/* * coretemp.c - Linux kernel module for hardware monitoring * * Copyright (C) 2007 Rudolf Marek * * Inspired from many hwmon drivers * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRVNAME "coretemp" typedef enum { SHOW_TEMP, SHOW_TJMAX, SHOW_TTARGET, SHOW_LABEL, SHOW_NAME } SHOW; /* * Functions declaration */ static struct coretemp_data *coretemp_update_device(struct device *dev); struct coretemp_data { struct device *hwmon_dev; struct mutex update_lock; const char *name; u32 id; u16 core_id; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ int temp; int tjmax; int ttarget; u8 alarm; }; /* * Sysfs stuff */ static ssize_t show_name(struct device *dev, struct device_attribute *devattr, char *buf) { int ret; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct coretemp_data *data = dev_get_drvdata(dev); if (attr->index == SHOW_NAME) ret = sprintf(buf, "%s\n", data->name); else /* show label */ ret = sprintf(buf, "Core %d\n", data->core_id); return ret; } static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct coretemp_data *data = coretemp_update_device(dev); /* read the Out-of-spec log, never clear */ return sprintf(buf, "%d\n", data->alarm); } static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct coretemp_data *data = coretemp_update_device(dev); int err; if (attr->index == SHOW_TEMP) err = data->valid ? sprintf(buf, "%d\n", data->temp) : -EAGAIN; else if (attr->index == SHOW_TJMAX) err = sprintf(buf, "%d\n", data->tjmax); else err = sprintf(buf, "%d\n", data->ttarget); return err; } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, SHOW_TEMP); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, show_temp, NULL, SHOW_TJMAX); static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, show_temp, NULL, SHOW_TTARGET); static DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL); static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, show_name, NULL, SHOW_LABEL); static SENSOR_DEVICE_ATTR(name, S_IRUGO, show_name, NULL, SHOW_NAME); static struct attribute *coretemp_attributes[] = { &sensor_dev_attr_name.dev_attr.attr, &sensor_dev_attr_temp1_label.dev_attr.attr, &dev_attr_temp1_crit_alarm.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, NULL }; static const struct attribute_group coretemp_group = { .attrs = coretemp_attributes, }; static struct coretemp_data *coretemp_update_device(struct device *dev) { struct coretemp_data *data = dev_get_drvdata(dev); mutex_lock(&data->update_lock); if (!data->valid || time_after(jiffies, data->last_updated + HZ)) { u32 eax, edx; data->valid = 0; rdmsr_on_cpu(data->id, MSR_IA32_THERM_STATUS, &eax, &edx); data->alarm = (eax >> 5) & 1; /* update only if data has been valid */ if (eax & 0x80000000) { data->temp = data->tjmax - (((eax >> 16) & 0x7f) * 1000); data->valid = 1; } else { dev_dbg(dev, "Temperature data invalid (0x%x)\n", eax); } data->last_updated = jiffies; } mutex_unlock(&data->update_lock); return data; } static int __devinit adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev) { /* The 100C is default for both mobile and non mobile CPUs */ int tjmax = 100000; int tjmax_ee = 85000; int usemsr_ee = 1; int err; u32 eax, edx; struct pci_dev *host_bridge; /* Early chips have no MSR for TjMax */ if ((c->x86_model == 0xf) && (c->x86_mask < 4)) { usemsr_ee = 0; } /* Atom CPUs */ if (c->x86_model == 0x1c) { usemsr_ee = 0; host_bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)); if (host_bridge && host_bridge->vendor == PCI_VENDOR_ID_INTEL && (host_bridge->device == 0xa000 /* NM10 based nettop */ || host_bridge->device == 0xa010)) /* NM10 based netbook */ tjmax = 100000; else tjmax = 90000; pci_dev_put(host_bridge); } if ((c->x86_model > 0xe) && (usemsr_ee)) { u8 platform_id; /* Now we can detect the mobile CPU using Intel provided table http://softwarecommunity.intel.com/Wiki/Mobility/720.htm For Core2 cores, check MSR 0x17, bit 28 1 = Mobile CPU */ err = rdmsr_safe_on_cpu(id, 0x17, &eax, &edx); if (err) { dev_warn(dev, "Unable to access MSR 0x17, assuming desktop" " CPU\n"); usemsr_ee = 0; } else if (c->x86_model < 0x17 && !(eax & 0x10000000)) { /* Trust bit 28 up to Penryn, I could not find any documentation on that; if you happen to know someone at Intel please ask */ usemsr_ee = 0; } else { /* Platform ID bits 52:50 (EDX starts at bit 32) */ platform_id = (edx >> 18) & 0x7; /* Mobile Penryn CPU seems to be platform ID 7 or 5 (guesswork) */ if ((c->x86_model == 0x17) && ((platform_id == 5) || (platform_id == 7))) { /* If MSR EE bit is set, set it to 90 degrees C, otherwise 105 degrees C */ tjmax_ee = 90000; tjmax = 105000; } } } if (usemsr_ee) { err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx); if (err) { dev_warn(dev, "Unable to access MSR 0xEE, for Tjmax, left" " at default\n"); } else if (eax & 0x40000000) { tjmax = tjmax_ee; } /* if we dont use msr EE it means we are desktop CPU (with exeception of Atom) */ } else if (tjmax == 100000) { dev_warn(dev, "Using relative temperature scale!\n"); } return tjmax; } static int __devinit get_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev) { /* The 100C is default for both mobile and non mobile CPUs */ int err; u32 eax, edx; u32 val; /* A new feature of current Intel(R) processors, the IA32_TEMPERATURE_TARGET contains the TjMax value */ err = rdmsr_safe_on_cpu(id, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx); if (err) { dev_warn(dev, "Unable to read TjMax from CPU.\n"); } else { val = (eax >> 16) & 0xff; /* * If the TjMax is not plausible, an assumption * will be used */ if ((val > 80) && (val < 120)) { dev_info(dev, "TjMax is %d C.\n", val); return val * 1000; } } /* * An assumption is made for early CPUs and unreadable MSR. * NOTE: the given value may not be correct. */ switch (c->x86_model) { case 0xe: case 0xf: case 0x16: case 0x1a: dev_warn(dev, "TjMax is assumed as 100 C!\n"); return 100000; break; case 0x17: case 0x1c: /* Atom CPUs */ return adjust_tjmax(c, id, dev); break; default: dev_warn(dev, "CPU (model=0x%x) is not supported yet," " using default TjMax of 100C.\n", c->x86_model); return 100000; } } static int __devinit coretemp_probe(struct platform_device *pdev) { struct coretemp_data *data; struct cpuinfo_x86 *c = &cpu_data(pdev->id); int err; u32 eax, edx; if (!(data = kzalloc(sizeof(struct coretemp_data), GFP_KERNEL))) { err = -ENOMEM; dev_err(&pdev->dev, "Out of memory\n"); goto exit; } data->id = pdev->id; #ifdef CONFIG_SMP data->core_id = c->cpu_core_id; #endif data->name = "coretemp"; mutex_init(&data->update_lock); /* test if we can access the THERM_STATUS MSR */ err = rdmsr_safe_on_cpu(data->id, MSR_IA32_THERM_STATUS, &eax, &edx); if (err) { dev_err(&pdev->dev, "Unable to access THERM_STATUS MSR, giving up\n"); goto exit_free; } /* Check if we have problem with errata AE18 of Core processors: Readings might stop update when processor visited too deep sleep, fixed for stepping D0 (6EC). */ if ((c->x86_model == 0xe) && (c->x86_mask < 0xc)) { /* check for microcode update */ rdmsr_on_cpu(data->id, MSR_IA32_UCODE_REV, &eax, &edx); if (edx < 0x39) { err = -ENODEV; dev_err(&pdev->dev, "Errata AE18 not fixed, update BIOS or " "microcode of the CPU!\n"); goto exit_free; } } data->tjmax = get_tjmax(c, data->id, &pdev->dev); platform_set_drvdata(pdev, data); /* * read the still undocumented IA32_TEMPERATURE_TARGET. It exists * on older CPUs but not in this register, * Atoms don't have it either. */ if ((c->x86_model > 0xe) && (c->x86_model != 0x1c)) { err = rdmsr_safe_on_cpu(data->id, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx); if (err) { dev_warn(&pdev->dev, "Unable to read" " IA32_TEMPERATURE_TARGET MSR\n"); } else { data->ttarget = data->tjmax - (((eax >> 8) & 0xff) * 1000); err = device_create_file(&pdev->dev, &sensor_dev_attr_temp1_max.dev_attr); if (err) goto exit_free; } } if ((err = sysfs_create_group(&pdev->dev.kobj, &coretemp_group))) goto exit_dev; data->hwmon_dev = hwmon_device_register(&pdev->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); dev_err(&pdev->dev, "Class registration failed (%d)\n", err); goto exit_class; } return 0; exit_class: sysfs_remove_group(&pdev->dev.kobj, &coretemp_group); exit_dev: device_remove_file(&pdev->dev, &sensor_dev_attr_temp1_max.dev_attr); exit_free: kfree(data); exit: return err; } static int __devexit coretemp_remove(struct platform_device *pdev) { struct coretemp_data *data = platform_get_drvdata(pdev); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&pdev->dev.kobj, &coretemp_group); device_remove_file(&pdev->dev, &sensor_dev_attr_temp1_max.dev_attr); platform_set_drvdata(pdev, NULL); kfree(data); return 0; } static struct platform_driver coretemp_driver = { .driver = { .owner = THIS_MODULE, .name = DRVNAME, }, .probe = coretemp_probe, .remove = __devexit_p(coretemp_remove), }; struct pdev_entry { struct list_head list; struct platform_device *pdev; unsigned int cpu; #ifdef CONFIG_SMP u16 phys_proc_id; u16 cpu_core_id; #endif }; static LIST_HEAD(pdev_list); static DEFINE_MUTEX(pdev_list_mutex); static int __cpuinit coretemp_device_add(unsigned int cpu) { int err; struct platform_device *pdev; struct pdev_entry *pdev_entry; #ifdef CONFIG_SMP struct cpuinfo_x86 *c = &cpu_data(cpu); #endif mutex_lock(&pdev_list_mutex); #ifdef CONFIG_SMP /* Skip second HT entry of each core */ list_for_each_entry(pdev_entry, &pdev_list, list) { if (c->phys_proc_id == pdev_entry->phys_proc_id && c->cpu_core_id == pdev_entry->cpu_core_id) { err = 0; /* Not an error */ goto exit; } } #endif pdev = platform_device_alloc(DRVNAME, cpu); if (!pdev) { err = -ENOMEM; printk(KERN_ERR DRVNAME ": Device allocation failed\n"); goto exit; } pdev_entry = kzalloc(sizeof(struct pdev_entry), GFP_KERNEL); if (!pdev_entry) { err = -ENOMEM; goto exit_device_put; } err = platform_device_add(pdev); if (err) { printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n", err); goto exit_device_free; } pdev_entry->pdev = pdev; pdev_entry->cpu = cpu; #ifdef CONFIG_SMP pdev_entry->phys_proc_id = c->phys_proc_id; pdev_entry->cpu_core_id = c->cpu_core_id; #endif list_add_tail(&pdev_entry->list, &pdev_list); mutex_unlock(&pdev_list_mutex); return 0; exit_device_free: kfree(pdev_entry); exit_device_put: platform_device_put(pdev); exit: mutex_unlock(&pdev_list_mutex); return err; } static void coretemp_device_remove(unsigned int cpu) { struct pdev_entry *p, *n; mutex_lock(&pdev_list_mutex); list_for_each_entry_safe(p, n, &pdev_list, list) { if (p->cpu == cpu) { platform_device_unregister(p->pdev); list_del(&p->list); kfree(p); } } mutex_unlock(&pdev_list_mutex); } static int __cpuinit coretemp_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long) hcpu; switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: coretemp_device_add(cpu); break; case CPU_DOWN_PREPARE: coretemp_device_remove(cpu); break; } return NOTIFY_OK; } static struct notifier_block coretemp_cpu_notifier __refdata = { .notifier_call = coretemp_cpu_callback, }; static int __init coretemp_init(void) { int i, err = -ENODEV; /* quick check if we run Intel */ if (cpu_data(0).x86_vendor != X86_VENDOR_INTEL) goto exit; err = platform_driver_register(&coretemp_driver); if (err) goto exit; for_each_online_cpu(i) { struct cpuinfo_x86 *c = &cpu_data(i); /* * CPUID.06H.EAX[0] indicates whether the CPU has thermal * sensors. We check this bit only, all the early CPUs * without thermal sensors will be filtered out. */ if (c->cpuid_level >= 6 && (cpuid_eax(0x06) & 0x01)) coretemp_device_add(i); else { printk(KERN_INFO DRVNAME ": CPU (model=0x%x)" " has no thermal sensor.\n", c->x86_model); } } #ifndef CONFIG_HOTPLUG_CPU if (list_empty(&pdev_list)) { err = -ENODEV; goto exit_driver_unreg; } #endif register_hotcpu_notifier(&coretemp_cpu_notifier); return 0; #ifndef CONFIG_HOTPLUG_CPU exit_driver_unreg: platform_driver_unregister(&coretemp_driver); #endif exit: return err; } static void __exit coretemp_exit(void) { struct pdev_entry *p, *n; #ifdef CONFIG_HOTPLUG_CPU unregister_hotcpu_notifier(&coretemp_cpu_notifier); #endif mutex_lock(&pdev_list_mutex); list_for_each_entry_safe(p, n, &pdev_list, list) { platform_device_unregister(p->pdev); list_del(&p->list); kfree(p); } mutex_unlock(&pdev_list_mutex); platform_driver_unregister(&coretemp_driver); } MODULE_AUTHOR("Rudolf Marek "); MODULE_DESCRIPTION("Intel Core temperature monitor"); MODULE_LICENSE("GPL"); module_init(coretemp_init) module_exit(coretemp_exit)