/* * VGIC MMIO handling functions * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "vgic.h" #include "vgic-mmio.h" unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { return 0; } unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { return -1UL; } void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { /* Ignore */ } /* * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value * of the enabled bit, so there is only one function for both here. */ unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); u32 value = 0; int i; /* Loop over all IRQs affected by this read */ for (i = 0; i < len * 8; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); if (irq->enabled) value |= (1U << i); vgic_put_irq(vcpu->kvm, irq); } return value; } void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); int i; for_each_set_bit(i, &val, len * 8) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); spin_lock(&irq->irq_lock); irq->enabled = true; vgic_queue_irq_unlock(vcpu->kvm, irq); vgic_put_irq(vcpu->kvm, irq); } } void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); int i; for_each_set_bit(i, &val, len * 8) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); spin_lock(&irq->irq_lock); irq->enabled = false; spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } } unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); u32 value = 0; int i; /* Loop over all IRQs affected by this read */ for (i = 0; i < len * 8; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); if (irq_is_pending(irq)) value |= (1U << i); vgic_put_irq(vcpu->kvm, irq); } return value; } void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); int i; for_each_set_bit(i, &val, len * 8) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); spin_lock(&irq->irq_lock); irq->pending_latch = true; vgic_queue_irq_unlock(vcpu->kvm, irq); vgic_put_irq(vcpu->kvm, irq); } } void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); int i; for_each_set_bit(i, &val, len * 8) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); spin_lock(&irq->irq_lock); irq->pending_latch = false; spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } } unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); u32 value = 0; int i; /* Loop over all IRQs affected by this read */ for (i = 0; i < len * 8; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); if (irq->active) value |= (1U << i); vgic_put_irq(vcpu->kvm, irq); } return value; } static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq, bool new_active_state) { spin_lock(&irq->irq_lock); /* * If this virtual IRQ was written into a list register, we * have to make sure the CPU that runs the VCPU thread has * synced back LR state to the struct vgic_irq. We can only * know this for sure, when either this irq is not assigned to * anyone's AP list anymore, or the VCPU thread is not * running on any CPUs. * * In the opposite case, we know the VCPU thread may be on its * way back from the guest and still has to sync back this * IRQ, so we release and re-acquire the spin_lock to let the * other thread sync back the IRQ. */ while (irq->vcpu && /* IRQ may have state in an LR somewhere */ irq->vcpu->cpu != -1) /* VCPU thread is running */ cond_resched_lock(&irq->irq_lock); irq->active = new_active_state; if (new_active_state) vgic_queue_irq_unlock(vcpu->kvm, irq); else spin_unlock(&irq->irq_lock); } /* * If we are fiddling with an IRQ's active state, we have to make sure the IRQ * is not queued on some running VCPU's LRs, because then the change to the * active state can be overwritten when the VCPU's state is synced coming back * from the guest. * * For shared interrupts, we have to stop all the VCPUs because interrupts can * be migrated while we don't hold the IRQ locks and we don't want to be * chasing moving targets. * * For private interrupts, we only have to make sure the single and only VCPU * that can potentially queue the IRQ is stopped. */ static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid) { if (intid < VGIC_NR_PRIVATE_IRQS) kvm_arm_halt_vcpu(vcpu); else kvm_arm_halt_guest(vcpu->kvm); } /* See vgic_change_active_prepare */ static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid) { if (intid < VGIC_NR_PRIVATE_IRQS) kvm_arm_resume_vcpu(vcpu); else kvm_arm_resume_guest(vcpu->kvm); } void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); int i; vgic_change_active_prepare(vcpu, intid); for_each_set_bit(i, &val, len * 8) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); vgic_mmio_change_active(vcpu, irq, false); vgic_put_irq(vcpu->kvm, irq); } vgic_change_active_finish(vcpu, intid); } void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 1); int i; vgic_change_active_prepare(vcpu, intid); for_each_set_bit(i, &val, len * 8) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); vgic_mmio_change_active(vcpu, irq, true); vgic_put_irq(vcpu->kvm, irq); } vgic_change_active_finish(vcpu, intid); } unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = VGIC_ADDR_TO_INTID(addr, 8); int i; u64 val = 0; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); val |= (u64)irq->priority << (i * 8); vgic_put_irq(vcpu->kvm, irq); } return val; } /* * We currently don't handle changing the priority of an interrupt that * is already pending on a VCPU. If there is a need for this, we would * need to make this VCPU exit and re-evaluate the priorities, potentially * leading to this interrupt getting presented now to the guest (if it has * been masked by the priority mask before). */ void vgic_mmio_write_priority(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 8); int i; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); spin_lock(&irq->irq_lock); /* Narrow the priority range to what we actually support */ irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS); spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } } unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = VGIC_ADDR_TO_INTID(addr, 2); u32 value = 0; int i; for (i = 0; i < len * 4; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); if (irq->config == VGIC_CONFIG_EDGE) value |= (2U << (i * 2)); vgic_put_irq(vcpu->kvm, irq); } return value; } void vgic_mmio_write_config(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 2); int i; for (i = 0; i < len * 4; i++) { struct vgic_irq *irq; /* * The configuration cannot be changed for SGIs in general, * for PPIs this is IMPLEMENTATION DEFINED. The arch timer * code relies on PPIs being level triggered, so we also * make them read-only here. */ if (intid + i < VGIC_NR_PRIVATE_IRQS) continue; irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); spin_lock(&irq->irq_lock); if (test_bit(i * 2 + 1, &val)) irq->config = VGIC_CONFIG_EDGE; else irq->config = VGIC_CONFIG_LEVEL; spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } } static int match_region(const void *key, const void *elt) { const unsigned int offset = (unsigned long)key; const struct vgic_register_region *region = elt; if (offset < region->reg_offset) return -1; if (offset >= region->reg_offset + region->len) return 1; return 0; } /* Find the proper register handler entry given a certain address offset. */ static const struct vgic_register_region * vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions, unsigned int offset) { return bsearch((void *)(uintptr_t)offset, region, nr_regions, sizeof(region[0]), match_region); } /* * kvm_mmio_read_buf() returns a value in a format where it can be converted * to a byte array and be directly observed as the guest wanted it to appear * in memory if it had done the store itself, which is LE for the GIC, as the * guest knows the GIC is always LE. * * We convert this value to the CPUs native format to deal with it as a data * value. */ unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len) { unsigned long data = kvm_mmio_read_buf(val, len); switch (len) { case 1: return data; case 2: return le16_to_cpu(data); case 4: return le32_to_cpu(data); default: return le64_to_cpu(data); } } /* * kvm_mmio_write_buf() expects a value in a format such that if converted to * a byte array it is observed as the guest would see it if it could perform * the load directly. Since the GIC is LE, and the guest knows this, the * guest expects a value in little endian format. * * We convert the data value from the CPUs native format to LE so that the * value is returned in the proper format. */ void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, unsigned long data) { switch (len) { case 1: break; case 2: data = cpu_to_le16(data); break; case 4: data = cpu_to_le32(data); break; default: data = cpu_to_le64(data); } kvm_mmio_write_buf(buf, len, data); } static struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev) { return container_of(dev, struct vgic_io_device, dev); } static bool check_region(const struct kvm *kvm, const struct vgic_register_region *region, gpa_t addr, int len) { int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; switch (len) { case sizeof(u8): flags = VGIC_ACCESS_8bit; break; case sizeof(u32): flags = VGIC_ACCESS_32bit; break; case sizeof(u64): flags = VGIC_ACCESS_64bit; break; default: return false; } if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) { if (!region->bits_per_irq) return true; /* Do we access a non-allocated IRQ? */ return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs; } return false; } static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, gpa_t addr, int len, void *val) { struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); const struct vgic_register_region *region; unsigned long data = 0; region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, addr - iodev->base_addr); if (!region || !check_region(vcpu->kvm, region, addr, len)) { memset(val, 0, len); return 0; } switch (iodev->iodev_type) { case IODEV_CPUIF: data = region->read(vcpu, addr, len); break; case IODEV_DIST: data = region->read(vcpu, addr, len); break; case IODEV_REDIST: data = region->read(iodev->redist_vcpu, addr, len); break; case IODEV_ITS: data = region->its_read(vcpu->kvm, iodev->its, addr, len); break; } vgic_data_host_to_mmio_bus(val, len, data); return 0; } static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, gpa_t addr, int len, const void *val) { struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); const struct vgic_register_region *region; unsigned long data = vgic_data_mmio_bus_to_host(val, len); region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, addr - iodev->base_addr); if (!region || !check_region(vcpu->kvm, region, addr, len)) return 0; switch (iodev->iodev_type) { case IODEV_CPUIF: region->write(vcpu, addr, len, data); break; case IODEV_DIST: region->write(vcpu, addr, len, data); break; case IODEV_REDIST: region->write(iodev->redist_vcpu, addr, len, data); break; case IODEV_ITS: region->its_write(vcpu->kvm, iodev->its, addr, len, data); break; } return 0; } struct kvm_io_device_ops kvm_io_gic_ops = { .read = dispatch_mmio_read, .write = dispatch_mmio_write, }; int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, enum vgic_type type) { struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev; int ret = 0; unsigned int len; switch (type) { case VGIC_V2: len = vgic_v2_init_dist_iodev(io_device); break; case VGIC_V3: len = vgic_v3_init_dist_iodev(io_device); break; default: BUG_ON(1); } io_device->base_addr = dist_base_address; io_device->iodev_type = IODEV_DIST; io_device->redist_vcpu = NULL; mutex_lock(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address, len, &io_device->dev); mutex_unlock(&kvm->slots_lock); return ret; }