start DMA */ hwif->OUTB(dma_cmd|1, hwif->dma_command); hwif->dma = 1; wmb(); } EXPORT_SYMBOL_GPL(ide_dma_start); /* returns 1 on error, 0 otherwise */ int __ide_dma_end (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = 0, dma_cmd = 0; drive->waiting_for_dma = 0; /* get dma_command mode */ dma_cmd = hwif->INB(hwif->dma_command); /* stop DMA */ hwif->OUTB(dma_cmd&~1, hwif->dma_command); /* get DMA status */ dma_stat = hwif->INB(hwif->dma_status); /* clear the INTR & ERROR bits */ hwif->OUTB(dma_stat|6, hwif->dma_status); /* purge DMA mappings */ ide_destroy_dmatable(drive); /* verify good DMA status */ hwif->dma = 0; wmb(); return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0; } EXPORT_SYMBOL(__ide_dma_end); /* returns 1 if dma irq issued, 0 otherwise */ static int __ide_dma_test_irq(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = hwif->INB(hwif->dma_status); /* return 1 if INTR asserted */ if ((dma_stat & 4) == 4) return 1; if (!drive->waiting_for_dma) printk(KERN_WARNING "%s: (%s) called while not waiting\n", drive->name, __FUNCTION__); return 0; } #else static inline int config_drive_for_dma(ide_drive_t *drive) { return 0; } #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ int __ide_dma_bad_drive (ide_drive_t *drive) { struct hd_driveid *id = drive->id; int blacklist = ide_in_drive_list(id, drive_blacklist); if (blacklist) { printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n", drive->name, id->model); return blacklist; } return 0; } EXPORT_SYMBOL(__ide_dma_bad_drive); static const u8 xfer_mode_bases[] = { XFER_UDMA_0, XFER_MW_DMA_0, XFER_SW_DMA_0, }; static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = drive->hwif; unsigned int mask = 0; switch(base) { case XFER_UDMA_0: if ((id->field_valid & 4) == 0) break; if (hwif->udma_filter) mask = hwif->udma_filter(drive); else mask = hwif->ultra_mask; mask &= id->dma_ultra; /* * avoid false cable warning from eighty_ninty_three() */ if (req_mode > XFER_UDMA_2) { if ((mask & 0x78) && (eighty_ninty_three(drive) == 0)) mask &= 0x07; } break; case XFER_MW_DMA_0: if ((id->field_valid & 2) == 0) break; if (hwif->mdma_filter) mask = hwif->mdma_filter(drive); else mask = hwif->mwdma_mask; mask &= id->dma_mword; break; case XFER_SW_DMA_0: if (id->field_valid & 2) { mask = id->dma_1word & hwif->swdma_mask; } else if (id->tDMA) { /* * ide_fix_driveid() doesn't convert ->tDMA to the * CPU endianness so we need to do it here */ u8 mode = le16_to_cpu(id->tDMA); /* * if the mode is valid convert it to the mask * (the maximum allowed mode is XFER_SW_DMA_2) */ if (mode <= 2) mask = ((2 << mode) - 1) & hwif->swdma_mask; } break; default: BUG(); break; } return mask; } /** * ide_find_dma_mode - compute DMA speed * @drive: IDE device * @req_mode: requested mode * * Checks the drive/host capabilities and finds the speed to use for * the DMA transfer. The speed is then limited by the requested mode. * * Returns 0 if the drive/host combination is incapable of DMA transfers * or if the requested mode is not a DMA mode. */ u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode) { ide_hwif_t *hwif = drive->hwif; unsigned int mask; int x, i; u8 mode = 0; if (drive->media != ide_disk) { if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA) return 0; } for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) { if (req_mode < xfer_mode_bases[i]) continue; mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode); x = fls(mask) - 1; if (x >= 0) { mode = xfer_mode_bases[i] + x; break; } } if (hwif->chipset == ide_acorn && mode == 0) { /* * is this correct? */ if (ide_dma_good_drive(drive) && drive->id->eide_dma_time < 150) mode = XFER_MW_DMA_1; } mode = min(mode, req_mode); printk(KERN_INFO "%s: %s mode selected\n", drive->name, mode ? ide_xfer_verbose(mode) : "no DMA"); return mode; } EXPORT_SYMBOL_GPL(ide_find_dma_mode); static int ide_tune_dma(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 speed; if (noautodma || drive->nodma || (drive->id->capability & 1) == 0) return 0; /* consult the list of known "bad" drives */ if (__ide_dma_bad_drive(drive)) return 0; if (ide_id_dma_bug(drive)) return 0; if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA) return config_drive_for_dma(drive); speed = ide_max_dma_mode(drive); if (!speed) { /* is this really correct/needed? */ if ((hwif->host_flags & IDE_HFLAG_CY82C693) && ide_dma_good_drive(drive)) return 1; else return 0; } if (hwif->host_flags & IDE_HFLAG_NO_SET_MODE) return 0; if (ide_set_dma_mode(drive, speed)) return 0; return 1; } static int ide_dma_check(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; int vdma = (hwif->host_flags & IDE_HFLAG_VDMA)? 1 : 0; if (!vdma && ide_tune_dma(drive)) return 0; /* TODO: always do PIO fallback */ if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA) return -1; ide_set_max_pio(drive); return vdma ? 0 : -1; } int ide_id_dma_bug(ide_drive_t *drive) { struct hd_driveid *id = drive->id; if (id->field_valid & 4) { if ((id->dma_ultra >> 8) && (id->dma_mword >> 8)) goto err_out; } else if (id->field_valid & 2) { if ((id->dma_mword >> 8) && (id->dma_1word >> 8)) goto err_out; } return 0; err_out: printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name); return 1; } int ide_set_dma(ide_drive_t *drive) { int rc; /* * Force DMAing for the beginning of the check. * Some chipsets appear to do interesting * things, if not checked and cleared. * PARANOIA!!! */ ide_dma_off_quietly(drive); rc = ide_dma_check(drive); if (rc) return rc; ide_dma_on(drive); return 0; } #ifdef CONFIG_BLK_DEV_IDEDMA_PCI void ide_dma_lost_irq (ide_drive_t *drive) { printk("%s: DMA interrupt recovery\n", drive->name); } EXPORT_SYMBOL(ide_dma_lost_irq); void ide_dma_timeout (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name); if (hwif->ide_dma_test_irq(drive)) return; hwif->ide_dma_end(drive); } EXPORT_SYMBOL(ide_dma_timeout); static void ide_release_dma_engine(ide_hwif_t *hwif) { if (hwif->dmatable_cpu) { pci_free_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES, hwif->dmatable_cpu, hwif->dmatable_dma); hwif->dmatable_cpu = NULL; } } static int ide_release_iomio_dma(ide_hwif_t *hwif) { release_region(hwif->dma_base, 8); if (hwif->extra_ports) release_region(hwif->extra_base, hwif->extra_ports); return 1; } /* * Needed for allowing full modular support of ide-driver */ int ide_release_dma(ide_hwif_t *hwif) { ide_release_dma_engine(hwif); if (hwif->mmio) return 1; else return ide_release_iomio_dma(hwif); } static int ide_allocate_dma_engine(ide_hwif_t *hwif) { hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES, &hwif->dmatable_dma); if (hwif->dmatable_cpu) return 0; printk(KERN_ERR "%s: -- Error, unable to allocate DMA table.\n", hwif->cds->name); return 1; } static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: MMIO-DMA ", hwif->name); return 0; } static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports) { printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx", hwif->name, base, base + ports - 1); if (!request_region(base, ports, hwif->name)) { printk(" -- Error, ports in use.\n"); return 1; } if (hwif->cds->extra) { hwif->extra_base = base + (hwif->channel ? 8 : 16); if (!hwif->mate || !hwif->mate->extra_ports) { if (!request_region(hwif->extra_base, hwif->cds->extra, hwif->cds->name)) { printk(" -- Error, extra ports in use.\n"); release_region(base, ports); return 1; } hwif->extra_ports = hwif->cds->extra; } } return 0; } static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base, unsigned int ports) { if (hwif->mmio) return ide_mapped_mmio_dma(hwif, base,ports); return ide_iomio_dma(hwif, base, ports); } void ide_setup_dma(ide_hwif_t *hwif, unsigned long base, unsigned num_ports) { if (ide_dma_iobase(hwif, base, num_ports)) return; if (ide_allocate_dma_engine(hwif)) { ide_release_dma(hwif); return; } hwif->dma_base = base; if (!(hwif->dma_command)) hwif->dma_command = hwif->dma_base; if (!(hwif->dma_vendor1)) hwif->dma_vendor1 = (hwif->dma_base + 1); if (!(hwif->dma_status)) hwif->dma_status = (hwif->dma_base + 2); if (!(hwif->dma_vendor3)) hwif->dma_vendor3 = (hwif->dma_base + 3); if (!(hwif->dma_prdtable)) hwif->dma_prdtable = (hwif->dma_base + 4); if (!hwif->dma_host_off) hwif->dma_host_off = &ide_dma_host_off; if (!hwif->dma_host_on) hwif->dma_host_on = &ide_dma_host_on; if (!hwif->dma_setup) hwif->dma_setup = &ide_dma_setup; if (!hwif->dma_exec_cmd) hwif->dma_exec_cmd = &ide_dma_exec_cmd; if (!hwif->dma_start) hwif->dma_start = &ide_dma_start; if (!hwif->ide_dma_end) hwif->ide_dma_end = &__ide_dma_end; if (!hwif->ide_dma_test_irq) hwif->ide_dma_test_irq = &__ide_dma_test_irq; if (!hwif->dma_timeout) hwif->dma_timeout = &ide_dma_timeout; if (!hwif->dma_lost_irq) hwif->dma_lost_irq = &ide_dma_lost_irq; if (hwif->chipset != ide_trm290) { u8 dma_stat = hwif->INB(hwif->dma_status); printk(", BIOS settings: %s:%s, %s:%s", hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio", hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio"); } printk("\n"); } EXPORT_SYMBOL_GPL(ide_setup_dma); #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */