/**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2012-2013 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "net_driver.h" #include "ef10_regs.h" #include "io.h" #include "mcdi.h" #include "mcdi_pcol.h" #include "nic.h" #include "workarounds.h" #include "selftest.h" #include "ef10_sriov.h" #include #include #include #include /* Hardware control for EF10 architecture including 'Huntington'. */ #define EFX_EF10_DRVGEN_EV 7 enum { EFX_EF10_TEST = 1, EFX_EF10_REFILL, }; /* The reserved RSS context value */ #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff /* The filter table(s) are managed by firmware and we have write-only * access. When removing filters we must identify them to the * firmware by a 64-bit handle, but this is too wide for Linux kernel * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to * be able to tell in advance whether a requested insertion will * replace an existing filter. Therefore we maintain a software hash * table, which should be at least as large as the hardware hash * table. * * Huntington has a single 8K filter table shared between all filter * types and both ports. */ #define HUNT_FILTER_TBL_ROWS 8192 struct efx_ef10_filter_table { /* The RX match field masks supported by this fw & hw, in order of priority */ enum efx_filter_match_flags rx_match_flags[ MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM]; unsigned int rx_match_count; struct { unsigned long spec; /* pointer to spec plus flag bits */ /* BUSY flag indicates that an update is in progress. AUTO_OLD is * used to mark and sweep MAC filters for the device address lists. */ #define EFX_EF10_FILTER_FLAG_BUSY 1UL #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL #define EFX_EF10_FILTER_FLAGS 3UL u64 handle; /* firmware handle */ } *entry; wait_queue_head_t waitq; /* Shadow of net_device address lists, guarded by mac_lock */ #define EFX_EF10_FILTER_DEV_UC_MAX 32 #define EFX_EF10_FILTER_DEV_MC_MAX 256 struct { u8 addr[ETH_ALEN]; u16 id; } dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX], dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX]; int dev_uc_count; /* negative for PROMISC */ int dev_mc_count; /* negative for PROMISC/ALLMULTI */ }; /* An arbitrary search limit for the software hash table */ #define EFX_EF10_FILTER_SEARCH_LIMIT 200 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx); static void efx_ef10_rx_free_indir_table(struct efx_nic *efx); static void efx_ef10_filter_table_remove(struct efx_nic *efx); static int efx_ef10_get_warm_boot_count(struct efx_nic *efx) { efx_dword_t reg; efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS); return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; } static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx) { return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]); } static int efx_ef10_init_datapath_caps(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < sizeof(outbuf)) { netif_err(efx, drv, efx->net_dev, "unable to read datapath firmware capabilities\n"); return -EIO; } nic_data->datapath_caps = MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) { netif_err(efx, drv, efx->net_dev, "current firmware does not support TSO\n"); return -ENODEV; } if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) { netif_err(efx, probe, efx->net_dev, "current firmware does not support an RX prefix\n"); return -ENODEV; } return 0; } static int efx_ef10_get_sysclk_freq(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN); int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0, outbuf, sizeof(outbuf), NULL); if (rc) return rc; rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ); return rc > 0 ? rc : -ERANGE; } static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) return -EIO; ether_addr_copy(mac_address, MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); return 0; } static int efx_ef10_probe(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data; int i, rc; /* We can have one VI for each 8K region. However, until we * use TX option descriptors we need two TX queues per channel. */ efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS, resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) / (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES)); if (WARN_ON(efx->max_channels == 0)) return -EIO; nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL); if (rc) goto fail1; /* Get the MC's warm boot count. In case it's rebooting right * now, be prepared to retry. */ i = 0; for (;;) { rc = efx_ef10_get_warm_boot_count(efx); if (rc >= 0) break; if (++i == 5) goto fail2; ssleep(1); } nic_data->warm_boot_count = rc; nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID; /* In case we're recovering from a crash (kexec), we want to * cancel any outstanding request by the previous user of this * function. We send a special message using the least * significant bits of the 'high' (doorbell) register. */ _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD); rc = efx_mcdi_init(efx); if (rc) goto fail2; /* Reset (most) configuration for this function */ rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); if (rc) goto fail3; /* Enable event logging */ rc = efx_mcdi_log_ctrl(efx, true, false, 0); if (rc) goto fail3; rc = efx_ef10_init_datapath_caps(efx); if (rc < 0) goto fail3; efx->rx_packet_len_offset = ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE; rc = efx_mcdi_port_get_number(efx); if (rc < 0) goto fail3; efx->port_num = rc; rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr); if (rc) goto fail3; rc = efx_ef10_get_sysclk_freq(efx); if (rc < 0) goto fail3; efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */ /* Check whether firmware supports bug 35388 workaround */ rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true); if (rc == 0) nic_data->workaround_35388 = true; else if (rc != -ENOSYS && rc != -ENOENT) goto fail3; netif_dbg(efx, probe, efx->net_dev, "workaround for bug 35388 is %sabled\n", nic_data->workaround_35388 ? "en" : "dis"); rc = efx_mcdi_mon_probe(efx); if (rc) goto fail3; efx_ptp_probe(efx, NULL); return 0; fail3: efx_mcdi_fini(efx); fail2: efx_nic_free_buffer(efx, &nic_data->mcdi_buf); fail1: kfree(nic_data); efx->nic_data = NULL; return rc; } static int efx_ef10_free_vis(struct efx_nic *efx) { MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0); size_t outlen; int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0, outbuf, sizeof(outbuf), &outlen); /* -EALREADY means nothing to free, so ignore */ if (rc == -EALREADY) rc = 0; if (rc) efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen, rc); return rc; } #ifdef EFX_USE_PIO static void efx_ef10_free_piobufs(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN); unsigned int i; int rc; BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0); for (i = 0; i < nic_data->n_piobufs; i++) { MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[i]); rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf), NULL, 0, NULL); WARN_ON(rc); } nic_data->n_piobufs = 0; } static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN); unsigned int i; size_t outlen; int rc = 0; BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0); for (i = 0; i < n; i++) { rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) break; if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = -EIO; break; } nic_data->piobuf_handle[i] = MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); netif_dbg(efx, probe, efx->net_dev, "allocated PIO buffer %u handle %x\n", i, nic_data->piobuf_handle[i]); } nic_data->n_piobufs = i; if (rc) efx_ef10_free_piobufs(efx); return rc; } static int efx_ef10_link_piobufs(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, max(MC_CMD_LINK_PIOBUF_IN_LEN, MC_CMD_UNLINK_PIOBUF_IN_LEN)); struct efx_channel *channel; struct efx_tx_queue *tx_queue; unsigned int offset, index; int rc; BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0); BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0); /* Link a buffer to each VI in the write-combining mapping */ for (index = 0; index < nic_data->n_piobufs; ++index) { MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[index]); MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, nic_data->pio_write_vi_base + index); rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, NULL, 0, NULL); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to link VI %u to PIO buffer %u (%d)\n", nic_data->pio_write_vi_base + index, index, rc); goto fail; } netif_dbg(efx, probe, efx->net_dev, "linked VI %u to PIO buffer %u\n", nic_data->pio_write_vi_base + index, index); } /* Link a buffer to each TX queue */ efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) { /* We assign the PIO buffers to queues in * reverse order to allow for the following * special case. */ offset = ((efx->tx_channel_offset + efx->n_tx_channels - tx_queue->channel->channel - 1) * efx_piobuf_size); index = offset / ER_DZ_TX_PIOBUF_SIZE; offset = offset % ER_DZ_TX_PIOBUF_SIZE; /* When the host page size is 4K, the first * host page in the WC mapping may be within * the same VI page as the last TX queue. We * can only link one buffer to each VI. */ if (tx_queue->queue == nic_data->pio_write_vi_base) { BUG_ON(index != 0); rc = 0; } else { MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[index]); MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, tx_queue->queue); rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, NULL, 0, NULL); } if (rc) { /* This is non-fatal; the TX path just * won't use PIO for this queue */ netif_err(efx, drv, efx->net_dev, "failed to link VI %u to PIO buffer %u (%d)\n", tx_queue->queue, index, rc); tx_queue->piobuf = NULL; } else { tx_queue->piobuf = nic_data->pio_write_base + index * EFX_VI_PAGE_SIZE + offset; tx_queue->piobuf_offset = offset; netif_dbg(efx, probe, efx->net_dev, "linked VI %u to PIO buffer %u offset %x addr %p\n", tx_queue->queue, index, tx_queue->piobuf_offset, tx_queue->piobuf); } } } return 0; fail: while (index--) { MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE, nic_data->pio_write_vi_base + index); efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF, inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN, NULL, 0, NULL); } return rc; } #else /* !EFX_USE_PIO */ static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) { return n == 0 ? 0 : -ENOBUFS; } static int efx_ef10_link_piobufs(struct efx_nic *efx) { return 0; } static void efx_ef10_free_piobufs(struct efx_nic *efx) { } #endif /* EFX_USE_PIO */ static void efx_ef10_remove(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; efx_ptp_remove(efx); efx_mcdi_mon_remove(efx); efx_ef10_rx_free_indir_table(efx); if (nic_data->wc_membase) iounmap(nic_data->wc_membase); rc = efx_ef10_free_vis(efx); WARN_ON(rc != 0); if (!nic_data->must_restore_piobufs) efx_ef10_free_piobufs(efx); efx_mcdi_fini(efx); efx_nic_free_buffer(efx, &nic_data->mcdi_buf); kfree(nic_data); } static int efx_ef10_alloc_vis(struct efx_nic *efx, unsigned int min_vis, unsigned int max_vis) { MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis); MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis); rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN) return -EIO; netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n", MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE)); nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE); nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT); return 0; } /* Note that the failure path of this function does not free * resources, as this will be done by efx_ef10_remove(). */ static int efx_ef10_dimension_resources(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int uc_mem_map_size, wc_mem_map_size; unsigned int min_vis, pio_write_vi_base, max_vis; void __iomem *membase; int rc; min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES); #ifdef EFX_USE_PIO /* Try to allocate PIO buffers if wanted and if the full * number of PIO buffers would be sufficient to allocate one * copy-buffer per TX channel. Failure is non-fatal, as there * are only a small number of PIO buffers shared between all * functions of the controller. */ if (efx_piobuf_size != 0 && ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >= efx->n_tx_channels) { unsigned int n_piobufs = DIV_ROUND_UP(efx->n_tx_channels, ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size); rc = efx_ef10_alloc_piobufs(efx, n_piobufs); if (rc) netif_err(efx, probe, efx->net_dev, "failed to allocate PIO buffers (%d)\n", rc); else netif_dbg(efx, probe, efx->net_dev, "allocated %u PIO buffers\n", n_piobufs); } #else nic_data->n_piobufs = 0; #endif /* PIO buffers should be mapped with write-combining enabled, * and we want to make single UC and WC mappings rather than * several of each (in fact that's the only option if host * page size is >4K). So we may allocate some extra VIs just * for writing PIO buffers through. * * The UC mapping contains (min_vis - 1) complete VIs and the * first half of the next VI. Then the WC mapping begins with * the second half of this last VI. */ uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF); if (nic_data->n_piobufs) { /* pio_write_vi_base rounds down to give the number of complete * VIs inside the UC mapping. */ pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE; wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base + nic_data->n_piobufs) * EFX_VI_PAGE_SIZE) - uc_mem_map_size); max_vis = pio_write_vi_base + nic_data->n_piobufs; } else { pio_write_vi_base = 0; wc_mem_map_size = 0; max_vis = min_vis; } /* In case the last attached driver failed to free VIs, do it now */ rc = efx_ef10_free_vis(efx); if (rc != 0) return rc; rc = efx_ef10_alloc_vis(efx, min_vis, max_vis); if (rc != 0) return rc; /* If we didn't get enough VIs to map all the PIO buffers, free the * PIO buffers */ if (nic_data->n_piobufs && nic_data->n_allocated_vis < pio_write_vi_base + nic_data->n_piobufs) { netif_dbg(efx, probe, efx->net_dev, "%u VIs are not sufficient to map %u PIO buffers\n", nic_data->n_allocated_vis, nic_data->n_piobufs); efx_ef10_free_piobufs(efx); } /* Shrink the original UC mapping of the memory BAR */ membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size); if (!membase) { netif_err(efx, probe, efx->net_dev, "could not shrink memory BAR to %x\n", uc_mem_map_size); return -ENOMEM; } iounmap(efx->membase); efx->membase = membase; /* Set up the WC mapping if needed */ if (wc_mem_map_size) { nic_data->wc_membase = ioremap_wc(efx->membase_phys + uc_mem_map_size, wc_mem_map_size); if (!nic_data->wc_membase) { netif_err(efx, probe, efx->net_dev, "could not allocate WC mapping of size %x\n", wc_mem_map_size); return -ENOMEM; } nic_data->pio_write_vi_base = pio_write_vi_base; nic_data->pio_write_base = nic_data->wc_membase + (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF - uc_mem_map_size); rc = efx_ef10_link_piobufs(efx); if (rc) efx_ef10_free_piobufs(efx); } netif_dbg(efx, probe, efx->net_dev, "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n", &efx->membase_phys, efx->membase, uc_mem_map_size, nic_data->wc_membase, wc_mem_map_size); return 0; } static int efx_ef10_init_nic(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; if (nic_data->must_check_datapath_caps) { rc = efx_ef10_init_datapath_caps(efx); if (rc) return rc; nic_data->must_check_datapath_caps = false; } if (nic_data->must_realloc_vis) { /* We cannot let the number of VIs change now */ rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis, nic_data->n_allocated_vis); if (rc) return rc; nic_data->must_realloc_vis = false; } if (nic_data->must_restore_piobufs && nic_data->n_piobufs) { rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs); if (rc == 0) { rc = efx_ef10_link_piobufs(efx); if (rc) efx_ef10_free_piobufs(efx); } /* Log an error on failure, but this is non-fatal */ if (rc) netif_err(efx, drv, efx->net_dev, "failed to restore PIO buffers (%d)\n", rc); nic_data->must_restore_piobufs = false; } efx_ef10_rx_push_rss_config(efx); return 0; } static void efx_ef10_reset_mc_allocations(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* All our allocations have been reset */ nic_data->must_realloc_vis = true; nic_data->must_restore_filters = true; nic_data->must_restore_piobufs = true; nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID; } static int efx_ef10_map_reset_flags(u32 *flags) { enum { EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT), EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER | ETH_RESET_OFFLOAD | ETH_RESET_MAC | ETH_RESET_PHY | ETH_RESET_MGMT) << ETH_RESET_SHARED_SHIFT) }; /* We assume for now that our PCI function is permitted to * reset everything. */ if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) { *flags &= ~EF10_RESET_MC; return RESET_TYPE_WORLD; } if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) { *flags &= ~EF10_RESET_PORT; return RESET_TYPE_ALL; } /* no invisible reset implemented */ return -EINVAL; } static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type) { int rc = efx_mcdi_reset(efx, reset_type); /* If it was a port reset, trigger reallocation of MC resources. * Note that on an MC reset nothing needs to be done now because we'll * detect the MC reset later and handle it then. * For an FLR, we never get an MC reset event, but the MC has reset all * resources assigned to us, so we have to trigger reallocation now. */ if ((reset_type == RESET_TYPE_ALL || reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc) efx_ef10_reset_mc_allocations(efx); return rc; } #define EF10_DMA_STAT(ext_name, mcdi_name) \ [EF10_STAT_ ## ext_name] = \ { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \ [EF10_STAT_ ## int_name] = \ { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name } #define EF10_OTHER_STAT(ext_name) \ [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 } #define GENERIC_SW_STAT(ext_name) \ [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 } static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = { EF10_DMA_STAT(tx_bytes, TX_BYTES), EF10_DMA_STAT(tx_packets, TX_PKTS), EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS), EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS), EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS), EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS), EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS), EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS), EF10_DMA_STAT(tx_64, TX_64_PKTS), EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS), EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS), EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS), EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS), EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), EF10_DMA_STAT(rx_bytes, RX_BYTES), EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES), EF10_OTHER_STAT(rx_good_bytes), EF10_OTHER_STAT(rx_bad_bytes), EF10_DMA_STAT(rx_packets, RX_PKTS), EF10_DMA_STAT(rx_good, RX_GOOD_PKTS), EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS), EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS), EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS), EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS), EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS), EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS), EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS), EF10_DMA_STAT(rx_64, RX_64_PKTS), EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS), EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS), EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS), EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS), EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS), EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS), EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS), EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS), EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS), EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS), GENERIC_SW_STAT(rx_nodesc_trunc), GENERIC_SW_STAT(rx_noskb_drops), EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW), EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW), EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL), EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL), EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB), EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB), EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING), EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS), EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS), EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS), EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS), EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS), }; #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \ (1ULL << EF10_STAT_tx_packets) | \ (1ULL << EF10_STAT_tx_pause) | \ (1ULL << EF10_STAT_tx_unicast) | \ (1ULL << EF10_STAT_tx_multicast) | \ (1ULL << EF10_STAT_tx_broadcast) | \ (1ULL << EF10_STAT_rx_bytes) | \ (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \ (1ULL << EF10_STAT_rx_good_bytes) | \ (1ULL << EF10_STAT_rx_bad_bytes) | \ (1ULL << EF10_STAT_rx_packets) | \ (1ULL << EF10_STAT_rx_good) | \ (1ULL << EF10_STAT_rx_bad) | \ (1ULL << EF10_STAT_rx_pause) | \ (1ULL << EF10_STAT_rx_control) | \ (1ULL << EF10_STAT_rx_unicast) | \ (1ULL << EF10_STAT_rx_multicast) | \ (1ULL << EF10_STAT_rx_broadcast) | \ (1ULL << EF10_STAT_rx_lt64) | \ (1ULL << EF10_STAT_rx_64) | \ (1ULL << EF10_STAT_rx_65_to_127) | \ (1ULL << EF10_STAT_rx_128_to_255) | \ (1ULL << EF10_STAT_rx_256_to_511) | \ (1ULL << EF10_STAT_rx_512_to_1023) | \ (1ULL << EF10_STAT_rx_1024_to_15xx) | \ (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \ (1ULL << EF10_STAT_rx_gtjumbo) | \ (1ULL << EF10_STAT_rx_bad_gtjumbo) | \ (1ULL << EF10_STAT_rx_overflow) | \ (1ULL << EF10_STAT_rx_nodesc_drops) | \ (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \ (1ULL << GENERIC_STAT_rx_noskb_drops)) /* These statistics are only provided by the 10G MAC. For a 10G/40G * switchable port we do not expose these because they might not * include all the packets they should. */ #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \ (1ULL << EF10_STAT_tx_lt64) | \ (1ULL << EF10_STAT_tx_64) | \ (1ULL << EF10_STAT_tx_65_to_127) | \ (1ULL << EF10_STAT_tx_128_to_255) | \ (1ULL << EF10_STAT_tx_256_to_511) | \ (1ULL << EF10_STAT_tx_512_to_1023) | \ (1ULL << EF10_STAT_tx_1024_to_15xx) | \ (1ULL << EF10_STAT_tx_15xx_to_jumbo)) /* These statistics are only provided by the 40G MAC. For a 10G/40G * switchable port we do expose these because the errors will otherwise * be silent. */ #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \ (1ULL << EF10_STAT_rx_length_error)) /* These statistics are only provided if the firmware supports the * capability PM_AND_RXDP_COUNTERS. */ #define HUNT_PM_AND_RXDP_STAT_MASK ( \ (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) | \ (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) | \ (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) | \ (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) | \ (1ULL << EF10_STAT_rx_pm_trunc_qbb) | \ (1ULL << EF10_STAT_rx_pm_discard_qbb) | \ (1ULL << EF10_STAT_rx_pm_discard_mapping) | \ (1ULL << EF10_STAT_rx_dp_q_disabled_packets) | \ (1ULL << EF10_STAT_rx_dp_di_dropped_packets) | \ (1ULL << EF10_STAT_rx_dp_streaming_packets) | \ (1ULL << EF10_STAT_rx_dp_hlb_fetch) | \ (1ULL << EF10_STAT_rx_dp_hlb_wait)) static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx) { u64 raw_mask = HUNT_COMMON_STAT_MASK; u32 port_caps = efx_mcdi_phy_get_caps(efx); struct efx_ef10_nic_data *nic_data = efx->nic_data; if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) raw_mask |= HUNT_40G_EXTRA_STAT_MASK; else raw_mask |= HUNT_10G_ONLY_STAT_MASK; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN)) raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK; return raw_mask; } static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask) { u64 raw_mask = efx_ef10_raw_stat_mask(efx); #if BITS_PER_LONG == 64 mask[0] = raw_mask; #else mask[0] = raw_mask & 0xffffffff; mask[1] = raw_mask >> 32; #endif } static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); efx_ef10_get_stat_mask(efx, mask); return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, names); } static int efx_ef10_try_update_nic_stats(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF10_STAT_COUNT); __le64 generation_start, generation_end; u64 *stats = nic_data->stats; __le64 *dma_stats; efx_ef10_get_stat_mask(efx, mask); dma_stats = efx->stats_buffer.addr; nic_data = efx->nic_data; generation_end = dma_stats[MC_CMD_MAC_GENERATION_END]; if (generation_end == EFX_MC_STATS_GENERATION_INVALID) return 0; rmb(); efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, stats, efx->stats_buffer.addr, false); rmb(); generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; if (generation_end != generation_start) return -EAGAIN; /* Update derived statistics */ efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]); stats[EF10_STAT_rx_good_bytes] = stats[EF10_STAT_rx_bytes] - stats[EF10_STAT_rx_bytes_minus_good_bytes]; efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes], stats[EF10_STAT_rx_bytes_minus_good_bytes]); efx_update_sw_stats(efx, stats); return 0; } static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); struct efx_ef10_nic_data *nic_data = efx->nic_data; u64 *stats = nic_data->stats; size_t stats_count = 0, index; int retry; efx_ef10_get_stat_mask(efx, mask); /* If we're unlucky enough to read statistics during the DMA, wait * up to 10ms for it to finish (typically takes <500us) */ for (retry = 0; retry < 100; ++retry) { if (efx_ef10_try_update_nic_stats(efx) == 0) break; udelay(100); } if (full_stats) { for_each_set_bit(index, mask, EF10_STAT_COUNT) { if (efx_ef10_stat_desc[index].name) { *full_stats++ = stats[index]; ++stats_count; } } } if (core_stats) { core_stats->rx_packets = stats[EF10_STAT_rx_packets]; core_stats->tx_packets = stats[EF10_STAT_tx_packets]; core_stats->rx_bytes = stats[EF10_STAT_rx_bytes]; core_stats->tx_bytes = stats[EF10_STAT_tx_bytes]; core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops] + stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[EF10_STAT_rx_multicast]; core_stats->rx_length_errors = stats[EF10_STAT_rx_gtjumbo] + stats[EF10_STAT_rx_length_error]; core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad]; core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error]; core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow]; core_stats->rx_errors = (core_stats->rx_length_errors + core_stats->rx_crc_errors + core_stats->rx_frame_errors); } return stats_count; } static void efx_ef10_push_irq_moderation(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; unsigned int mode, value; efx_dword_t timer_cmd; if (channel->irq_moderation) { mode = 3; value = channel->irq_moderation - 1; } else { mode = 0; value = 0; } if (EFX_EF10_WORKAROUND_35388(efx)) { EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, value); efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT, channel->channel); } else { EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode, ERF_DZ_TC_TIMER_VAL, value); efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR, channel->channel); } } static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) { wol->supported = 0; wol->wolopts = 0; memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int efx_ef10_set_wol(struct efx_nic *efx, u32 type) { if (type != 0) return -EINVAL; return 0; } static void efx_ef10_mcdi_request(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u8 *pdu = nic_data->mcdi_buf.addr; memcpy(pdu, hdr, hdr_len); memcpy(pdu + hdr_len, sdu, sdu_len); wmb(); /* The hardware provides 'low' and 'high' (doorbell) registers * for passing the 64-bit address of an MCDI request to * firmware. However the dwords are swapped by firmware. The * least significant bits of the doorbell are then 0 for all * MCDI requests due to alignment. */ _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32), ER_DZ_MC_DB_LWRD); _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr), ER_DZ_MC_DB_HWRD); } static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr; rmb(); return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); } static void efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, size_t offset, size_t outlen) { struct efx_ef10_nic_data *nic_data = efx->nic_data; const u8 *pdu = nic_data->mcdi_buf.addr; memcpy(outbuf, pdu + offset, outlen); } static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; rc = efx_ef10_get_warm_boot_count(efx); if (rc < 0) { /* The firmware is presumably in the process of * rebooting. However, we are supposed to report each * reboot just once, so we must only do that once we * can read and store the updated warm boot count. */ return 0; } if (rc == nic_data->warm_boot_count) return 0; nic_data->warm_boot_count = rc; /* All our allocations have been reset */ efx_ef10_reset_mc_allocations(efx); /* The datapath firmware might have been changed */ nic_data->must_check_datapath_caps = true; /* MAC statistics have been cleared on the NIC; clear the local * statistic that we update with efx_update_diff_stat(). */ nic_data->stats[EF10_STAT_rx_bad_bytes] = 0; return -EIO; } /* Handle an MSI interrupt * * Handle an MSI hardware interrupt. This routine schedules event * queue processing. No interrupt acknowledgement cycle is necessary. * Also, we never need to check that the interrupt is for us, since * MSI interrupts cannot be shared. */ static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id) { struct efx_msi_context *context = dev_id; struct efx_nic *efx = context->efx; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) { /* Note test interrupts */ if (context->index == efx->irq_level) efx->last_irq_cpu = raw_smp_processor_id(); /* Schedule processing of the channel */ efx_schedule_channel_irq(efx->channel[context->index]); } return IRQ_HANDLED; } static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id) { struct efx_nic *efx = dev_id; bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled); struct efx_channel *channel; efx_dword_t reg; u32 queues; /* Read the ISR which also ACKs the interrupts */ efx_readd(efx, ®, ER_DZ_BIU_INT_ISR); queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG); if (queues == 0) return IRQ_NONE; if (likely(soft_enabled)) { /* Note test interrupts */ if (queues & (1U << efx->irq_level)) efx->last_irq_cpu = raw_smp_processor_id(); efx_for_each_channel(channel, efx) { if (queues & 1) efx_schedule_channel_irq(channel); queues >>= 1; } } netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); return IRQ_HANDLED; } static void efx_ef10_irq_test_generate(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT, inbuf, sizeof(inbuf), NULL, 0, NULL); } static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue) { return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf, (tx_queue->ptr_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } /* This writes to the TX_DESC_WPTR and also pushes data */ static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, const efx_qword_t *txd) { unsigned int write_ptr; efx_oword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr); reg.qword[0] = *txd; efx_writeo_page(tx_queue->efx, ®, ER_DZ_TX_DESC_UPD, tx_queue->queue); } static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 / EFX_BUF_SIZE)); MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN); bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE; struct efx_channel *channel = tx_queue->channel; struct efx_nic *efx = tx_queue->efx; size_t inlen, outlen; dma_addr_t dma_addr; efx_qword_t *txd; int rc; int i; MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue); MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS, INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload, INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); dma_addr = tx_queue->txd.buf.dma_addr; netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n", tx_queue->queue, entries, (u64)dma_addr); for (i = 0; i < entries; ++i) { MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr); dma_addr += EFX_BUF_SIZE; } inlen = MC_CMD_INIT_TXQ_IN_LEN(entries); rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen, outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; /* A previous user of this TX queue might have set us up the * bomb by writing a descriptor to the TX push collector but * not the doorbell. (Each collector belongs to a port, not a * queue or function, so cannot easily be reset.) We must * attempt to push a no-op descriptor in its place. */ tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION; tx_queue->insert_count = 1; txd = efx_tx_desc(tx_queue, 0); EFX_POPULATE_QWORD_4(*txd, ESF_DZ_TX_DESC_IS_OPT, true, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM, ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload, ESF_DZ_TX_OPTION_IP_CSUM, csum_offload); tx_queue->write_count = 1; wmb(); efx_ef10_push_tx_desc(tx_queue, txd); return; fail: netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n", tx_queue->queue); } static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN); struct efx_nic *efx = tx_queue->efx; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE, tx_queue->queue); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc && rc != -EALREADY) goto fail; return; fail: efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN, outbuf, outlen, rc); } static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue) { efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf); } /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue) { unsigned int write_ptr; efx_dword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(tx_queue->efx, ®, ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue); } static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue) { unsigned int old_write_count = tx_queue->write_count; struct efx_tx_buffer *buffer; unsigned int write_ptr; efx_qword_t *txd; BUG_ON(tx_queue->write_count == tx_queue->insert_count); do { write_ptr = tx_queue->write_count & tx_queue->ptr_mask; buffer = &tx_queue->buffer[write_ptr]; txd = efx_tx_desc(tx_queue, write_ptr); ++tx_queue->write_count; /* Create TX descriptor ring entry */ if (buffer->flags & EFX_TX_BUF_OPTION) { *txd = buffer->option; } else { BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); EFX_POPULATE_QWORD_3( *txd, ESF_DZ_TX_KER_CONT, buffer->flags & EFX_TX_BUF_CONT, ESF_DZ_TX_KER_BYTE_CNT, buffer->len, ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr); } } while (tx_queue->write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { txd = efx_tx_desc(tx_queue, old_write_count & tx_queue->ptr_mask); efx_ef10_push_tx_desc(tx_queue, txd); ++tx_queue->pushes; } else { efx_ef10_notify_tx_desc(tx_queue); } } static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context) { MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN); size_t outlen; int rc; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID, EVB_PORT_ID_ASSIGNED); MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE); MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, EFX_MAX_CHANNELS); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN) return -EIO; *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID); return 0; } static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context) { MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN); int rc; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID, context); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf), NULL, 0, NULL); WARN_ON(rc != 0); } static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context) { MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN); MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN); int i, rc; MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID, context); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN); for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i) MCDI_PTR(tablebuf, RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] = (u8) efx->rx_indir_table[i]; rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf, sizeof(tablebuf), NULL, 0, NULL); if (rc != 0) return rc; MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID, context); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) != MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i) MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = efx->rx_hash_key[i]; return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf, sizeof(keybuf), NULL, 0, NULL); } static void efx_ef10_rx_free_indir_table(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID) efx_ef10_free_rss_context(efx, nic_data->rx_rss_context); nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID; } static void efx_ef10_rx_push_rss_config(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n"); if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) { rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context); if (rc != 0) goto fail; } rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context); if (rc != 0) goto fail; return; fail: netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); } static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue) { return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf, (rx_queue->ptr_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 / EFX_BUF_SIZE)); MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN); struct efx_channel *channel = efx_rx_queue_channel(rx_queue); size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE; struct efx_nic *efx = rx_queue->efx; size_t inlen, outlen; dma_addr_t dma_addr; int rc; int i; rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue)); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE, efx_rx_queue_index(rx_queue)); MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS, INIT_RXQ_IN_FLAG_PREFIX, 1, INIT_RXQ_IN_FLAG_TIMESTAMP, 1); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); dma_addr = rx_queue->rxd.buf.dma_addr; netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n", efx_rx_queue_index(rx_queue), entries, (u64)dma_addr); for (i = 0; i < entries; ++i) { MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr); dma_addr += EFX_BUF_SIZE; } inlen = MC_CMD_INIT_RXQ_IN_LEN(entries); rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen, outbuf, sizeof(outbuf), &outlen); if (rc) netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n", efx_rx_queue_index(rx_queue)); } static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN); struct efx_nic *efx = rx_queue->efx; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE, efx_rx_queue_index(rx_queue)); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc && rc != -EALREADY) goto fail; return; fail: efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN, outbuf, outlen, rc); } static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue) { efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf); } /* This creates an entry in the RX descriptor queue */ static inline void efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { struct efx_rx_buffer *rx_buf; efx_qword_t *rxd; rxd = efx_rx_desc(rx_queue, index); rx_buf = efx_rx_buffer(rx_queue, index); EFX_POPULATE_QWORD_2(*rxd, ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len, ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); } static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int write_count; efx_dword_t reg; /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */ write_count = rx_queue->added_count & ~7; if (rx_queue->notified_count == write_count) return; do efx_ef10_build_rx_desc( rx_queue, rx_queue->notified_count & rx_queue->ptr_mask); while (++rx_queue->notified_count != write_count); wmb(); EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR, write_count & rx_queue->ptr_mask); efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD, efx_rx_queue_index(rx_queue)); } static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete; static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue) { struct efx_channel *channel = efx_rx_queue_channel(rx_queue); MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); efx_qword_t event; EFX_POPULATE_QWORD_2(event, ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, ESF_DZ_EV_DATA, EFX_EF10_REFILL); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 0, efx_ef10_rx_defer_refill_complete, 0); } static void efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, int rc, efx_dword_t *outbuf, size_t outlen_actual) { /* nothing to do */ } static int efx_ef10_ev_probe(struct efx_channel *channel) { return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, (channel->eventq_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } static int efx_ef10_ev_init(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 / EFX_BUF_SIZE)); MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN); size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE; struct efx_nic *efx = channel->efx; struct efx_ef10_nic_data *nic_data; bool supports_rx_merge; size_t inlen, outlen; dma_addr_t dma_addr; int rc; int i; nic_data = efx->nic_data; supports_rx_merge = !!(nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN); /* Fill event queue with all ones (i.e. empty events) */ memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel); /* INIT_EVQ expects index in vector table, not absolute */ MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel); MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS, INIT_EVQ_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_IN_FLAG_RX_MERGE, 1, INIT_EVQ_IN_FLAG_TX_MERGE, 1, INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE, MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0); dma_addr = channel->eventq.buf.dma_addr; for (i = 0; i < entries; ++i) { MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr); dma_addr += EFX_BUF_SIZE; } inlen = MC_CMD_INIT_EVQ_IN_LEN(entries); rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen, outbuf, sizeof(outbuf), &outlen); /* IRQ return is ignored */ return rc; } static void efx_ef10_ev_fini(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN); struct efx_nic *efx = channel->efx; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc && rc != -EALREADY) goto fail; return; fail: efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN, outbuf, outlen, rc); } static void efx_ef10_ev_remove(struct efx_channel *channel) { efx_nic_free_buffer(channel->efx, &channel->eventq.buf); } static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, unsigned int rx_queue_label) { struct efx_nic *efx = rx_queue->efx; netif_info(efx, hw, efx->net_dev, "rx event arrived on queue %d labeled as queue %u\n", efx_rx_queue_index(rx_queue), rx_queue_label); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } static void efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, unsigned int actual, unsigned int expected) { unsigned int dropped = (actual - expected) & rx_queue->ptr_mask; struct efx_nic *efx = rx_queue->efx; netif_info(efx, hw, efx->net_dev, "dropped %d events (index=%d expected=%d)\n", dropped, actual, expected); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } /* partially received RX was aborted. clean up. */ static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue) { unsigned int rx_desc_ptr; netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev, "scattered RX aborted (dropping %u buffers)\n", rx_queue->scatter_n); rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask; efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc; } static int efx_ef10_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) { unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class; unsigned int n_descs, n_packets, i; struct efx_nic *efx = channel->efx; struct efx_rx_queue *rx_queue; bool rx_cont; u16 flags = 0; if (unlikely(ACCESS_ONCE(efx->reset_pending))) return 0; /* Basic packet information */ rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES); next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS); rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL); rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS); rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT); if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT)) netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); rx_queue = efx_channel_get_rx_queue(channel); if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue))) efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label); n_descs = ((next_ptr_lbits - rx_queue->removed_count) & ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); if (n_descs != rx_queue->scatter_n + 1) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* detect rx abort */ if (unlikely(n_descs == rx_queue->scatter_n)) { if (rx_queue->scatter_n == 0 || rx_bytes != 0) netdev_WARN(efx->net_dev, "invalid RX abort: scatter_n=%u event=" EFX_QWORD_FMT "\n", rx_queue->scatter_n, EFX_QWORD_VAL(*event)); efx_ef10_handle_rx_abort(rx_queue); return 0; } /* Check that RX completion merging is valid, i.e. * the current firmware supports it and this is a * non-scattered packet. */ if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) || rx_queue->scatter_n != 0 || rx_cont) { efx_ef10_handle_rx_bad_lbits( rx_queue, next_ptr_lbits, (rx_queue->removed_count + rx_queue->scatter_n + 1) & ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); return 0; } /* Merged completion for multiple non-scattered packets */ rx_queue->scatter_n = 1; rx_queue->scatter_len = 0; n_packets = n_descs; ++channel->n_rx_merge_events; channel->n_rx_merge_packets += n_packets; flags |= EFX_RX_PKT_PREFIX_LEN; } else { ++rx_queue->scatter_n; rx_queue->scatter_len += rx_bytes; if (rx_cont) return 0; n_packets = 1; } if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR))) flags |= EFX_RX_PKT_DISCARD; if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) { channel->n_rx_ip_hdr_chksum_err += n_packets; } else if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR))) { channel->n_rx_tcp_udp_chksum_err += n_packets; } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP || rx_l4_class == ESE_DZ_L4_CLASS_UDP) { flags |= EFX_RX_PKT_CSUMMED; } if (rx_l4_class == ESE_DZ_L4_CLASS_TCP) flags |= EFX_RX_PKT_TCP; channel->irq_mod_score += 2 * n_packets; /* Handle received packet(s) */ for (i = 0; i < n_packets; i++) { efx_rx_packet(rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, rx_queue->scatter_len, flags); rx_queue->removed_count += rx_queue->scatter_n; } rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; return n_packets; } static int efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; struct efx_tx_queue *tx_queue; unsigned int tx_ev_desc_ptr; unsigned int tx_ev_q_label; int tx_descs = 0; if (unlikely(ACCESS_ONCE(efx->reset_pending))) return 0; if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT))) return 0; /* Transmit completion */ tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX); tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL); tx_queue = efx_channel_get_tx_queue(channel, tx_ev_q_label % EFX_TXQ_TYPES); tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) & tx_queue->ptr_mask); efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask); return tx_descs; } static void efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; int subcode; subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE); switch (subcode) { case ESE_DZ_DRV_TIMER_EV: case ESE_DZ_DRV_WAKE_UP_EV: break; case ESE_DZ_DRV_START_UP_EV: /* event queue init complete. ok. */ break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown driver event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, subcode, EFX_QWORD_VAL(*event)); } } static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; u32 subcode; subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0); switch (subcode) { case EFX_EF10_TEST: channel->event_test_cpu = raw_smp_processor_id(); break; case EFX_EF10_REFILL: /* The queue must be empty, so we won't receive any rx * events, so efx_process_channel() won't refill the * queue. Refill it here */ efx_fast_push_rx_descriptors(&channel->rx_queue, true); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown driver event type %u" " (data " EFX_QWORD_FMT ")\n", channel->channel, (unsigned) subcode, EFX_QWORD_VAL(*event)); } } static int efx_ef10_ev_process(struct efx_channel *channel, int quota) { struct efx_nic *efx = channel->efx; efx_qword_t event, *p_event; unsigned int read_ptr; int ev_code; int tx_descs = 0; int spent = 0; if (quota <= 0) return spent; read_ptr = channel->eventq_read_ptr; for (;;) { p_event = efx_event(channel, read_ptr); event = *p_event; if (!efx_event_present(&event)) break; EFX_SET_QWORD(*p_event); ++read_ptr; ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE); netif_vdbg(efx, drv, efx->net_dev, "processing event on %d " EFX_QWORD_FMT "\n", channel->channel, EFX_QWORD_VAL(event)); switch (ev_code) { case ESE_DZ_EV_CODE_MCDI_EV: efx_mcdi_process_event(channel, &event); break; case ESE_DZ_EV_CODE_RX_EV: spent += efx_ef10_handle_rx_event(channel, &event); if (spent >= quota) { /* XXX can we split a merged event to * avoid going over-quota? */ spent = quota; goto out; } break; case ESE_DZ_EV_CODE_TX_EV: tx_descs += efx_ef10_handle_tx_event(channel, &event); if (tx_descs > efx->txq_entries) { spent = quota; goto out; } else if (++spent == quota) { goto out; } break; case ESE_DZ_EV_CODE_DRIVER_EV: efx_ef10_handle_driver_event(channel, &event); if (++spent == quota) goto out; break; case EFX_EF10_DRVGEN_EV: efx_ef10_handle_driver_generated_event(channel, &event); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, ev_code, EFX_QWORD_VAL(event)); } } out: channel->eventq_read_ptr = read_ptr; return spent; } static void efx_ef10_ev_read_ack(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; efx_dword_t rptr; if (EFX_EF10_WORKAROUND_35388(efx)) { BUILD_BUG_ON(EFX_MIN_EVQ_SIZE < (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); BUILD_BUG_ON(EFX_MAX_EVQ_SIZE > (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (channel->eventq_read_ptr & channel->eventq_mask) >> ERF_DD_EVQ_IND_RPTR_WIDTH); efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, channel->channel); EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, channel->eventq_read_ptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, channel->channel); } else { EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR, channel->eventq_read_ptr & channel->eventq_mask); efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel); } } static void efx_ef10_ev_test_generate(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); struct efx_nic *efx = channel->efx; efx_qword_t event; int rc; EFX_POPULATE_QWORD_2(event, ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, ESF_DZ_EV_DATA, EFX_EF10_TEST); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc != 0) goto fail; return; fail: WARN_ON(true); netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); } void efx_ef10_handle_drain_event(struct efx_nic *efx) { if (atomic_dec_and_test(&efx->active_queues)) wake_up(&efx->flush_wq); WARN_ON(atomic_read(&efx->active_queues) < 0); } static int efx_ef10_fini_dmaq(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int pending; /* If the MC has just rebooted, the TX/RX queues will have already been * torn down, but efx->active_queues needs to be set to zero. */ if (nic_data->must_realloc_vis) { atomic_set(&efx->active_queues, 0); return 0; } /* Do not attempt to write to the NIC during EEH recovery */ if (efx->state != STATE_RECOVERY) { efx_for_each_channel(channel, efx) { efx_for_each_channel_rx_queue(rx_queue, channel) efx_ef10_rx_fini(rx_queue); efx_for_each_channel_tx_queue(tx_queue, channel) efx_ef10_tx_fini(tx_queue); } wait_event_timeout(efx->flush_wq, atomic_read(&efx->active_queues) == 0, msecs_to_jiffies(EFX_MAX_FLUSH_TIME)); pending = atomic_read(&efx->active_queues); if (pending) { netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n", pending); return -ETIMEDOUT; } } return 0; } static void efx_ef10_prepare_flr(struct efx_nic *efx) { atomic_set(&efx->active_queues, 0); } static bool efx_ef10_filter_equal(const struct efx_filter_spec *left, const struct efx_filter_spec *right) { if ((left->match_flags ^ right->match_flags) | ((left->flags ^ right->flags) & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) return false; return memcmp(&left->outer_vid, &right->outer_vid, sizeof(struct efx_filter_spec) - offsetof(struct efx_filter_spec, outer_vid)) == 0; } static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec) { BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); return jhash2((const u32 *)&spec->outer_vid, (sizeof(struct efx_filter_spec) - offsetof(struct efx_filter_spec, outer_vid)) / 4, 0); /* XXX should we randomise the initval? */ } /* Decide whether a filter should be exclusive or else should allow * delivery to additional recipients. Currently we decide that * filters for specific local unicast MAC and IP addresses are * exclusive. */ static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec) { if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC && !is_multicast_ether_addr(spec->loc_mac)) return true; if ((spec->match_flags & (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { if (spec->ether_type == htons(ETH_P_IP) && !ipv4_is_multicast(spec->loc_host[0])) return true; if (spec->ether_type == htons(ETH_P_IPV6) && ((const u8 *)spec->loc_host)[0] != 0xff) return true; } return false; } static struct efx_filter_spec * efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table, unsigned int filter_idx) { return (struct efx_filter_spec *)(table->entry[filter_idx].spec & ~EFX_EF10_FILTER_FLAGS); } static unsigned int efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table, unsigned int filter_idx) { return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS; } static void efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table, unsigned int filter_idx, const struct efx_filter_spec *spec, unsigned int flags) { table->entry[filter_idx].spec = (unsigned long)spec | flags; } static void efx_ef10_filter_push_prep(struct efx_nic *efx, const struct efx_filter_spec *spec, efx_dword_t *inbuf, u64 handle, bool replacing) { struct efx_ef10_nic_data *nic_data = efx->nic_data; memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN); if (replacing) { MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_REPLACE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle); } else { u32 match_fields = 0; MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, efx_ef10_filter_is_exclusive(spec) ? MC_CMD_FILTER_OP_IN_OP_INSERT : MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE); /* Convert match flags and values. Unlike almost * everything else in MCDI, these fields are in * network byte order. */ if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) match_fields |= is_multicast_ether_addr(spec->loc_mac) ? 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN : 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN; #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \ if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \ match_fields |= \ 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \ mcdi_field ## _LBN; \ BUILD_BUG_ON( \ MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \ sizeof(spec->gen_field)); \ memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \ &spec->gen_field, sizeof(spec->gen_field)); \ } COPY_FIELD(REM_HOST, rem_host, SRC_IP); COPY_FIELD(LOC_HOST, loc_host, DST_IP); COPY_FIELD(REM_MAC, rem_mac, SRC_MAC); COPY_FIELD(REM_PORT, rem_port, SRC_PORT); COPY_FIELD(LOC_MAC, loc_mac, DST_MAC); COPY_FIELD(LOC_PORT, loc_port, DST_PORT); COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE); COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN); COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN); COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO); #undef COPY_FIELD MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS, match_fields); } MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST, spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ? MC_CMD_FILTER_OP_IN_RX_DEST_DROP : MC_CMD_FILTER_OP_IN_RX_DEST_HOST); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST, MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ? 0 : spec->dmaq_id); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE, (spec->flags & EFX_FILTER_FLAG_RX_RSS) ? MC_CMD_FILTER_OP_IN_RX_MODE_RSS : MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE); if (spec->flags & EFX_FILTER_FLAG_RX_RSS) MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT ? spec->rss_context : nic_data->rx_rss_context); } static int efx_ef10_filter_push(struct efx_nic *efx, const struct efx_filter_spec *spec, u64 *handle, bool replacing) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN); int rc; efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); if (rc == 0) *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE); if (rc == -ENOSPC) rc = -EBUSY; /* to match efx_farch_filter_insert() */ return rc; } static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table, enum efx_filter_match_flags match_flags) { unsigned int match_pri; for (match_pri = 0; match_pri < table->rx_match_count; match_pri++) if (table->rx_match_flags[match_pri] == match_flags) return match_pri; return -EPROTONOSUPPORT; } static s32 efx_ef10_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec, bool replace_equal) { struct efx_ef10_filter_table *table = efx->filter_state; DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT); struct efx_filter_spec *saved_spec; unsigned int match_pri, hash; unsigned int priv_flags; bool replacing = false; int ins_index = -1; DEFINE_WAIT(wait); bool is_mc_recip; s32 rc; /* For now, only support RX filters */ if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) != EFX_FILTER_FLAG_RX) return -EINVAL; rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags); if (rc < 0) return rc; match_pri = rc; hash = efx_ef10_filter_hash(spec); is_mc_recip = efx_filter_is_mc_recipient(spec); if (is_mc_recip) bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT); /* Find any existing filters with the same match tuple or * else a free slot to insert at. If any of them are busy, * we have to wait and retry. */ for (;;) { unsigned int depth = 1; unsigned int i; spin_lock_bh(&efx->filter_lock); for (;;) { i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); saved_spec = efx_ef10_filter_entry_spec(table, i); if (!saved_spec) { if (ins_index < 0) ins_index = i; } else if (efx_ef10_filter_equal(spec, saved_spec)) { if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) break; if (spec->priority < saved_spec->priority && spec->priority != EFX_FILTER_PRI_AUTO) { rc = -EPERM; goto out_unlock; } if (!is_mc_recip) { /* This is the only one */ if (spec->priority == saved_spec->priority && !replace_equal) { rc = -EEXIST; goto out_unlock; } ins_index = i; goto found; } else if (spec->priority > saved_spec->priority || (spec->priority == saved_spec->priority && replace_equal)) { if (ins_index < 0) ins_index = i; else __set_bit(depth, mc_rem_map); } } /* Once we reach the maximum search depth, use * the first suitable slot or return -EBUSY if * there was none */ if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) { if (ins_index < 0) { rc = -EBUSY; goto out_unlock; } goto found; } ++depth; } prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&efx->filter_lock); schedule(); } found: /* Create a software table entry if necessary, and mark it * busy. We might yet fail to insert, but any attempt to * insert a conflicting filter while we're waiting for the * firmware must find the busy entry. */ saved_spec = efx_ef10_filter_entry_spec(table, ins_index); if (saved_spec) { if (spec->priority == EFX_FILTER_PRI_AUTO && saved_spec->priority >= EFX_FILTER_PRI_AUTO) { /* Just make sure it won't be removed */ if (saved_spec->priority > EFX_FILTER_PRI_AUTO) saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; table->entry[ins_index].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD; rc = ins_index; goto out_unlock; } replacing = true; priv_flags = efx_ef10_filter_entry_flags(table, ins_index); } else { saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC); if (!saved_spec) { rc = -ENOMEM; goto out_unlock; } *saved_spec = *spec; priv_flags = 0; } efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags | EFX_EF10_FILTER_FLAG_BUSY); /* Mark lower-priority multicast recipients busy prior to removal */ if (is_mc_recip) { unsigned int depth, i; for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) { i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); if (test_bit(depth, mc_rem_map)) table->entry[i].spec |= EFX_EF10_FILTER_FLAG_BUSY; } } spin_unlock_bh(&efx->filter_lock); rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle, replacing); /* Finalise the software table entry */ spin_lock_bh(&efx->filter_lock); if (rc == 0) { if (replacing) { /* Update the fields that may differ */ if (saved_spec->priority == EFX_FILTER_PRI_AUTO) saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; saved_spec->priority = spec->priority; saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO; saved_spec->flags |= spec->flags; saved_spec->rss_context = spec->rss_context; saved_spec->dmaq_id = spec->dmaq_id; } } else if (!replacing) { kfree(saved_spec); saved_spec = NULL; } efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags); /* Remove and finalise entries for lower-priority multicast * recipients */ if (is_mc_recip) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); unsigned int depth, i; memset(inbuf, 0, sizeof(inbuf)); for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) { if (!test_bit(depth, mc_rem_map)) continue; i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); saved_spec = efx_ef10_filter_entry_spec(table, i); priv_flags = efx_ef10_filter_entry_flags(table, i); if (rc == 0) { spin_unlock_bh(&efx->filter_lock); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[i].handle); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), NULL, 0, NULL); spin_lock_bh(&efx->filter_lock); } if (rc == 0) { kfree(saved_spec); saved_spec = NULL; priv_flags = 0; } else { priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY; } efx_ef10_filter_set_entry(table, i, saved_spec, priv_flags); } } /* If successful, return the inserted filter ID */ if (rc == 0) rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index; wake_up_all(&table->waitq); out_unlock: spin_unlock_bh(&efx->filter_lock); finish_wait(&table->waitq, &wait); return rc; } static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx) { /* no need to do anything here on EF10 */ } /* Remove a filter. * If !by_index, remove by ID * If by_index, remove by index * Filter ID may come from userland and must be range-checked. */ static int efx_ef10_filter_remove_internal(struct efx_nic *efx, unsigned int priority_mask, u32 filter_id, bool by_index) { unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS; struct efx_ef10_filter_table *table = efx->filter_state; MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_HANDLE_OFST + MC_CMD_FILTER_OP_IN_HANDLE_LEN); struct efx_filter_spec *spec; DEFINE_WAIT(wait); int rc; /* Find the software table entry and mark it busy. Don't * remove it yet; any attempt to update while we're waiting * for the firmware must find the busy entry. */ for (;;) { spin_lock_bh(&efx->filter_lock); if (!(table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY)) break; prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&efx->filter_lock); schedule(); } spec = efx_ef10_filter_entry_spec(table, filter_idx); if (!spec || (!by_index && efx_ef10_filter_rx_match_pri(table, spec->match_flags) != filter_id / HUNT_FILTER_TBL_ROWS)) { rc = -ENOENT; goto out_unlock; } if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO && priority_mask == (1U << EFX_FILTER_PRI_AUTO)) { /* Just remove flags */ spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO; table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD; rc = 0; goto out_unlock; } if (!(priority_mask & (1U << spec->priority))) { rc = -ENOENT; goto out_unlock; } table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY; spin_unlock_bh(&efx->filter_lock); if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) { /* Reset to an automatic filter */ struct efx_filter_spec new_spec = *spec; new_spec.priority = EFX_FILTER_PRI_AUTO; new_spec.flags = (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_RSS); new_spec.dmaq_id = 0; new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT; rc = efx_ef10_filter_push(efx, &new_spec, &table->entry[filter_idx].handle, true); spin_lock_bh(&efx->filter_lock); if (rc == 0) *spec = new_spec; } else { /* Really remove the filter */ MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, efx_ef10_filter_is_exclusive(spec) ? MC_CMD_FILTER_OP_IN_OP_REMOVE : MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[filter_idx].handle); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), NULL, 0, NULL); spin_lock_bh(&efx->filter_lock); if (rc == 0) { kfree(spec); efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); } } table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY; wake_up_all(&table->waitq); out_unlock: spin_unlock_bh(&efx->filter_lock); finish_wait(&table->waitq, &wait); return rc; } static int efx_ef10_filter_remove_safe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id) { return efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, false); } static int efx_ef10_filter_get_safe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id, struct efx_filter_spec *spec) { unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS; struct efx_ef10_filter_table *table = efx->filter_state; const struct efx_filter_spec *saved_spec; int rc; spin_lock_bh(&efx->filter_lock); saved_spec = efx_ef10_filter_entry_spec(table, filter_idx); if (saved_spec && saved_spec->priority == priority && efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) == filter_id / HUNT_FILTER_TBL_ROWS) { *spec = *saved_spec; rc = 0; } else { rc = -ENOENT; } spin_unlock_bh(&efx->filter_lock); return rc; } static int efx_ef10_filter_clear_rx(struct efx_nic *efx, enum efx_filter_priority priority) { unsigned int priority_mask; unsigned int i; int rc; priority_mask = (((1U << (priority + 1)) - 1) & ~(1U << EFX_FILTER_PRI_AUTO)); for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) { rc = efx_ef10_filter_remove_internal(efx, priority_mask, i, true); if (rc && rc != -ENOENT) return rc; } return 0; } static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx, enum efx_filter_priority priority) { struct efx_ef10_filter_table *table = efx->filter_state; unsigned int filter_idx; s32 count = 0; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { if (table->entry[filter_idx].spec && efx_ef10_filter_entry_spec(table, filter_idx)->priority == priority) ++count; } spin_unlock_bh(&efx->filter_lock); return count; } static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; return table->rx_match_count * HUNT_FILTER_TBL_ROWS; } static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx, enum efx_filter_priority priority, u32 *buf, u32 size) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_filter_spec *spec; unsigned int filter_idx; s32 count = 0; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { spec = efx_ef10_filter_entry_spec(table, filter_idx); if (spec && spec->priority == priority) { if (count == size) { count = -EMSGSIZE; break; } buf[count++] = (efx_ef10_filter_rx_match_pri( table, spec->match_flags) * HUNT_FILTER_TBL_ROWS + filter_idx); } } spin_unlock_bh(&efx->filter_lock); return count; } #ifdef CONFIG_RFS_ACCEL static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete; static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx, struct efx_filter_spec *spec) { struct efx_ef10_filter_table *table = efx->filter_state; MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); struct efx_filter_spec *saved_spec; unsigned int hash, i, depth = 1; bool replacing = false; int ins_index = -1; u64 cookie; s32 rc; /* Must be an RX filter without RSS and not for a multicast * destination address (RFS only works for connected sockets). * These restrictions allow us to pass only a tiny amount of * data through to the completion function. */ EFX_WARN_ON_PARANOID(spec->flags != (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER)); EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT); EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec)); hash = efx_ef10_filter_hash(spec); spin_lock_bh(&efx->filter_lock); /* Find any existing filter with the same match tuple or else * a free slot to insert at. If an existing filter is busy, * we have to give up. */ for (;;) { i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); saved_spec = efx_ef10_filter_entry_spec(table, i); if (!saved_spec) { if (ins_index < 0) ins_index = i; } else if (efx_ef10_filter_equal(spec, saved_spec)) { if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) { rc = -EBUSY; goto fail_unlock; } if (spec->priority < saved_spec->priority) { rc = -EPERM; goto fail_unlock; } ins_index = i; break; } /* Once we reach the maximum search depth, use the * first suitable slot or return -EBUSY if there was * none */ if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) { if (ins_index < 0) { rc = -EBUSY; goto fail_unlock; } break; } ++depth; } /* Create a software table entry if necessary, and mark it * busy. We might yet fail to insert, but any attempt to * insert a conflicting filter while we're waiting for the * firmware must find the busy entry. */ saved_spec = efx_ef10_filter_entry_spec(table, ins_index); if (saved_spec) { replacing = true; } else { saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC); if (!saved_spec) { rc = -ENOMEM; goto fail_unlock; } *saved_spec = *spec; } efx_ef10_filter_set_entry(table, ins_index, saved_spec, EFX_EF10_FILTER_FLAG_BUSY); spin_unlock_bh(&efx->filter_lock); /* Pack up the variables needed on completion */ cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id; efx_ef10_filter_push_prep(efx, spec, inbuf, table->entry[ins_index].handle, replacing); efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), MC_CMD_FILTER_OP_OUT_LEN, efx_ef10_filter_rfs_insert_complete, cookie); return ins_index; fail_unlock: spin_unlock_bh(&efx->filter_lock); return rc; } static void efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie, int rc, efx_dword_t *outbuf, size_t outlen_actual) { struct efx_ef10_filter_table *table = efx->filter_state; unsigned int ins_index, dmaq_id; struct efx_filter_spec *spec; bool replacing; /* Unpack the cookie */ replacing = cookie >> 31; ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1); dmaq_id = cookie & 0xffff; spin_lock_bh(&efx->filter_lock); spec = efx_ef10_filter_entry_spec(table, ins_index); if (rc == 0) { table->entry[ins_index].handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE); if (replacing) spec->dmaq_id = dmaq_id; } else if (!replacing) { kfree(spec); spec = NULL; } efx_ef10_filter_set_entry(table, ins_index, spec, 0); spin_unlock_bh(&efx->filter_lock); wake_up_all(&table->waitq); } static void efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx, unsigned long filter_idx, int rc, efx_dword_t *outbuf, size_t outlen_actual); static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, unsigned int filter_idx) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_filter_spec *spec = efx_ef10_filter_entry_spec(table, filter_idx); MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_HANDLE_OFST + MC_CMD_FILTER_OP_IN_HANDLE_LEN); if (!spec || (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) || spec->priority != EFX_FILTER_PRI_HINT || !rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, filter_idx)) return false; MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_REMOVE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[filter_idx].handle); if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0, efx_ef10_filter_rfs_expire_complete, filter_idx)) return false; table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY; return true; } static void efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx, unsigned long filter_idx, int rc, efx_dword_t *outbuf, size_t outlen_actual) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_filter_spec *spec = efx_ef10_filter_entry_spec(table, filter_idx); spin_lock_bh(&efx->filter_lock); if (rc == 0) { kfree(spec); efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); } table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY; wake_up_all(&table->waitq); spin_unlock_bh(&efx->filter_lock); } #endif /* CONFIG_RFS_ACCEL */ static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags) { int match_flags = 0; #define MAP_FLAG(gen_flag, mcdi_field) { \ u32 old_mcdi_flags = mcdi_flags; \ mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \ mcdi_field ## _LBN); \ if (mcdi_flags != old_mcdi_flags) \ match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \ } MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST); MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST); MAP_FLAG(REM_HOST, SRC_IP); MAP_FLAG(LOC_HOST, DST_IP); MAP_FLAG(REM_MAC, SRC_MAC); MAP_FLAG(REM_PORT, SRC_PORT); MAP_FLAG(LOC_MAC, DST_MAC); MAP_FLAG(LOC_PORT, DST_PORT); MAP_FLAG(ETHER_TYPE, ETHER_TYPE); MAP_FLAG(INNER_VID, INNER_VLAN); MAP_FLAG(OUTER_VID, OUTER_VLAN); MAP_FLAG(IP_PROTO, IP_PROTO); #undef MAP_FLAG /* Did we map them all? */ if (mcdi_flags) return -EINVAL; return match_flags; } static int efx_ef10_filter_table_probe(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX); unsigned int pd_match_pri, pd_match_count; struct efx_ef10_filter_table *table; size_t outlen; int rc; table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; /* Find out which RX filter types are supported, and their priorities */ MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP, MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES); rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; pd_match_count = MCDI_VAR_ARRAY_LEN( outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES); table->rx_match_count = 0; for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) { u32 mcdi_flags = MCDI_ARRAY_DWORD( outbuf, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES, pd_match_pri); rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags); if (rc < 0) { netif_dbg(efx, probe, efx->net_dev, "%s: fw flags %#x pri %u not supported in driver\n", __func__, mcdi_flags, pd_match_pri); } else { netif_dbg(efx, probe, efx->net_dev, "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n", __func__, mcdi_flags, pd_match_pri, rc, table->rx_match_count); table->rx_match_flags[table->rx_match_count++] = rc; } } table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry)); if (!table->entry) { rc = -ENOMEM; goto fail; } efx->filter_state = table; init_waitqueue_head(&table->waitq); return 0; fail: kfree(table); return rc; } static void efx_ef10_filter_table_restore(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_filter_spec *spec; unsigned int filter_idx; bool failed = false; int rc; if (!nic_data->must_restore_filters) return; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { spec = efx_ef10_filter_entry_spec(table, filter_idx); if (!spec) continue; table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY; spin_unlock_bh(&efx->filter_lock); rc = efx_ef10_filter_push(efx, spec, &table->entry[filter_idx].handle, false); if (rc) failed = true; spin_lock_bh(&efx->filter_lock); if (rc) { kfree(spec); efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); } else { table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY; } } spin_unlock_bh(&efx->filter_lock); if (failed) netif_err(efx, hw, efx->net_dev, "unable to restore all filters\n"); else nic_data->must_restore_filters = false; } static void efx_ef10_filter_table_remove(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); struct efx_filter_spec *spec; unsigned int filter_idx; int rc; for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { spec = efx_ef10_filter_entry_spec(table, filter_idx); if (!spec) continue; MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, efx_ef10_filter_is_exclusive(spec) ? MC_CMD_FILTER_OP_IN_OP_REMOVE : MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[filter_idx].handle); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc) netdev_WARN(efx->net_dev, "filter_idx=%#x handle=%#llx\n", filter_idx, table->entry[filter_idx].handle); kfree(spec); } vfree(table->entry); kfree(table); } static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct net_device *net_dev = efx->net_dev; struct efx_filter_spec spec; bool remove_failed = false; struct netdev_hw_addr *uc; struct netdev_hw_addr *mc; unsigned int filter_idx; int i, n, rc; if (!efx_dev_registered(efx)) return; /* Mark old filters that may need to be removed */ spin_lock_bh(&efx->filter_lock); n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count; for (i = 0; i < n; i++) { filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS; table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; } n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count; for (i = 0; i < n; i++) { filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS; table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; } spin_unlock_bh(&efx->filter_lock); /* Copy/convert the address lists; add the primary station * address and broadcast address */ netif_addr_lock_bh(net_dev); if (net_dev->flags & IFF_PROMISC || netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) { table->dev_uc_count = -1; } else { table->dev_uc_count = 1 + netdev_uc_count(net_dev); ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr); i = 1; netdev_for_each_uc_addr(uc, net_dev) { ether_addr_copy(table->dev_uc_list[i].addr, uc->addr); i++; } } if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) || netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) { table->dev_mc_count = -1; } else { table->dev_mc_count = 1 + netdev_mc_count(net_dev); eth_broadcast_addr(table->dev_mc_list[0].addr); i = 1; netdev_for_each_mc_addr(mc, net_dev) { ether_addr_copy(table->dev_mc_list[i].addr, mc->addr); i++; } } netif_addr_unlock_bh(net_dev); /* Insert/renew unicast filters */ if (table->dev_uc_count >= 0) { for (i = 0; i < table->dev_uc_count; i++) { efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, EFX_FILTER_FLAG_RX_RSS, 0); efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, table->dev_uc_list[i].addr); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { /* Fall back to unicast-promisc */ while (i--) efx_ef10_filter_remove_safe( efx, EFX_FILTER_PRI_AUTO, table->dev_uc_list[i].id); table->dev_uc_count = -1; break; } table->dev_uc_list[i].id = rc; } } if (table->dev_uc_count < 0) { efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, EFX_FILTER_FLAG_RX_RSS, 0); efx_filter_set_uc_def(&spec); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { WARN_ON(1); table->dev_uc_count = 0; } else { table->dev_uc_list[0].id = rc; } } /* Insert/renew multicast filters */ if (table->dev_mc_count >= 0) { for (i = 0; i < table->dev_mc_count; i++) { efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, EFX_FILTER_FLAG_RX_RSS, 0); efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, table->dev_mc_list[i].addr); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { /* Fall back to multicast-promisc */ while (i--) efx_ef10_filter_remove_safe( efx, EFX_FILTER_PRI_AUTO, table->dev_mc_list[i].id); table->dev_mc_count = -1; break; } table->dev_mc_list[i].id = rc; } } if (table->dev_mc_count < 0) { efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, EFX_FILTER_FLAG_RX_RSS, 0); efx_filter_set_mc_def(&spec); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { WARN_ON(1); table->dev_mc_count = 0; } else { table->dev_mc_list[0].id = rc; } } /* Remove filters that weren't renewed. Since nothing else * changes the AUTO_OLD flag or removes these filters, we * don't need to hold the filter_lock while scanning for * these filters. */ for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) { if (ACCESS_ONCE(table->entry[i].spec) & EFX_EF10_FILTER_FLAG_AUTO_OLD) { if (efx_ef10_filter_remove_internal( efx, 1U << EFX_FILTER_PRI_AUTO, i, true) < 0) remove_failed = true; } } WARN_ON(remove_failed); } static int efx_ef10_mac_reconfigure(struct efx_nic *efx) { efx_ef10_filter_sync_rx_mode(efx); return efx_mcdi_set_mac(efx); } static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN); MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type); return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf), NULL, 0, NULL); } /* MC BISTs follow a different poll mechanism to phy BISTs. * The BIST is done in the poll handler on the MC, and the MCDI command * will block until the BIST is done. */ static int efx_ef10_poll_bist(struct efx_nic *efx) { int rc; MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN); size_t outlen; u32 result; rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_POLL_BIST_OUT_LEN) return -EIO; result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT); switch (result) { case MC_CMD_POLL_BIST_PASSED: netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n"); return 0; case MC_CMD_POLL_BIST_TIMEOUT: netif_err(efx, hw, efx->net_dev, "BIST timed out\n"); return -EIO; case MC_CMD_POLL_BIST_FAILED: netif_err(efx, hw, efx->net_dev, "BIST failed.\n"); return -EIO; default: netif_err(efx, hw, efx->net_dev, "BIST returned unknown result %u", result); return -EIO; } } static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type) { int rc; netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type); rc = efx_ef10_start_bist(efx, bist_type); if (rc != 0) return rc; return efx_ef10_poll_bist(efx); } static int efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) { int rc, rc2; efx_reset_down(efx, RESET_TYPE_WORLD); rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST, NULL, 0, NULL, 0, NULL); if (rc != 0) goto out; tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1; tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1; rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD); out: rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0); return rc ? rc : rc2; } #ifdef CONFIG_SFC_MTD struct efx_ef10_nvram_type_info { u16 type, type_mask; u8 port; const char *name; }; static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = { { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" }, { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" }, { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" }, { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" }, { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" }, { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" }, }; static int efx_ef10_mtd_probe_partition(struct efx_nic *efx, struct efx_mcdi_mtd_partition *part, unsigned int type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX); const struct efx_ef10_nvram_type_info *info; size_t size, erase_size, outlen; bool protected; int rc; for (info = efx_ef10_nvram_types; ; info++) { if (info == efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types)) return -ENODEV; if ((type & ~info->type_mask) == info->type) break; } if (info->port != efx_port_num(efx)) return -ENODEV; rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); if (rc) return rc; if (protected) return -ENODEV; /* hide it */ part->nvram_type = type; MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) return -EIO; if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) & (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) part->fw_subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE); part->common.dev_type_name = "EF10 NVRAM manager"; part->common.type_name = info->name; part->common.mtd.type = MTD_NORFLASH; part->common.mtd.flags = MTD_CAP_NORFLASH; part->common.mtd.size = size; part->common.mtd.erasesize = erase_size; return 0; } static int efx_ef10_mtd_probe(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX); struct efx_mcdi_mtd_partition *parts; size_t outlen, n_parts_total, i, n_parts; unsigned int type; int rc; ASSERT_RTNL(); BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) return -EIO; n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); if (n_parts_total > MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID)) return -EIO; parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL); if (!parts) return -ENOMEM; n_parts = 0; for (i = 0; i < n_parts_total; i++) { type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID, i); rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type); if (rc == 0) n_parts++; else if (rc != -ENODEV) goto fail; } rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); fail: if (rc) kfree(parts); return rc; } #endif /* CONFIG_SFC_MTD */ static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time) { _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD); } static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel, bool temp) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN); int rc; if (channel->sync_events_state == SYNC_EVENTS_REQUESTED || channel->sync_events_state == SYNC_EVENTS_VALID || (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED)) return 0; channel->sync_events_state = SYNC_EVENTS_REQUESTED; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE, channel->channel); rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc != 0) channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : SYNC_EVENTS_DISABLED; return rc; } static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel, bool temp) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN); int rc; if (channel->sync_events_state == SYNC_EVENTS_DISABLED || (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT)) return 0; if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) { channel->sync_events_state = SYNC_EVENTS_DISABLED; return 0; } channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : SYNC_EVENTS_DISABLED; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE, channel->channel); rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, bool temp) { int (*set)(struct efx_channel *channel, bool temp); struct efx_channel *channel; set = en ? efx_ef10_rx_enable_timestamping : efx_ef10_rx_disable_timestamping; efx_for_each_channel(channel, efx) { int rc = set(channel, temp); if (en && rc != 0) { efx_ef10_ptp_set_ts_sync_events(efx, false, temp); return rc; } } return 0; } static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx, struct hwtstamp_config *init) { int rc; switch (init->rx_filter) { case HWTSTAMP_FILTER_NONE: efx_ef10_ptp_set_ts_sync_events(efx, false, false); /* if TX timestamping is still requested then leave PTP on */ return efx_ptp_change_mode(efx, init->tx_type != HWTSTAMP_TX_OFF, 0); case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: init->rx_filter = HWTSTAMP_FILTER_ALL; rc = efx_ptp_change_mode(efx, true, 0); if (!rc) rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false); if (rc) efx_ptp_change_mode(efx, false, 0); return rc; default: return -ERANGE; } } const struct efx_nic_type efx_hunt_a0_nic_type = { .mem_map_size = efx_ef10_mem_map_size, .probe = efx_ef10_probe, .remove = efx_ef10_remove, .dimension_resources = efx_ef10_dimension_resources, .init = efx_ef10_init_nic, .fini = efx_port_dummy_op_void, .map_reset_reason = efx_mcdi_map_reset_reason, .map_reset_flags = efx_ef10_map_reset_flags, .reset = efx_ef10_reset, .probe_port = efx_mcdi_port_probe, .remove_port = efx_mcdi_port_remove, .fini_dmaq = efx_ef10_fini_dmaq, .prepare_flr = efx_ef10_prepare_flr, .finish_flr = efx_port_dummy_op_void, .describe_stats = efx_ef10_describe_stats, .update_stats = efx_ef10_update_stats, .start_stats = efx_mcdi_mac_start_stats, .pull_stats = efx_mcdi_mac_pull_stats, .stop_stats = efx_mcdi_mac_stop_stats, .set_id_led = efx_mcdi_set_id_led, .push_irq_moderation = efx_ef10_push_irq_moderation, .reconfigure_mac = efx_ef10_mac_reconfigure, .check_mac_fault = efx_mcdi_mac_check_fault, .reconfigure_port = efx_mcdi_port_reconfigure, .get_wol = efx_ef10_get_wol, .set_wol = efx_ef10_set_wol, .resume_wol = efx_port_dummy_op_void, .test_chip = efx_ef10_test_chip, .test_nvram = efx_mcdi_nvram_test_all, .mcdi_request = efx_ef10_mcdi_request, .mcdi_poll_response = efx_ef10_mcdi_poll_response, .mcdi_read_response = efx_ef10_mcdi_read_response, .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef10_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .irq_handle_msi = efx_ef10_msi_interrupt, .irq_handle_legacy = efx_ef10_legacy_interrupt, .tx_probe = efx_ef10_tx_probe, .tx_init = efx_ef10_tx_init, .tx_remove = efx_ef10_tx_remove, .tx_write = efx_ef10_tx_write, .rx_push_rss_config = efx_ef10_rx_push_rss_config, .rx_probe = efx_ef10_rx_probe, .rx_init = efx_ef10_rx_init, .rx_remove = efx_ef10_rx_remove, .rx_write = efx_ef10_rx_write, .rx_defer_refill = efx_ef10_rx_defer_refill, .ev_probe = efx_ef10_ev_probe, .ev_init = efx_ef10_ev_init, .ev_fini = efx_ef10_ev_fini, .ev_remove = efx_ef10_ev_remove, .ev_process = efx_ef10_ev_process, .ev_read_ack = efx_ef10_ev_read_ack, .ev_test_generate = efx_ef10_ev_test_generate, .filter_table_probe = efx_ef10_filter_table_probe, .filter_table_restore = efx_ef10_filter_table_restore, .filter_table_remove = efx_ef10_filter_table_remove, .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter, .filter_insert = efx_ef10_filter_insert, .filter_remove_safe = efx_ef10_filter_remove_safe, .filter_get_safe = efx_ef10_filter_get_safe, .filter_clear_rx = efx_ef10_filter_clear_rx, .filter_count_rx_used = efx_ef10_filter_count_rx_used, .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit, .filter_get_rx_ids = efx_ef10_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_insert = efx_ef10_filter_rfs_insert, .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one, #endif #ifdef CONFIG_SFC_MTD .mtd_probe = efx_ef10_mtd_probe, .mtd_rename = efx_mcdi_mtd_rename, .mtd_read = efx_mcdi_mtd_read, .mtd_erase = efx_mcdi_mtd_erase, .mtd_write = efx_mcdi_mtd_write, .mtd_sync = efx_mcdi_mtd_sync, #endif .ptp_write_host_time = efx_ef10_ptp_write_host_time, .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, #ifdef CONFIG_SFC_SRIOV .sriov_init = efx_ef10_sriov_init, .sriov_fini = efx_ef10_sriov_fini, .sriov_mac_address_changed = efx_ef10_sriov_mac_address_changed, .sriov_wanted = efx_ef10_sriov_wanted, .sriov_reset = efx_ef10_sriov_reset, .sriov_flr = efx_ef10_sriov_flr, .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac, .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan, .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk, .sriov_get_vf_config = efx_ef10_sriov_get_vf_config, #endif .revision = EFX_REV_HUNT_A0, .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, .can_rx_scatter = true, .always_rx_scatter = true, .max_interrupt_mode = EFX_INT_MODE_MSIX, .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE), .mcdi_max_ver = 2, .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS, .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 1 << HWTSTAMP_FILTER_ALL, };