/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Zhiyuan Lv * Zhi Wang * * Contributors: * Min He * Bing Niu * Ping Gao * Tina Zhang * */ #include "i915_drv.h" #include "gvt.h" #define _EL_OFFSET_STATUS 0x234 #define _EL_OFFSET_STATUS_BUF 0x370 #define _EL_OFFSET_STATUS_PTR 0x3A0 #define execlist_ring_mmio(gvt, ring_id, offset) \ (gvt->dev_priv->engine[ring_id]->mmio_base + (offset)) #define valid_context(ctx) ((ctx)->valid) #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ ((a)->lrca == (b)->lrca)) static int context_switch_events[] = { [RCS] = RCS_AS_CONTEXT_SWITCH, [BCS] = BCS_AS_CONTEXT_SWITCH, [VCS] = VCS_AS_CONTEXT_SWITCH, [VCS2] = VCS2_AS_CONTEXT_SWITCH, [VECS] = VECS_AS_CONTEXT_SWITCH, }; static int ring_id_to_context_switch_event(int ring_id) { if (WARN_ON(ring_id < RCS && ring_id > ARRAY_SIZE(context_switch_events))) return -EINVAL; return context_switch_events[ring_id]; } static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist) { gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n", execlist->running_slot ? execlist->running_slot->index : -1, execlist->running_context ? execlist->running_context->context_id : 0, execlist->pending_slot ? execlist->pending_slot->index : -1); execlist->running_slot = execlist->pending_slot; execlist->pending_slot = NULL; execlist->running_context = execlist->running_context ? &execlist->running_slot->ctx[0] : NULL; gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n", execlist->running_slot ? execlist->running_slot->index : -1, execlist->running_context ? execlist->running_context->context_id : 0, execlist->pending_slot ? execlist->pending_slot->index : -1); } static void emulate_execlist_status(struct intel_vgpu_execlist *execlist) { struct intel_vgpu_execlist_slot *running = execlist->running_slot; struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; struct execlist_ctx_descriptor_format *desc = execlist->running_context; struct intel_vgpu *vgpu = execlist->vgpu; struct execlist_status_format status; int ring_id = execlist->ring_id; u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS); status.ldw = vgpu_vreg(vgpu, status_reg); status.udw = vgpu_vreg(vgpu, status_reg + 4); if (running) { status.current_execlist_pointer = !!running->index; status.execlist_write_pointer = !!!running->index; status.execlist_0_active = status.execlist_0_valid = !!!(running->index); status.execlist_1_active = status.execlist_1_valid = !!(running->index); } else { status.context_id = 0; status.execlist_0_active = status.execlist_0_valid = 0; status.execlist_1_active = status.execlist_1_valid = 0; } status.context_id = desc ? desc->context_id : 0; status.execlist_queue_full = !!(pending); vgpu_vreg(vgpu, status_reg) = status.ldw; vgpu_vreg(vgpu, status_reg + 4) = status.udw; gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n", vgpu->id, status_reg, status.ldw, status.udw); } static void emulate_csb_update(struct intel_vgpu_execlist *execlist, struct execlist_context_status_format *status, bool trigger_interrupt_later) { struct intel_vgpu *vgpu = execlist->vgpu; int ring_id = execlist->ring_id; struct execlist_context_status_pointer_format ctx_status_ptr; u32 write_pointer; u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset; ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS_PTR); ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS_BUF); ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); write_pointer = ctx_status_ptr.write_ptr; if (write_pointer == 0x7) write_pointer = 0; else { ++write_pointer; write_pointer %= 0x6; } offset = ctx_status_buf_reg + write_pointer * 8; vgpu_vreg(vgpu, offset) = status->ldw; vgpu_vreg(vgpu, offset + 4) = status->udw; ctx_status_ptr.write_ptr = write_pointer; vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n", vgpu->id, write_pointer, offset, status->ldw, status->udw); if (trigger_interrupt_later) return; intel_vgpu_trigger_virtual_event(vgpu, ring_id_to_context_switch_event(execlist->ring_id)); } static int emulate_execlist_ctx_schedule_out( struct intel_vgpu_execlist *execlist, struct execlist_ctx_descriptor_format *ctx) { struct intel_vgpu_execlist_slot *running = execlist->running_slot; struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0]; struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1]; struct execlist_context_status_format status; memset(&status, 0, sizeof(status)); gvt_dbg_el("schedule out context id %x\n", ctx->context_id); if (WARN_ON(!same_context(ctx, execlist->running_context))) { gvt_err("schedule out context is not running context," "ctx id %x running ctx id %x\n", ctx->context_id, execlist->running_context->context_id); return -EINVAL; } /* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */ if (valid_context(ctx1) && same_context(ctx0, ctx)) { gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n"); execlist->running_context = ctx1; emulate_execlist_status(execlist); status.context_complete = status.element_switch = 1; status.context_id = ctx->context_id; emulate_csb_update(execlist, &status, false); /* * ctx1 is not valid, ctx == ctx0 * ctx1 is valid, ctx1 == ctx * --> last element is finished * emulate: * active-to-idle if there is *no* pending execlist * context-complete if there *is* pending execlist */ } else if ((!valid_context(ctx1) && same_context(ctx0, ctx)) || (valid_context(ctx1) && same_context(ctx1, ctx))) { gvt_dbg_el("need to switch virtual execlist slot\n"); switch_virtual_execlist_slot(execlist); emulate_execlist_status(execlist); status.context_complete = status.active_to_idle = 1; status.context_id = ctx->context_id; if (!pending) { emulate_csb_update(execlist, &status, false); } else { emulate_csb_update(execlist, &status, true); memset(&status, 0, sizeof(status)); status.idle_to_active = 1; status.context_id = 0; emulate_csb_update(execlist, &status, false); } } else { WARN_ON(1); return -EINVAL; } return 0; } static struct intel_vgpu_execlist_slot *get_next_execlist_slot( struct intel_vgpu_execlist *execlist) { struct intel_vgpu *vgpu = execlist->vgpu; int ring_id = execlist->ring_id; u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS); struct execlist_status_format status; status.ldw = vgpu_vreg(vgpu, status_reg); status.udw = vgpu_vreg(vgpu, status_reg + 4); if (status.execlist_queue_full) { gvt_err("virtual execlist slots are full\n"); return NULL; } return &execlist->slot[status.execlist_write_pointer]; } static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist, struct execlist_ctx_descriptor_format ctx[2]) { struct intel_vgpu_execlist_slot *running = execlist->running_slot; struct intel_vgpu_execlist_slot *slot = get_next_execlist_slot(execlist); struct execlist_ctx_descriptor_format *ctx0, *ctx1; struct execlist_context_status_format status; gvt_dbg_el("emulate schedule-in\n"); if (!slot) { gvt_err("no available execlist slot\n"); return -EINVAL; } memset(&status, 0, sizeof(status)); memset(slot->ctx, 0, sizeof(slot->ctx)); slot->ctx[0] = ctx[0]; slot->ctx[1] = ctx[1]; gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n", slot->index, ctx[0].context_id, ctx[1].context_id); /* * no running execlist, make this write bundle as running execlist * -> idle-to-active */ if (!running) { gvt_dbg_el("no current running execlist\n"); execlist->running_slot = slot; execlist->pending_slot = NULL; execlist->running_context = &slot->ctx[0]; gvt_dbg_el("running slot index %d running context %x\n", execlist->running_slot->index, execlist->running_context->context_id); emulate_execlist_status(execlist); status.idle_to_active = 1; status.context_id = 0; emulate_csb_update(execlist, &status, false); return 0; } ctx0 = &running->ctx[0]; ctx1 = &running->ctx[1]; gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n", running->index, ctx0->context_id, ctx1->context_id); /* * already has an running execlist * a. running ctx1 is valid, * ctx0 is finished, and running ctx1 == new execlist ctx[0] * b. running ctx1 is not valid, * ctx0 == new execlist ctx[0] * ----> lite-restore + preempted */ if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) && /* condition a */ (!same_context(ctx0, execlist->running_context))) || (!valid_context(ctx1) && same_context(ctx0, &slot->ctx[0]))) { /* condition b */ gvt_dbg_el("need to switch virtual execlist slot\n"); execlist->pending_slot = slot; switch_virtual_execlist_slot(execlist); emulate_execlist_status(execlist); status.lite_restore = status.preempted = 1; status.context_id = ctx[0].context_id; emulate_csb_update(execlist, &status, false); } else { gvt_dbg_el("emulate as pending slot\n"); /* * otherwise * --> emulate pending execlist exist + but no preemption case */ execlist->pending_slot = slot; emulate_execlist_status(execlist); } return 0; } static void free_workload(struct intel_vgpu_workload *workload) { intel_vgpu_unpin_mm(workload->shadow_mm); intel_gvt_mm_unreference(workload->shadow_mm); kmem_cache_free(workload->vgpu->workloads, workload); } #define get_desc_from_elsp_dwords(ed, i) \ ((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2])) #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) static int set_gma_to_bb_cmd(struct intel_shadow_bb_entry *entry_obj, unsigned long add, int gmadr_bytes) { if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) return -1; *((u32 *)(entry_obj->bb_start_cmd_va + (1 << 2))) = add & BATCH_BUFFER_ADDR_MASK; if (gmadr_bytes == 8) { *((u32 *)(entry_obj->bb_start_cmd_va + (2 << 2))) = add & BATCH_BUFFER_ADDR_HIGH_MASK; } return 0; } static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) { int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd; /* pin the gem object to ggtt */ if (!list_empty(&workload->shadow_bb)) { struct intel_shadow_bb_entry *entry_obj = list_first_entry(&workload->shadow_bb, struct intel_shadow_bb_entry, list); struct intel_shadow_bb_entry *temp; list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb, list) { struct i915_vma *vma; vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0); if (IS_ERR(vma)) { gvt_err("Cannot pin\n"); return; } /* FIXME: we are not tracking our pinned VMA leaving it * up to the core to fix up the stray pin_count upon * free. */ /* update the relocate gma with shadow batch buffer*/ set_gma_to_bb_cmd(entry_obj, i915_ggtt_offset(vma), gmadr_bytes); } } } static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) { int ring_id = wa_ctx->workload->ring_id; struct i915_gem_context *shadow_ctx = wa_ctx->workload->vgpu->shadow_ctx; struct drm_i915_gem_object *ctx_obj = shadow_ctx->engine[ring_id].state->obj; struct execlist_ring_context *shadow_ring_context; struct page *page; page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); shadow_ring_context = kmap_atomic(page); shadow_ring_context->bb_per_ctx_ptr.val = (shadow_ring_context->bb_per_ctx_ptr.val & (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; shadow_ring_context->rcs_indirect_ctx.val = (shadow_ring_context->rcs_indirect_ctx.val & (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; kunmap_atomic(shadow_ring_context); return 0; } static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { struct i915_vma *vma; unsigned char *per_ctx_va = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + wa_ctx->indirect_ctx.size; if (wa_ctx->indirect_ctx.size == 0) return; vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 0, CACHELINE_BYTES, 0); if (IS_ERR(vma)) { gvt_err("Cannot pin indirect ctx obj\n"); return; } /* FIXME: we are not tracking our pinned VMA leaving it * up to the core to fix up the stray pin_count upon * free. */ wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); memset(per_ctx_va, 0, CACHELINE_BYTES); update_wa_ctx_2_shadow_ctx(wa_ctx); } static int prepare_execlist_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct execlist_ctx_descriptor_format ctx[2]; int ring_id = workload->ring_id; intel_vgpu_pin_mm(workload->shadow_mm); intel_vgpu_sync_oos_pages(workload->vgpu); intel_vgpu_flush_post_shadow(workload->vgpu); prepare_shadow_batch_buffer(workload); prepare_shadow_wa_ctx(&workload->wa_ctx); if (!workload->emulate_schedule_in) return 0; ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1); ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0); return emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx); } static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) { /* release all the shadow batch buffer */ if (!list_empty(&workload->shadow_bb)) { struct intel_shadow_bb_entry *entry_obj = list_first_entry(&workload->shadow_bb, struct intel_shadow_bb_entry, list); struct intel_shadow_bb_entry *temp; list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb, list) { i915_gem_object_unpin_map(entry_obj->obj); i915_gem_object_put(entry_obj->obj); list_del(&entry_obj->list); kfree(entry_obj); } } } static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { if (!wa_ctx->indirect_ctx.obj) return; i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); i915_gem_object_put(wa_ctx->indirect_ctx.obj); } static int complete_execlist_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_execlist *execlist = &vgpu->execlist[workload->ring_id]; struct intel_vgpu_workload *next_workload; struct list_head *next = workload_q_head(vgpu, workload->ring_id)->next; bool lite_restore = false; int ret; gvt_dbg_el("complete workload %p status %d\n", workload, workload->status); release_shadow_batch_buffer(workload); release_shadow_wa_ctx(&workload->wa_ctx); if (workload->status || vgpu->resetting) goto out; if (!list_empty(workload_q_head(vgpu, workload->ring_id))) { struct execlist_ctx_descriptor_format *this_desc, *next_desc; next_workload = container_of(next, struct intel_vgpu_workload, list); this_desc = &workload->ctx_desc; next_desc = &next_workload->ctx_desc; lite_restore = same_context(this_desc, next_desc); } if (lite_restore) { gvt_dbg_el("next context == current - no schedule-out\n"); free_workload(workload); return 0; } ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc); if (ret) goto err; out: free_workload(workload); return 0; err: free_workload(workload); return ret; } #define RING_CTX_OFF(x) \ offsetof(struct execlist_ring_context, x) static void read_guest_pdps(struct intel_vgpu *vgpu, u64 ring_context_gpa, u32 pdp[8]) { u64 gpa; int i; gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val); for (i = 0; i < 8; i++) intel_gvt_hypervisor_read_gpa(vgpu, gpa + i * 8, &pdp[7 - i], 4); } static int prepare_mm(struct intel_vgpu_workload *workload) { struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; struct intel_vgpu_mm *mm; int page_table_level; u32 pdp[8]; if (desc->addressing_mode == 1) { /* legacy 32-bit */ page_table_level = 3; } else if (desc->addressing_mode == 3) { /* legacy 64 bit */ page_table_level = 4; } else { gvt_err("Advanced Context mode(SVM) is not supported!\n"); return -EINVAL; } read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp); mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp); if (mm) { intel_gvt_mm_reference(mm); } else { mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT, pdp, page_table_level, 0); if (IS_ERR(mm)) { gvt_err("fail to create mm object.\n"); return PTR_ERR(mm); } } workload->shadow_mm = mm; return 0; } #define get_last_workload(q) \ (list_empty(q) ? NULL : container_of(q->prev, \ struct intel_vgpu_workload, list)) static int submit_context(struct intel_vgpu *vgpu, int ring_id, struct execlist_ctx_descriptor_format *desc, bool emulate_schedule_in) { struct list_head *q = workload_q_head(vgpu, ring_id); struct intel_vgpu_workload *last_workload = get_last_workload(q); struct intel_vgpu_workload *workload = NULL; u64 ring_context_gpa; u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; int ret; ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, (u32)((desc->lrca + 1) << GTT_PAGE_SHIFT)); if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { gvt_err("invalid guest context LRCA: %x\n", desc->lrca); return -EINVAL; } intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(ring_header.val), &head, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(ring_tail.val), &tail, 4); head &= RB_HEAD_OFF_MASK; tail &= RB_TAIL_OFF_MASK; if (last_workload && same_context(&last_workload->ctx_desc, desc)) { gvt_dbg_el("ring id %d cur workload == last\n", ring_id); gvt_dbg_el("ctx head %x real head %lx\n", head, last_workload->rb_tail); /* * cannot use guest context head pointer here, * as it might not be updated at this time */ head = last_workload->rb_tail; } gvt_dbg_el("ring id %d begin a new workload\n", ring_id); workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL); if (!workload) return -ENOMEM; /* record some ring buffer register values for scan and shadow */ intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(rb_start.val), &start, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(rb_ctrl.val), &ctl, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); INIT_LIST_HEAD(&workload->list); INIT_LIST_HEAD(&workload->shadow_bb); init_waitqueue_head(&workload->shadow_ctx_status_wq); atomic_set(&workload->shadow_ctx_active, 0); workload->vgpu = vgpu; workload->ring_id = ring_id; workload->ctx_desc = *desc; workload->ring_context_gpa = ring_context_gpa; workload->rb_head = head; workload->rb_tail = tail; workload->rb_start = start; workload->rb_ctl = ctl; workload->prepare = prepare_execlist_workload; workload->complete = complete_execlist_workload; workload->status = -EINPROGRESS; workload->emulate_schedule_in = emulate_schedule_in; if (ring_id == RCS) { intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); workload->wa_ctx.indirect_ctx.guest_gma = indirect_ctx & INDIRECT_CTX_ADDR_MASK; workload->wa_ctx.indirect_ctx.size = (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * CACHELINE_BYTES; workload->wa_ctx.per_ctx.guest_gma = per_ctx & PER_CTX_ADDR_MASK; workload->wa_ctx.workload = workload; WARN_ON(workload->wa_ctx.indirect_ctx.size && !(per_ctx & 0x1)); } if (emulate_schedule_in) memcpy(&workload->elsp_dwords, &vgpu->execlist[ring_id].elsp_dwords, sizeof(workload->elsp_dwords)); gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", workload, ring_id, head, tail, start, ctl); gvt_dbg_el("workload %p emulate schedule_in %d\n", workload, emulate_schedule_in); ret = prepare_mm(workload); if (ret) { kmem_cache_free(vgpu->workloads, workload); return ret; } queue_workload(workload); return 0; } int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id) { struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; struct execlist_ctx_descriptor_format *desc[2], valid_desc[2]; unsigned long valid_desc_bitmap = 0; bool emulate_schedule_in = true; int ret; int i; memset(valid_desc, 0, sizeof(valid_desc)); desc[0] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1); desc[1] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0); for (i = 0; i < 2; i++) { if (!desc[i]->valid) continue; if (!desc[i]->privilege_access) { gvt_err("vgpu%d: unexpected GGTT elsp submission\n", vgpu->id); return -EINVAL; } /* TODO: add another guest context checks here. */ set_bit(i, &valid_desc_bitmap); valid_desc[i] = *desc[i]; } if (!valid_desc_bitmap) { gvt_err("vgpu%d: no valid desc in a elsp submission\n", vgpu->id); return -EINVAL; } if (!test_bit(0, (void *)&valid_desc_bitmap) && test_bit(1, (void *)&valid_desc_bitmap)) { gvt_err("vgpu%d: weird elsp submission, desc 0 is not valid\n", vgpu->id); return -EINVAL; } /* submit workload */ for_each_set_bit(i, (void *)&valid_desc_bitmap, 2) { ret = submit_context(vgpu, ring_id, &valid_desc[i], emulate_schedule_in); if (ret) { gvt_err("vgpu%d: fail to schedule workload\n", vgpu->id); return ret; } emulate_schedule_in = false; } return 0; } static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id) { struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; struct execlist_context_status_pointer_format ctx_status_ptr; u32 ctx_status_ptr_reg; memset(execlist, 0, sizeof(*execlist)); execlist->vgpu = vgpu; execlist->ring_id = ring_id; execlist->slot[0].index = 0; execlist->slot[1].index = 1; ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS_PTR); ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); ctx_status_ptr.read_ptr = ctx_status_ptr.write_ptr = 0x7; vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; } void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu) { kmem_cache_destroy(vgpu->workloads); } int intel_vgpu_init_execlist(struct intel_vgpu *vgpu) { enum intel_engine_id i; struct intel_engine_cs *engine; /* each ring has a virtual execlist engine */ for_each_engine(engine, vgpu->gvt->dev_priv, i) { init_vgpu_execlist(vgpu, i); INIT_LIST_HEAD(&vgpu->workload_q_head[i]); } vgpu->workloads = kmem_cache_create("gvt-g vgpu workload", sizeof(struct intel_vgpu_workload), 0, SLAB_HWCACHE_ALIGN, NULL); if (!vgpu->workloads) return -ENOMEM; return 0; } void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu, unsigned long engine_mask) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct intel_engine_cs *engine; struct intel_vgpu_workload *pos, *n; unsigned int tmp; for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { /* free the unsubmited workload in the queue */ list_for_each_entry_safe(pos, n, &vgpu->workload_q_head[engine->id], list) { list_del_init(&pos->list); free_workload(pos); } init_vgpu_execlist(vgpu, engine->id); } }