/* Broadcom BCM43xx wireless driver Copyright (c) 2005 Martin Langer , Stefano Brivio Michael Buesch Danny van Dyk Andreas Jaggi Some parts of the code in this file are derived from the ipw2200 driver Copyright(c) 2003 - 2004 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "bcm43xx.h" #include "bcm43xx_main.h" #include "bcm43xx_debugfs.h" #include "bcm43xx_radio.h" #include "bcm43xx_phy.h" #include "bcm43xx_dma.h" #include "bcm43xx_pio.h" #include "bcm43xx_power.h" #include "bcm43xx_wx.h" #include "bcm43xx_ethtool.h" #include "bcm43xx_xmit.h" #include "bcm43xx_sysfs.h" MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver"); MODULE_AUTHOR("Martin Langer"); MODULE_AUTHOR("Stefano Brivio"); MODULE_AUTHOR("Michael Buesch"); MODULE_LICENSE("GPL"); #ifdef CONFIG_BCM947XX extern char *nvram_get(char *name); #endif #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO) static int modparam_pio; module_param_named(pio, modparam_pio, int, 0444); MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode"); #elif defined(CONFIG_BCM43XX_DMA) # define modparam_pio 0 #elif defined(CONFIG_BCM43XX_PIO) # define modparam_pio 1 #endif static int modparam_bad_frames_preempt; module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444); MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption"); static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT; module_param_named(short_retry, modparam_short_retry, int, 0444); MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)"); static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT; module_param_named(long_retry, modparam_long_retry, int, 0444); MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)"); static int modparam_locale = -1; module_param_named(locale, modparam_locale, int, 0444); MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)"); static int modparam_noleds; module_param_named(noleds, modparam_noleds, int, 0444); MODULE_PARM_DESC(noleds, "Turn off all LED activity"); #ifdef CONFIG_BCM43XX_DEBUG static char modparam_fwpostfix[64]; module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444); MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging."); #else # define modparam_fwpostfix "" #endif /* CONFIG_BCM43XX_DEBUG*/ /* If you want to debug with just a single device, enable this, * where the string is the pci device ID (as given by the kernel's * pci_name function) of the device to be used. */ //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0" /* If you want to enable printing of each MMIO access, enable this. */ //#define DEBUG_ENABLE_MMIO_PRINT /* If you want to enable printing of MMIO access within * ucode/pcm upload, initvals write, enable this. */ //#define DEBUG_ENABLE_UCODE_MMIO_PRINT /* If you want to enable printing of PCI Config Space access, enable this */ //#define DEBUG_ENABLE_PCILOG /* Detailed list maintained at: * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices */ static struct pci_device_id bcm43xx_pci_tbl[] = { /* Broadcom 4303 802.11b */ { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 4307 802.11b */ { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 4318 802.11b/g */ { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 4319 802.11a/b/g */ { PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 4306 802.11b/g */ { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 4306 802.11a */ // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 4309 802.11a/b/g */ { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Broadcom 43XG 802.11b/g */ { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, #ifdef CONFIG_BCM947XX /* SB bus on BCM947xx */ { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, #endif { 0 }, }; MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl); static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val) { u32 status; status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP)) val = swab32(val); bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset); mmiowb(); bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val); } static inline void bcm43xx_shm_control_word(struct bcm43xx_private *bcm, u16 routing, u16 offset) { u32 control; /* "offset" is the WORD offset. */ control = routing; control <<= 16; control |= offset; bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control); } u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm, u16 routing, u16 offset) { u32 ret; if (routing == BCM43xx_SHM_SHARED) { if (offset & 0x0003) { /* Unaligned access */ bcm43xx_shm_control_word(bcm, routing, offset >> 2); ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED); ret <<= 16; bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1); ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA); return ret; } offset >>= 2; } bcm43xx_shm_control_word(bcm, routing, offset); ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA); return ret; } u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm, u16 routing, u16 offset) { u16 ret; if (routing == BCM43xx_SHM_SHARED) { if (offset & 0x0003) { /* Unaligned access */ bcm43xx_shm_control_word(bcm, routing, offset >> 2); ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED); return ret; } offset >>= 2; } bcm43xx_shm_control_word(bcm, routing, offset); ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA); return ret; } void bcm43xx_shm_write32(struct bcm43xx_private *bcm, u16 routing, u16 offset, u32 value) { if (routing == BCM43xx_SHM_SHARED) { if (offset & 0x0003) { /* Unaligned access */ bcm43xx_shm_control_word(bcm, routing, offset >> 2); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED, (value >> 16) & 0xffff); mmiowb(); bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value & 0xffff); return; } offset >>= 2; } bcm43xx_shm_control_word(bcm, routing, offset); mmiowb(); bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value); } void bcm43xx_shm_write16(struct bcm43xx_private *bcm, u16 routing, u16 offset, u16 value) { if (routing == BCM43xx_SHM_SHARED) { if (offset & 0x0003) { /* Unaligned access */ bcm43xx_shm_control_word(bcm, routing, offset >> 2); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED, value); return; } offset >>= 2; } bcm43xx_shm_control_word(bcm, routing, offset); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value); } void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf) { /* We need to be careful. As we read the TSF from multiple * registers, we should take care of register overflows. * In theory, the whole tsf read process should be atomic. * We try to be atomic here, by restaring the read process, * if any of the high registers changed (overflew). */ if (bcm->current_core->rev >= 3) { u32 low, high, high2; do { high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH); low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW); high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH); } while (unlikely(high != high2)); *tsf = high; *tsf <<= 32; *tsf |= low; } else { u64 tmp; u16 v0, v1, v2, v3; u16 test1, test2, test3; do { v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3); v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2); v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1); v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0); test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3); test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2); test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1); } while (v3 != test3 || v2 != test2 || v1 != test1); *tsf = v3; *tsf <<= 48; tmp = v2; tmp <<= 32; *tsf |= tmp; tmp = v1; tmp <<= 16; *tsf |= tmp; *tsf |= v0; } } void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf) { u32 status; status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); status |= BCM43xx_SBF_TIME_UPDATE; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status); mmiowb(); /* Be careful with the in-progress timer. * First zero out the low register, so we have a full * register-overflow duration to complete the operation. */ if (bcm->current_core->rev >= 3) { u32 lo = (tsf & 0x00000000FFFFFFFFULL); u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32; bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0); mmiowb(); bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi); mmiowb(); bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo); } else { u16 v0 = (tsf & 0x000000000000FFFFULL); u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16; u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32; u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48; bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1); mmiowb(); bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0); } status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); status &= ~BCM43xx_SBF_TIME_UPDATE; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status); } static void bcm43xx_macfilter_set(struct bcm43xx_private *bcm, u16 offset, const u8 *mac) { u16 data; offset |= 0x0020; bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset); data = mac[0]; data |= mac[1] << 8; bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data); data = mac[2]; data |= mac[3] << 8; bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data); data = mac[4]; data |= mac[5] << 8; bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data); } static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm, u16 offset) { const u8 zero_addr[ETH_ALEN] = { 0 }; bcm43xx_macfilter_set(bcm, offset, zero_addr); } static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm) { const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr); const u8 *bssid = (const u8 *)(bcm->ieee->bssid); u8 mac_bssid[ETH_ALEN * 2]; int i; memcpy(mac_bssid, mac, ETH_ALEN); memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN); /* Write our MAC address and BSSID to template ram */ for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32)) bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i))); for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32)) bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i))); for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32)) bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i))); } //FIXME: Well, we should probably call them from somewhere. #if 0 static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time) { /* slot_time is in usec. */ if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G) return; bcm43xx_write16(bcm, 0x684, 510 + slot_time); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time); } static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm) { bcm43xx_set_slot_time(bcm, 9); } static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm) { bcm43xx_set_slot_time(bcm, 20); } #endif /* FIXME: To get the MAC-filter working, we need to implement the * following functions (and rename them :) */ #if 0 static void bcm43xx_disassociate(struct bcm43xx_private *bcm) { bcm43xx_mac_suspend(bcm); bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC); bcm43xx_ram_write(bcm, 0x0026, 0x0000); bcm43xx_ram_write(bcm, 0x0028, 0x0000); bcm43xx_ram_write(bcm, 0x007E, 0x0000); bcm43xx_ram_write(bcm, 0x0080, 0x0000); bcm43xx_ram_write(bcm, 0x047E, 0x0000); bcm43xx_ram_write(bcm, 0x0480, 0x0000); if (bcm->current_core->rev < 3) { bcm43xx_write16(bcm, 0x0610, 0x8000); bcm43xx_write16(bcm, 0x060E, 0x0000); } else bcm43xx_write32(bcm, 0x0188, 0x80000000); bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff); if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G && ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate)) bcm43xx_short_slot_timing_enable(bcm); bcm43xx_mac_enable(bcm); } static void bcm43xx_associate(struct bcm43xx_private *bcm, const u8 *mac) { memcpy(bcm->ieee->bssid, mac, ETH_ALEN); bcm43xx_mac_suspend(bcm); bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac); bcm43xx_write_mac_bssid_templates(bcm); bcm43xx_mac_enable(bcm); } #endif /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable. * Returns the _previously_ enabled IRQ mask. */ static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask) { u32 old_mask; old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask); return old_mask; } /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable. * Returns the _previously_ enabled IRQ mask. */ static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask) { u32 old_mask; old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask); return old_mask; } /* Synchronize IRQ top- and bottom-half. * IRQs must be masked before calling this. * This must not be called with the irq_lock held. */ static void bcm43xx_synchronize_irq(struct bcm43xx_private *bcm) { synchronize_irq(bcm->irq); tasklet_disable(&bcm->isr_tasklet); } /* Make sure we don't receive more data from the device. */ static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm) { unsigned long flags; spin_lock_irqsave(&bcm->irq_lock, flags); if (unlikely(bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)) { spin_unlock_irqrestore(&bcm->irq_lock, flags); return -EBUSY; } bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL); bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); /* flush */ spin_unlock_irqrestore(&bcm->irq_lock, flags); bcm43xx_synchronize_irq(bcm); return 0; } static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm) { struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm); struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); u32 radio_id; u16 manufact; u16 version; u8 revision; if (bcm->chip_id == 0x4317) { if (bcm->chip_rev == 0x00) radio_id = 0x3205017F; else if (bcm->chip_rev == 0x01) radio_id = 0x4205017F; else radio_id = 0x5205017F; } else { bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID); radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH); radio_id <<= 16; bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID); radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW); } manufact = (radio_id & 0x00000FFF); version = (radio_id & 0x0FFFF000) >> 12; revision = (radio_id & 0xF0000000) >> 28; dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n", radio_id, manufact, version, revision); switch (phy->type) { case BCM43xx_PHYTYPE_A: if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f)) goto err_unsupported_radio; break; case BCM43xx_PHYTYPE_B: if ((version & 0xFFF0) != 0x2050) goto err_unsupported_radio; break; case BCM43xx_PHYTYPE_G: if (version != 0x2050) goto err_unsupported_radio; break; } radio->manufact = manufact; radio->version = version; radio->revision = revision; if (phy->type == BCM43xx_PHYTYPE_A) radio->txpower_desired = bcm->sprom.maxpower_aphy; else radio->txpower_desired = bcm->sprom.maxpower_bgphy; return 0; err_unsupported_radio: printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n"); return -ENODEV; } static const char * bcm43xx_locale_iso(u8 locale) { /* ISO 3166-1 country codes. * Note that there aren't ISO 3166-1 codes for * all or locales. (Not all locales are countries) */ switch (locale) { case BCM43xx_LOCALE_WORLD: case BCM43xx_LOCALE_ALL: return "XX"; case BCM43xx_LOCALE_THAILAND: return "TH"; case BCM43xx_LOCALE_ISRAEL: return "IL"; case BCM43xx_LOCALE_JORDAN: return "JO"; case BCM43xx_LOCALE_CHINA: return "CN"; case BCM43xx_LOCALE_JAPAN: case BCM43xx_LOCALE_JAPAN_HIGH: return "JP"; case BCM43xx_LOCALE_USA_CANADA_ANZ: case BCM43xx_LOCALE_USA_LOW: return "US"; case BCM43xx_LOCALE_EUROPE: return "EU"; case BCM43xx_LOCALE_NONE: return " "; } assert(0); return " "; } static const char * bcm43xx_locale_string(u8 locale) { switch (locale) { case BCM43xx_LOCALE_WORLD: return "World"; case BCM43xx_LOCALE_THAILAND: return "Thailand"; case BCM43xx_LOCALE_ISRAEL: return "Israel"; case BCM43xx_LOCALE_JORDAN: return "Jordan"; case BCM43xx_LOCALE_CHINA: return "China"; case BCM43xx_LOCALE_JAPAN: return "Japan"; case BCM43xx_LOCALE_USA_CANADA_ANZ: return "USA/Canada/ANZ"; case BCM43xx_LOCALE_EUROPE: return "Europe"; case BCM43xx_LOCALE_USA_LOW: return "USAlow"; case BCM43xx_LOCALE_JAPAN_HIGH: return "JapanHigh"; case BCM43xx_LOCALE_ALL: return "All"; case BCM43xx_LOCALE_NONE: return "None"; } assert(0); return ""; } static inline u8 bcm43xx_crc8(u8 crc, u8 data) { static const u8 t[] = { 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F, }; return t[crc ^ data]; } static u8 bcm43xx_sprom_crc(const u16 *sprom) { int word; u8 crc = 0xFF; for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) { crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF); crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8); } crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF); crc ^= 0xFF; return crc; } int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom) { int i; u8 crc, expected_crc; for (i = 0; i < BCM43xx_SPROM_SIZE; i++) sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2)); /* CRC-8 check. */ crc = bcm43xx_sprom_crc(sprom); expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8; if (crc != expected_crc) { printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum " "(0x%02X, expected: 0x%02X)\n", crc, expected_crc); return -EINVAL; } return 0; } int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom) { int i, err; u8 crc, expected_crc; u32 spromctl; /* CRC-8 validation of the input data. */ crc = bcm43xx_sprom_crc(sprom); expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8; if (crc != expected_crc) { printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n"); return -EINVAL; } printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n"); err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl |= 0x10; /* SPROM WRITE enable. */ bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl); if (err) goto err_ctlreg; /* We must burn lots of CPU cycles here, but that does not * really matter as one does not write the SPROM every other minute... */ printk(KERN_INFO PFX "[ 0%%"); mdelay(500); for (i = 0; i < BCM43xx_SPROM_SIZE; i++) { if (i == 16) printk("25%%"); else if (i == 32) printk("50%%"); else if (i == 48) printk("75%%"); else if (i % 2) printk("."); bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]); mmiowb(); mdelay(20); } spromctl &= ~0x10; /* SPROM WRITE enable. */ bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl); if (err) goto err_ctlreg; mdelay(500); printk("100%% ]\n"); printk(KERN_INFO PFX "SPROM written.\n"); bcm43xx_controller_restart(bcm, "SPROM update"); return 0; err_ctlreg: printk(KERN_ERR PFX "Could not access SPROM control register.\n"); return -ENODEV; } static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm) { u16 value; u16 *sprom; #ifdef CONFIG_BCM947XX char *c; #endif sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16), GFP_KERNEL); if (!sprom) { printk(KERN_ERR PFX "sprom_extract OOM\n"); return -ENOMEM; } #ifdef CONFIG_BCM947XX sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2")); sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags")); if ((c = nvram_get("il0macaddr")) != NULL) e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR])); if ((c = nvram_get("et1macaddr")) != NULL) e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR])); sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0")); sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1")); sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2")); sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0")); sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1")); sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2")); sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev")); #else bcm43xx_sprom_read(bcm, sprom); #endif /* boardflags2 */ value = sprom[BCM43xx_SPROM_BOARDFLAGS2]; bcm->sprom.boardflags2 = value; /* il0macaddr */ value = sprom[BCM43xx_SPROM_IL0MACADDR + 0]; *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value); value = sprom[BCM43xx_SPROM_IL0MACADDR + 1]; *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value); value = sprom[BCM43xx_SPROM_IL0MACADDR + 2]; *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value); /* et0macaddr */ value = sprom[BCM43xx_SPROM_ET0MACADDR + 0]; *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value); value = sprom[BCM43xx_SPROM_ET0MACADDR + 1]; *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value); value = sprom[BCM43xx_SPROM_ET0MACADDR + 2]; *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value); /* et1macaddr */ value = sprom[BCM43xx_SPROM_ET1MACADDR + 0]; *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value); value = sprom[BCM43xx_SPROM_ET1MACADDR + 1]; *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value); value = sprom[BCM43xx_SPROM_ET1MACADDR + 2]; *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value); /* ethernet phy settings */ value = sprom[BCM43xx_SPROM_ETHPHY]; bcm->sprom.et0phyaddr = (value & 0x001F); bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5; bcm->sprom.et0mdcport = (value & (1 << 14)) >> 14; bcm->sprom.et1mdcport = (value & (1 << 15)) >> 15; /* boardrev, antennas, locale */ value = sprom[BCM43xx_SPROM_BOARDREV]; bcm->sprom.boardrev = (value & 0x00FF); bcm->sprom.locale = (value & 0x0F00) >> 8; bcm->sprom.antennas_aphy = (value & 0x3000) >> 12; bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14; if (modparam_locale != -1) { if (modparam_locale >= 0 && modparam_locale <= 11) { bcm->sprom.locale = modparam_locale; printk(KERN_WARNING PFX "Operating with modified " "LocaleCode %u (%s)\n", bcm->sprom.locale, bcm43xx_locale_string(bcm->sprom.locale)); } else { printk(KERN_WARNING PFX "Module parameter \"locale\" " "invalid value. (0 - 11)\n"); } } /* pa0b* */ value = sprom[BCM43xx_SPROM_PA0B0]; bcm->sprom.pa0b0 = value; value = sprom[BCM43xx_SPROM_PA0B1]; bcm->sprom.pa0b1 = value; value = sprom[BCM43xx_SPROM_PA0B2]; bcm->sprom.pa0b2 = value; /* wl0gpio* */ value = sprom[BCM43xx_SPROM_WL0GPIO0]; if (value == 0x0000) value = 0xFFFF; bcm->sprom.wl0gpio0 = value & 0x00FF; bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8; value = sprom[BCM43xx_SPROM_WL0GPIO2]; if (value == 0x0000) value = 0xFFFF; bcm->sprom.wl0gpio2 = value & 0x00FF; bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8; /* maxpower */ value = sprom[BCM43xx_SPROM_MAXPWR]; bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8; bcm->sprom.maxpower_bgphy = value & 0x00FF; /* pa1b* */ value = sprom[BCM43xx_SPROM_PA1B0]; bcm->sprom.pa1b0 = value; value = sprom[BCM43xx_SPROM_PA1B1]; bcm->sprom.pa1b1 = value; value = sprom[BCM43xx_SPROM_PA1B2]; bcm->sprom.pa1b2 = value; /* idle tssi target */ value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT]; bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF; bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8; /* boardflags */ value = sprom[BCM43xx_SPROM_BOARDFLAGS]; if (value == 0xFFFF) value = 0x0000; bcm->sprom.boardflags = value; /* boardflags workarounds */ if (bcm->board_vendor == PCI_VENDOR_ID_DELL && bcm->chip_id == 0x4301 && bcm->board_revision == 0x74) bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST; if (bcm->board_vendor == PCI_VENDOR_ID_APPLE && bcm->board_type == 0x4E && bcm->board_revision > 0x40) bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL; /* antenna gain */ value = sprom[BCM43xx_SPROM_ANTENNA_GAIN]; if (value == 0x0000 || value == 0xFFFF) value = 0x0202; /* convert values to Q5.2 */ bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4; bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4; kfree(sprom); return 0; } static int bcm43xx_geo_init(struct bcm43xx_private *bcm) { struct ieee80211_geo *geo; struct ieee80211_channel *chan; int have_a = 0, have_bg = 0; int i; u8 channel; struct bcm43xx_phyinfo *phy; const char *iso_country; geo = kzalloc(sizeof(*geo), GFP_KERNEL); if (!geo) return -ENOMEM; for (i = 0; i < bcm->nr_80211_available; i++) { phy = &(bcm->core_80211_ext[i].phy); switch (phy->type) { case BCM43xx_PHYTYPE_B: case BCM43xx_PHYTYPE_G: have_bg = 1; break; case BCM43xx_PHYTYPE_A: have_a = 1; break; default: assert(0); } } iso_country = bcm43xx_locale_iso(bcm->sprom.locale); if (have_a) { for (i = 0, channel = IEEE80211_52GHZ_MIN_CHANNEL; channel <= IEEE80211_52GHZ_MAX_CHANNEL; channel++) { chan = &geo->a[i++]; chan->freq = bcm43xx_channel_to_freq_a(channel); chan->channel = channel; } geo->a_channels = i; } if (have_bg) { for (i = 0, channel = IEEE80211_24GHZ_MIN_CHANNEL; channel <= IEEE80211_24GHZ_MAX_CHANNEL; channel++) { chan = &geo->bg[i++]; chan->freq = bcm43xx_channel_to_freq_bg(channel); chan->channel = channel; } geo->bg_channels = i; } memcpy(geo->name, iso_country, 2); if (0 /*TODO: Outdoor use only */) geo->name[2] = 'O'; else if (0 /*TODO: Indoor use only */) geo->name[2] = 'I'; else geo->name[2] = ' '; geo->name[3] = '\0'; ieee80211_set_geo(bcm->ieee, geo); kfree(geo); return 0; } /* DummyTransmission function, as documented on * http://bcm-specs.sipsolutions.net/DummyTransmission */ void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm); unsigned int i, max_loop; u16 value = 0; u32 buffer[5] = { 0x00000000, 0x0000D400, 0x00000000, 0x00000001, 0x00000000, }; switch (phy->type) { case BCM43xx_PHYTYPE_A: max_loop = 0x1E; buffer[0] = 0xCC010200; break; case BCM43xx_PHYTYPE_B: case BCM43xx_PHYTYPE_G: max_loop = 0xFA; buffer[0] = 0x6E840B00; break; default: assert(0); return; } for (i = 0; i < 5; i++) bcm43xx_ram_write(bcm, i * 4, buffer[i]); bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */ bcm43xx_write16(bcm, 0x0568, 0x0000); bcm43xx_write16(bcm, 0x07C0, 0x0000); bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0)); bcm43xx_write16(bcm, 0x0508, 0x0000); bcm43xx_write16(bcm, 0x050A, 0x0000); bcm43xx_write16(bcm, 0x054C, 0x0000); bcm43xx_write16(bcm, 0x056A, 0x0014); bcm43xx_write16(bcm, 0x0568, 0x0826); bcm43xx_write16(bcm, 0x0500, 0x0000); bcm43xx_write16(bcm, 0x0502, 0x0030); if (radio->version == 0x2050 && radio->revision <= 0x5) bcm43xx_radio_write16(bcm, 0x0051, 0x0017); for (i = 0x00; i < max_loop; i++) { value = bcm43xx_read16(bcm, 0x050E); if (value & 0x0080) break; udelay(10); } for (i = 0x00; i < 0x0A; i++) { value = bcm43xx_read16(bcm, 0x050E); if (value & 0x0400) break; udelay(10); } for (i = 0x00; i < 0x0A; i++) { value = bcm43xx_read16(bcm, 0x0690); if (!(value & 0x0100)) break; udelay(10); } if (radio->version == 0x2050 && radio->revision <= 0x5) bcm43xx_radio_write16(bcm, 0x0051, 0x0037); } static void key_write(struct bcm43xx_private *bcm, u8 index, u8 algorithm, const u16 *key) { unsigned int i, basic_wep = 0; u32 offset; u16 value; /* Write associated key information */ bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2), ((index << 4) | (algorithm & 0x0F))); /* The first 4 WEP keys need extra love */ if (((algorithm == BCM43xx_SEC_ALGO_WEP) || (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4)) basic_wep = 1; /* Write key payload, 8 little endian words */ offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE); for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) { value = cpu_to_le16(key[i]); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + (i * 2), value); if (!basic_wep) continue; bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE, value); } } static void keymac_write(struct bcm43xx_private *bcm, u8 index, const u32 *addr) { /* for keys 0-3 there is no associated mac address */ if (index < 4) return; index -= 4; if (bcm->current_core->rev >= 5) { bcm43xx_shm_write32(bcm, BCM43xx_SHM_HWMAC, index * 2, cpu_to_be32(*addr)); bcm43xx_shm_write16(bcm, BCM43xx_SHM_HWMAC, (index * 2) + 1, cpu_to_be16(*((u16 *)(addr + 1)))); } else { if (index < 8) { TODO(); /* Put them in the macaddress filter */ } else { TODO(); /* Put them BCM43xx_SHM_SHARED, stating index 0x0120. Keep in mind to update the count of keymacs in 0x003E as well! */ } } } static int bcm43xx_key_write(struct bcm43xx_private *bcm, u8 index, u8 algorithm, const u8 *_key, int key_len, const u8 *mac_addr) { u8 key[BCM43xx_SEC_KEYSIZE] = { 0 }; if (index >= ARRAY_SIZE(bcm->key)) return -EINVAL; if (key_len > ARRAY_SIZE(key)) return -EINVAL; if (algorithm < 1 || algorithm > 5) return -EINVAL; memcpy(key, _key, key_len); key_write(bcm, index, algorithm, (const u16 *)key); keymac_write(bcm, index, (const u32 *)mac_addr); bcm->key[index].algorithm = algorithm; return 0; } static void bcm43xx_clear_keys(struct bcm43xx_private *bcm) { static const u32 zero_mac[2] = { 0 }; unsigned int i,j, nr_keys = 54; u16 offset; if (bcm->current_core->rev < 5) nr_keys = 16; assert(nr_keys <= ARRAY_SIZE(bcm->key)); for (i = 0; i < nr_keys; i++) { bcm->key[i].enabled = 0; /* returns for i < 4 immediately */ keymac_write(bcm, i, zero_mac); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (i * 2), 0x0000); for (j = 0; j < 8; j++) { offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset, 0x0000); } } dprintk(KERN_INFO PFX "Keys cleared\n"); } /* Lowlevel core-switch function. This is only to be used in * bcm43xx_switch_core() and bcm43xx_probe_cores() */ static int _switch_core(struct bcm43xx_private *bcm, int core) { int err; int attempts = 0; u32 current_core; assert(core >= 0); while (1) { err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE, (core * 0x1000) + 0x18000000); if (unlikely(err)) goto error; err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE, ¤t_core); if (unlikely(err)) goto error; current_core = (current_core - 0x18000000) / 0x1000; if (current_core == core) break; if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES)) goto error; udelay(10); } #ifdef CONFIG_BCM947XX if (bcm->pci_dev->bus->number == 0) bcm->current_core_offset = 0x1000 * core; else bcm->current_core_offset = 0; #endif return 0; error: printk(KERN_ERR PFX "Failed to switch to core %d\n", core); return -ENODEV; } int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core) { int err; if (unlikely(!new_core)) return 0; if (!new_core->available) return -ENODEV; if (bcm->current_core == new_core) return 0; err = _switch_core(bcm, new_core->index); if (unlikely(err)) goto out; bcm->current_core = new_core; out: return err; } static int bcm43xx_core_enabled(struct bcm43xx_private *bcm) { u32 value; value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET | BCM43xx_SBTMSTATELOW_REJECT; return (value == BCM43xx_SBTMSTATELOW_CLOCK); } /* disable current core */ static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags) { u32 sbtmstatelow; u32 sbtmstatehigh; int i; /* fetch sbtmstatelow from core information registers */ sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); /* core is already in reset */ if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET) goto out; if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) { sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_REJECT; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); for (i = 0; i < 1000; i++) { sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) { i = -1; break; } udelay(10); } if (i != -1) { printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n"); return -EBUSY; } for (i = 0; i < 1000; i++) { sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH); if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) { i = -1; break; } udelay(10); } if (i != -1) { printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n"); return -EBUSY; } sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK | BCM43xx_SBTMSTATELOW_REJECT | BCM43xx_SBTMSTATELOW_RESET | BCM43xx_SBTMSTATELOW_CLOCK | core_flags; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); udelay(10); } sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET | BCM43xx_SBTMSTATELOW_REJECT | core_flags; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); out: bcm->current_core->enabled = 0; return 0; } /* enable (reset) current core */ static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags) { u32 sbtmstatelow; u32 sbtmstatehigh; u32 sbimstate; int err; err = bcm43xx_core_disable(bcm, core_flags); if (err) goto out; sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET | BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK | core_flags; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); udelay(1); sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH); if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) { sbtmstatehigh = 0x00000000; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh); } sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE); if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) { sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT); bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate); } sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK | core_flags; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); udelay(1); sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); udelay(1); bcm->current_core->enabled = 1; assert(err == 0); out: return err; } /* http://bcm-specs.sipsolutions.net/80211CoreReset */ void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy) { u32 flags = 0x00040000; if ((bcm43xx_core_enabled(bcm)) && !bcm43xx_using_pio(bcm)) { //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here? #if 0 #ifndef CONFIG_BCM947XX /* reset all used DMA controllers. */ bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE); bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE); bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE); bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE); bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE); if (bcm->current_core->rev < 5) bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE); #endif #endif } if (bcm43xx_status(bcm) == BCM43xx_STAT_SHUTTINGDOWN) { bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002)); } else { if (connect_phy) flags |= 0x20000000; bcm43xx_phy_connect(bcm, connect_phy); bcm43xx_core_enable(bcm, flags); bcm43xx_write16(bcm, 0x03E6, 0x0000); bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) | BCM43xx_SBF_400); } } static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm) { bcm43xx_radio_turn_off(bcm); bcm43xx_write16(bcm, 0x03E6, 0x00F4); bcm43xx_core_disable(bcm, 0); } /* Mark the current 80211 core inactive. */ static void bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm) { u32 sbtmstatelow; bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL); bcm43xx_radio_turn_off(bcm); sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); sbtmstatelow &= 0xDFF5FFFF; sbtmstatelow |= 0x000A0000; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); udelay(1); sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); sbtmstatelow &= 0xFFF5FFFF; sbtmstatelow |= 0x00080000; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); udelay(1); } static void handle_irq_transmit_status(struct bcm43xx_private *bcm) { u32 v0, v1; u16 tmp; struct bcm43xx_xmitstatus stat; while (1) { v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0); if (!v0) break; v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1); stat.cookie = (v0 >> 16) & 0x0000FFFF; tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1)); stat.flags = tmp & 0xFF; stat.cnt1 = (tmp & 0x0F00) >> 8; stat.cnt2 = (tmp & 0xF000) >> 12; stat.seq = (u16)(v1 & 0xFFFF); stat.unknown = (u16)((v1 >> 16) & 0xFF); bcm43xx_debugfs_log_txstat(bcm, &stat); if (stat.flags & BCM43xx_TXSTAT_FLAG_IGNORE) continue; if (!(stat.flags & BCM43xx_TXSTAT_FLAG_ACK)) { //TODO: packet was not acked (was lost) } //TODO: There are more (unknown) flags to test. see bcm43xx_main.h if (bcm43xx_using_pio(bcm)) bcm43xx_pio_handle_xmitstatus(bcm, &stat); else bcm43xx_dma_handle_xmitstatus(bcm, &stat); } } static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm) { bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F); bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4)); assert(bcm->noisecalc.core_at_start == bcm->current_core); assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel); } static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm) { /* Top half of Link Quality calculation. */ if (bcm->noisecalc.calculation_running) return; bcm->noisecalc.core_at_start = bcm->current_core; bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel; bcm->noisecalc.calculation_running = 1; bcm->noisecalc.nr_samples = 0; bcm43xx_generate_noise_sample(bcm); } static void handle_irq_noise(struct bcm43xx_private *bcm) { struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm); u16 tmp; u8 noise[4]; u8 i, j; s32 average; /* Bottom half of Link Quality calculation. */ assert(bcm->noisecalc.calculation_running); if (bcm->noisecalc.core_at_start != bcm->current_core || bcm->noisecalc.channel_at_start != radio->channel) goto drop_calculation; tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408); noise[0] = (tmp & 0x00FF); noise[1] = (tmp & 0xFF00) >> 8; tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A); noise[2] = (tmp & 0x00FF); noise[3] = (tmp & 0xFF00) >> 8; if (noise[0] == 0x7F || noise[1] == 0x7F || noise[2] == 0x7F || noise[3] == 0x7F) goto generate_new; /* Get the noise samples. */ assert(bcm->noisecalc.nr_samples < 8); i = bcm->noisecalc.nr_samples; noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1); noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1); noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1); noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1); bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]]; bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]]; bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]]; bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]]; bcm->noisecalc.nr_samples++; if (bcm->noisecalc.nr_samples == 8) { /* Calculate the Link Quality by the noise samples. */ average = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 4; j++) average += bcm->noisecalc.samples[i][j]; } average /= (8 * 4); average *= 125; average += 64; average /= 128; tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C); tmp = (tmp / 128) & 0x1F; if (tmp >= 8) average += 2; else average -= 25; if (tmp == 8) average -= 72; else average -= 48; /* FIXME: This is wrong, but people want fancy stats. well... */ bcm->stats.noise = average; if (average > -65) bcm->stats.link_quality = 0; else if (average > -75) bcm->stats.link_quality = 1; else if (average > -85) bcm->stats.link_quality = 2; else bcm->stats.link_quality = 3; // dprintk(KERN_INFO PFX "Link Quality: %u (avg was %d)\n", bcm->stats.link_quality, average); drop_calculation: bcm->noisecalc.calculation_running = 0; return; } generate_new: bcm43xx_generate_noise_sample(bcm); } static void handle_irq_ps(struct bcm43xx_private *bcm) { if (bcm->ieee->iw_mode == IW_MODE_MASTER) { ///TODO: PS TBTT } else { if (1/*FIXME: the last PSpoll frame was sent successfully */) bcm43xx_power_saving_ctl_bits(bcm, -1, -1); } if (bcm->ieee->iw_mode == IW_MODE_ADHOC) bcm->reg124_set_0x4 = 1; //FIXME else set to false? } static void handle_irq_reg124(struct bcm43xx_private *bcm) { if (!bcm->reg124_set_0x4) return; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | 0x4); //FIXME: reset reg124_set_0x4 to false? } static void handle_irq_pmq(struct bcm43xx_private *bcm) { u32 tmp; //TODO: AP mode. while (1) { tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS); if (!(tmp & 0x00000008)) break; } /* 16bit write is odd, but correct. */ bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002); } static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm, u16 ram_offset, u16 shm_size_offset) { u32 value; u16 size = 0; /* Timestamp. */ //FIXME: assumption: The chip sets the timestamp value = 0; bcm43xx_ram_write(bcm, ram_offset++, value); bcm43xx_ram_write(bcm, ram_offset++, value); size += 8; /* Beacon Interval / Capability Information */ value = 0x0000;//FIXME: Which interval? value |= (1 << 0) << 16; /* ESS */ value |= (1 << 2) << 16; /* CF Pollable */ //FIXME? value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME? if (!bcm->ieee->open_wep) value |= (1 << 4) << 16; /* Privacy */ bcm43xx_ram_write(bcm, ram_offset++, value); size += 4; /* SSID */ //TODO /* FH Parameter Set */ //TODO /* DS Parameter Set */ //TODO /* CF Parameter Set */ //TODO /* TIM */ //TODO bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size); } static void handle_irq_beacon(struct bcm43xx_private *bcm) { u32 status; bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON; status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD); if ((status & 0x1) && (status & 0x2)) { /* ACK beacon IRQ. */ bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_BEACON); bcm->irq_savedstate |= BCM43xx_IRQ_BEACON; return; } if (!(status & 0x1)) { bcm43xx_generate_beacon_template(bcm, 0x68, 0x18); status |= 0x1; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status); } if (!(status & 0x2)) { bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A); status |= 0x2; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status); } } /* Interrupt handler bottom-half */ static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm) { u32 reason; u32 dma_reason[6]; u32 merged_dma_reason = 0; int i, activity = 0; unsigned long flags; #ifdef CONFIG_BCM43XX_DEBUG u32 _handled = 0x00000000; # define bcmirq_handled(irq) do { _handled |= (irq); } while (0) #else # define bcmirq_handled(irq) do { /* nothing */ } while (0) #endif /* CONFIG_BCM43XX_DEBUG*/ spin_lock_irqsave(&bcm->irq_lock, flags); reason = bcm->irq_reason; for (i = 5; i >= 0; i--) { dma_reason[i] = bcm->dma_reason[i]; merged_dma_reason |= dma_reason[i]; } if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) { /* TX error. We get this when Template Ram is written in wrong endianess * in dummy_tx(). We also get this if something is wrong with the TX header * on DMA or PIO queues. * Maybe we get this in other error conditions, too. */ printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n"); bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR); } if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_FATALMASK)) { printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: " "0x%08X, 0x%08X, 0x%08X, " "0x%08X, 0x%08X, 0x%08X\n", dma_reason[0], dma_reason[1], dma_reason[2], dma_reason[3], dma_reason[4], dma_reason[5]); bcm43xx_controller_restart(bcm, "DMA error"); mmiowb(); spin_unlock_irqrestore(&bcm->irq_lock, flags); return; } if (unlikely(merged_dma_reason & BCM43xx_DMAIRQ_NONFATALMASK)) { printkl(KERN_ERR PFX "DMA error: " "0x%08X, 0x%08X, 0x%08X, " "0x%08X, 0x%08X, 0x%08X\n", dma_reason[0], dma_reason[1], dma_reason[2], dma_reason[3], dma_reason[4], dma_reason[5]); } if (reason & BCM43xx_IRQ_PS) { handle_irq_ps(bcm); bcmirq_handled(BCM43xx_IRQ_PS); } if (reason & BCM43xx_IRQ_REG124) { handle_irq_reg124(bcm); bcmirq_handled(BCM43xx_IRQ_REG124); } if (reason & BCM43xx_IRQ_BEACON) { if (bcm->ieee->iw_mode == IW_MODE_MASTER) handle_irq_beacon(bcm); bcmirq_handled(BCM43xx_IRQ_BEACON); } if (reason & BCM43xx_IRQ_PMQ) { handle_irq_pmq(bcm); bcmirq_handled(BCM43xx_IRQ_PMQ); } if (reason & BCM43xx_IRQ_SCAN) { /*TODO*/ //bcmirq_handled(BCM43xx_IRQ_SCAN); } if (reason & BCM43xx_IRQ_NOISE) { handle_irq_noise(bcm); bcmirq_handled(BCM43xx_IRQ_NOISE); } /* Check the DMA reason registers for received data. */ if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) { if (bcm43xx_using_pio(bcm)) bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0); else bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0); /* We intentionally don't set "activity" to 1, here. */ } assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE)); assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE)); if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) { if (bcm43xx_using_pio(bcm)) bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3); else bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring3); activity = 1; } assert(!(dma_reason[4] & BCM43xx_DMAIRQ_RX_DONE)); assert(!(dma_reason[5] & BCM43xx_DMAIRQ_RX_DONE)); bcmirq_handled(BCM43xx_IRQ_RX); if (reason & BCM43xx_IRQ_XMIT_STATUS) { handle_irq_transmit_status(bcm); activity = 1; //TODO: In AP mode, this also causes sending of powersave responses. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS); } /* IRQ_PIO_WORKAROUND is handled in the top-half. */ bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND); #ifdef CONFIG_BCM43XX_DEBUG if (unlikely(reason & ~_handled)) { printkl(KERN_WARNING PFX "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, " "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n", reason, (reason & ~_handled), dma_reason[0], dma_reason[1], dma_reason[2], dma_reason[3]); } #endif #undef bcmirq_handled if (!modparam_noleds) bcm43xx_leds_update(bcm, activity); bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate); mmiowb(); spin_unlock_irqrestore(&bcm->irq_lock, flags); } static void pio_irq_workaround(struct bcm43xx_private *bcm, u16 base, int queueidx) { u16 rxctl; rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL); if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE) bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE; else bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE; } static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason) { if (bcm43xx_using_pio(bcm) && (bcm->current_core->rev < 3) && (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) { /* Apply a PIO specific workaround to the dma_reasons */ pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0); pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1); pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2); pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3); } bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_REASON, bcm->dma_reason[0]); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON, bcm->dma_reason[1]); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON, bcm->dma_reason[2]); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON, bcm->dma_reason[3]); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON, bcm->dma_reason[4]); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_REASON, bcm->dma_reason[5]); } /* Interrupt handler top-half */ static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id, struct pt_regs *regs) { irqreturn_t ret = IRQ_HANDLED; struct bcm43xx_private *bcm = dev_id; u32 reason; if (!bcm) return IRQ_NONE; spin_lock(&bcm->irq_lock); assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED); assert(bcm->current_core->id == BCM43xx_COREID_80211); reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); if (reason == 0xffffffff) { /* irq not for us (shared irq) */ ret = IRQ_NONE; goto out; } reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK); if (!reason) goto out; bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA0_REASON) & 0x0001DC00; bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON) & 0x0000DC00; bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON) & 0x0000DC00; bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON) & 0x0001DC00; bcm->dma_reason[4] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON) & 0x0000DC00; bcm->dma_reason[5] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA5_REASON) & 0x0000DC00; bcm43xx_interrupt_ack(bcm, reason); /* disable all IRQs. They are enabled again in the bottom half. */ bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL); /* save the reason code and call our bottom half. */ bcm->irq_reason = reason; tasklet_schedule(&bcm->isr_tasklet); out: mmiowb(); spin_unlock(&bcm->irq_lock); return ret; } static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); if (bcm->firmware_norelease && !force) return; /* Suspending or controller reset. */ release_firmware(phy->ucode); phy->ucode = NULL; release_firmware(phy->pcm); phy->pcm = NULL; release_firmware(phy->initvals0); phy->initvals0 = NULL; release_firmware(phy->initvals1); phy->initvals1 = NULL; } static int bcm43xx_request_firmware(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); u8 rev = bcm->current_core->rev; int err = 0; int nr; char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 }; if (!phy->ucode) { snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw", (rev >= 5 ? 5 : rev), modparam_fwpostfix); err = request_firmware(&phy->ucode, buf, &bcm->pci_dev->dev); if (err) { printk(KERN_ERR PFX "Error: Microcode \"%s\" not available or load failed.\n", buf); goto error; } } if (!phy->pcm) { snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_pcm%d%s.fw", (rev < 5 ? 4 : 5), modparam_fwpostfix); err = request_firmware(&phy->pcm, buf, &bcm->pci_dev->dev); if (err) { printk(KERN_ERR PFX "Error: PCM \"%s\" not available or load failed.\n", buf); goto error; } } if (!phy->initvals0) { if (rev == 2 || rev == 4) { switch (phy->type) { case BCM43xx_PHYTYPE_A: nr = 3; break; case BCM43xx_PHYTYPE_B: case BCM43xx_PHYTYPE_G: nr = 1; break; default: goto err_noinitval; } } else if (rev >= 5) { switch (phy->type) { case BCM43xx_PHYTYPE_A: nr = 7; break; case BCM43xx_PHYTYPE_B: case BCM43xx_PHYTYPE_G: nr = 5; break; default: goto err_noinitval; } } else goto err_noinitval; snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw", nr, modparam_fwpostfix); err = request_firmware(&phy->initvals0, buf, &bcm->pci_dev->dev); if (err) { printk(KERN_ERR PFX "Error: InitVals \"%s\" not available or load failed.\n", buf); goto error; } if (phy->initvals0->size % sizeof(struct bcm43xx_initval)) { printk(KERN_ERR PFX "InitVals fileformat error.\n"); goto error; } } if (!phy->initvals1) { if (rev >= 5) { u32 sbtmstatehigh; switch (phy->type) { case BCM43xx_PHYTYPE_A: sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH); if (sbtmstatehigh & 0x00010000) nr = 9; else nr = 10; break; case BCM43xx_PHYTYPE_B: case BCM43xx_PHYTYPE_G: nr = 6; break; default: goto err_noinitval; } snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw", nr, modparam_fwpostfix); err = request_firmware(&phy->initvals1, buf, &bcm->pci_dev->dev); if (err) { printk(KERN_ERR PFX "Error: InitVals \"%s\" not available or load failed.\n", buf); goto error; } if (phy->initvals1->size % sizeof(struct bcm43xx_initval)) { printk(KERN_ERR PFX "InitVals fileformat error.\n"); goto error; } } } out: return err; error: bcm43xx_release_firmware(bcm, 1); goto out; err_noinitval: printk(KERN_ERR PFX "Error: No InitVals available!\n"); err = -ENOENT; goto error; } static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); const u32 *data; unsigned int i, len; /* Upload Microcode. */ data = (u32 *)(phy->ucode->data); len = phy->ucode->size / sizeof(u32); bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000); for (i = 0; i < len; i++) { bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, be32_to_cpu(data[i])); udelay(10); } /* Upload PCM data. */ data = (u32 *)(phy->pcm->data); len = phy->pcm->size / sizeof(u32); bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea); bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000); bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb); for (i = 0; i < len; i++) { bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, be32_to_cpu(data[i])); udelay(10); } } static int bcm43xx_write_initvals(struct bcm43xx_private *bcm, const struct bcm43xx_initval *data, const unsigned int len) { u16 offset, size; u32 value; unsigned int i; for (i = 0; i < len; i++) { offset = be16_to_cpu(data[i].offset); size = be16_to_cpu(data[i].size); value = be32_to_cpu(data[i].value); if (unlikely(offset >= 0x1000)) goto err_format; if (size == 2) { if (unlikely(value & 0xFFFF0000)) goto err_format; bcm43xx_write16(bcm, offset, (u16)value); } else if (size == 4) { bcm43xx_write32(bcm, offset, value); } else goto err_format; } return 0; err_format: printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. " "Please fix your bcm43xx firmware files.\n"); return -EPROTO; } static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); int err; err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals0->data, phy->initvals0->size / sizeof(struct bcm43xx_initval)); if (err) goto out; if (phy->initvals1) { err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals1->data, phy->initvals1->size / sizeof(struct bcm43xx_initval)); if (err) goto out; } out: return err; } #ifdef CONFIG_BCM947XX static struct pci_device_id bcm43xx_47xx_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) }, { 0 } }; #endif static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm) { int err; bcm->irq = bcm->pci_dev->irq; #ifdef CONFIG_BCM947XX if (bcm->pci_dev->bus->number == 0) { struct pci_dev *d; struct pci_device_id *id; for (id = bcm43xx_47xx_ids; id->vendor; id++) { d = pci_get_device(id->vendor, id->device, NULL); if (d != NULL) { bcm->irq = d->irq; pci_dev_put(d); break; } } } #endif err = request_irq(bcm->irq, bcm43xx_interrupt_handler, IRQF_SHARED, KBUILD_MODNAME, bcm); if (err) printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq); return err; } /* Switch to the core used to write the GPIO register. * This is either the ChipCommon, or the PCI core. */ static int switch_to_gpio_core(struct bcm43xx_private *bcm) { int err; /* Where to find the GPIO register depends on the chipset. * If it has a ChipCommon, its register at offset 0x6c is the GPIO * control register. Otherwise the register at offset 0x6c in the * PCI core is the GPIO control register. */ err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon); if (err == -ENODEV) { err = bcm43xx_switch_core(bcm, &bcm->core_pci); if (unlikely(err == -ENODEV)) { printk(KERN_ERR PFX "gpio error: " "Neither ChipCommon nor PCI core available!\n"); } } return err; } /* Initialize the GPIOs * http://bcm-specs.sipsolutions.net/GPIO */ static int bcm43xx_gpio_init(struct bcm43xx_private *bcm) { struct bcm43xx_coreinfo *old_core; int err; u32 mask, set; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) & 0xFFFF3FFF); bcm43xx_leds_switch_all(bcm, 0); bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK, bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F); mask = 0x0000001F; set = 0x0000000F; if (bcm->chip_id == 0x4301) { mask |= 0x0060; set |= 0x0060; } if (0 /* FIXME: conditional unknown */) { bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK, bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x0100); mask |= 0x0180; set |= 0x0180; } if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) { bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK, bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x0200); mask |= 0x0200; set |= 0x0200; } if (bcm->current_core->rev >= 2) mask |= 0x0010; /* FIXME: This is redundant. */ old_core = bcm->current_core; err = switch_to_gpio_core(bcm); if (err) goto out; bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set); err = bcm43xx_switch_core(bcm, old_core); out: return err; } /* Turn off all GPIO stuff. Call this on module unload, for example. */ static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm) { struct bcm43xx_coreinfo *old_core; int err; old_core = bcm->current_core; err = switch_to_gpio_core(bcm); if (err) return err; bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000); err = bcm43xx_switch_core(bcm, old_core); assert(err == 0); return 0; } /* http://bcm-specs.sipsolutions.net/EnableMac */ void bcm43xx_mac_enable(struct bcm43xx_private *bcm) { bcm->mac_suspended--; assert(bcm->mac_suspended >= 0); if (bcm->mac_suspended == 0) { bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) | BCM43xx_SBF_MAC_ENABLED); bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY); bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */ bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */ bcm43xx_power_saving_ctl_bits(bcm, -1, -1); } } /* http://bcm-specs.sipsolutions.net/SuspendMAC */ void bcm43xx_mac_suspend(struct bcm43xx_private *bcm) { int i; u32 tmp; assert(bcm->mac_suspended >= 0); if (bcm->mac_suspended == 0) { bcm43xx_power_saving_ctl_bits(bcm, -1, 1); bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) & ~BCM43xx_SBF_MAC_ENABLED); bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */ for (i = 10000; i; i--) { tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); if (tmp & BCM43xx_IRQ_READY) goto out; udelay(1); } printkl(KERN_ERR PFX "MAC suspend failed\n"); } out: bcm->mac_suspended++; } void bcm43xx_set_iwmode(struct bcm43xx_private *bcm, int iw_mode) { unsigned long flags; struct net_device *net_dev = bcm->net_dev; u32 status; u16 value; spin_lock_irqsave(&bcm->ieee->lock, flags); bcm->ieee->iw_mode = iw_mode; spin_unlock_irqrestore(&bcm->ieee->lock, flags); if (iw_mode == IW_MODE_MONITOR) net_dev->type = ARPHRD_IEEE80211; else net_dev->type = ARPHRD_ETHER; status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* Reset status to infrastructured mode */ status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR); status &= ~BCM43xx_SBF_MODE_PROMISC; status |= BCM43xx_SBF_MODE_NOTADHOC; /* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */ status |= BCM43xx_SBF_MODE_PROMISC; switch (iw_mode) { case IW_MODE_MONITOR: status |= BCM43xx_SBF_MODE_MONITOR; status |= BCM43xx_SBF_MODE_PROMISC; break; case IW_MODE_ADHOC: status &= ~BCM43xx_SBF_MODE_NOTADHOC; break; case IW_MODE_MASTER: status |= BCM43xx_SBF_MODE_AP; break; case IW_MODE_SECOND: case IW_MODE_REPEAT: TODO(); /* TODO */ break; case IW_MODE_INFRA: /* nothing to be done here... */ break; default: dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode); } if (net_dev->flags & IFF_PROMISC) status |= BCM43xx_SBF_MODE_PROMISC; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status); value = 0x0002; if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) { if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3) value = 0x0064; else value = 0x0032; } bcm43xx_write16(bcm, 0x0612, value); } /* This is the opposite of bcm43xx_chip_init() */ static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm) { bcm43xx_radio_turn_off(bcm); if (!modparam_noleds) bcm43xx_leds_exit(bcm); bcm43xx_gpio_cleanup(bcm); bcm43xx_release_firmware(bcm, 0); } /* Initialize the chip * http://bcm-specs.sipsolutions.net/ChipInit */ static int bcm43xx_chip_init(struct bcm43xx_private *bcm) { struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm); struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); int err; int i, tmp; u32 value32; u16 value16; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, BCM43xx_SBF_CORE_READY | BCM43xx_SBF_400); err = bcm43xx_request_firmware(bcm); if (err) goto out; bcm43xx_upload_microcode(bcm); bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xFFFFFFFF); bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402); i = 0; while (1) { value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); if (value32 == BCM43xx_IRQ_READY) break; i++; if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) { printk(KERN_ERR PFX "IRQ_READY timeout\n"); err = -ENODEV; goto err_release_fw; } udelay(10); } bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */ err = bcm43xx_gpio_init(bcm); if (err) goto err_release_fw; err = bcm43xx_upload_initvals(bcm); if (err) goto err_gpio_cleanup; bcm43xx_radio_turn_on(bcm); bcm43xx_write16(bcm, 0x03E6, 0x0000); err = bcm43xx_phy_init(bcm); if (err) goto err_radio_off; /* Select initial Interference Mitigation. */ tmp = radio->interfmode; radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE; bcm43xx_radio_set_interference_mitigation(bcm, tmp); bcm43xx_phy_set_antenna_diversity(bcm); bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT); if (phy->type == BCM43xx_PHYTYPE_B) { value16 = bcm43xx_read16(bcm, 0x005E); value16 |= 0x0004; bcm43xx_write16(bcm, 0x005E, value16); } bcm43xx_write32(bcm, 0x0100, 0x01000000); if (bcm->current_core->rev < 5) bcm43xx_write32(bcm, 0x010C, 0x01000000); value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32); value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); value32 |= BCM43xx_SBF_MODE_NOTADHOC; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32); value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); value32 |= 0x100000; bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32); if (bcm43xx_using_pio(bcm)) { bcm43xx_write32(bcm, 0x0210, 0x00000100); bcm43xx_write32(bcm, 0x0230, 0x00000100); bcm43xx_write32(bcm, 0x0250, 0x00000100); bcm43xx_write32(bcm, 0x0270, 0x00000100); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000); } /* Probe Response Timeout value */ /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */ bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000); /* Initially set the wireless operation mode. */ bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode); if (bcm->current_core->rev < 3) { bcm43xx_write16(bcm, 0x060E, 0x0000); bcm43xx_write16(bcm, 0x0610, 0x8000); bcm43xx_write16(bcm, 0x0604, 0x0000); bcm43xx_write16(bcm, 0x0606, 0x0200); } else { bcm43xx_write32(bcm, 0x0188, 0x80000000); bcm43xx_write32(bcm, 0x018C, 0x02000000); } bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA0_IRQ_MASK, 0x0001DC00); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0000DC00); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0001DC00); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0000DC00); bcm43xx_write32(bcm, BCM43xx_MMIO_DMA5_IRQ_MASK, 0x0000DC00); value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); value32 |= 0x00100000; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32); bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm)); assert(err == 0); dprintk(KERN_INFO PFX "Chip initialized\n"); out: return err; err_radio_off: bcm43xx_radio_turn_off(bcm); err_gpio_cleanup: bcm43xx_gpio_cleanup(bcm); err_release_fw: bcm43xx_release_firmware(bcm, 1); goto out; } /* Validate chip access * http://bcm-specs.sipsolutions.net/ValidateChipAccess */ static int bcm43xx_validate_chip(struct bcm43xx_private *bcm) { u32 value; u32 shm_backup; shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000); bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA); if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA) goto error; bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55); if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55) goto error; bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup); value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); if ((value | 0x80000000) != 0x80000400) goto error; value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); if (value != 0x00000000) goto error; return 0; error: printk(KERN_ERR PFX "Failed to validate the chipaccess\n"); return -ENODEV; } static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy) { /* Initialize a "phyinfo" structure. The structure is already * zeroed out. * This is called on insmod time to initialize members. */ phy->savedpctlreg = 0xFFFF; spin_lock_init(&phy->lock); } static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio) { /* Initialize a "radioinfo" structure. The structure is already * zeroed out. * This is called on insmod time to initialize members. */ radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE; radio->channel = 0xFF; radio->initial_channel = 0xFF; } static int bcm43xx_probe_cores(struct bcm43xx_private *bcm) { int err, i; int current_core; u32 core_vendor, core_id, core_rev; u32 sb_id_hi, chip_id_32 = 0; u16 pci_device, chip_id_16; u8 core_count; memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo)); memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo)); memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo) * BCM43xx_MAX_80211_CORES); memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211) * BCM43xx_MAX_80211_CORES); bcm->nr_80211_available = 0; bcm->current_core = NULL; bcm->active_80211_core = NULL; /* map core 0 */ err = _switch_core(bcm, 0); if (err) goto out; /* fetch sb_id_hi from core information registers */ sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI); core_id = (sb_id_hi & 0xFFF0) >> 4; core_rev = (sb_id_hi & 0xF); core_vendor = (sb_id_hi & 0xFFFF0000) >> 16; /* if present, chipcommon is always core 0; read the chipid from it */ if (core_id == BCM43xx_COREID_CHIPCOMMON) { chip_id_32 = bcm43xx_read32(bcm, 0); chip_id_16 = chip_id_32 & 0xFFFF; bcm->core_chipcommon.available = 1; bcm->core_chipcommon.id = core_id; bcm->core_chipcommon.rev = core_rev; bcm->core_chipcommon.index = 0; /* While we are at it, also read the capabilities. */ bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES); } else { /* without a chipCommon, use a hard coded table. */ pci_device = bcm->pci_dev->device; if (pci_device == 0x4301) chip_id_16 = 0x4301; else if ((pci_device >= 0x4305) && (pci_device <= 0x4307)) chip_id_16 = 0x4307; else if ((pci_device >= 0x4402) && (pci_device <= 0x4403)) chip_id_16 = 0x4402; else if ((pci_device >= 0x4610) && (pci_device <= 0x4615)) chip_id_16 = 0x4610; else if ((pci_device >= 0x4710) && (pci_device <= 0x4715)) chip_id_16 = 0x4710; #ifdef CONFIG_BCM947XX else if ((pci_device >= 0x4320) && (pci_device <= 0x4325)) chip_id_16 = 0x4309; #endif else { printk(KERN_ERR PFX "Could not determine Chip ID\n"); return -ENODEV; } } /* ChipCommon with Core Rev >=4 encodes number of cores, * otherwise consult hardcoded table */ if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) { core_count = (chip_id_32 & 0x0F000000) >> 24; } else { switch (chip_id_16) { case 0x4610: case 0x4704: case 0x4710: core_count = 9; break; case 0x4310: core_count = 8; break; case 0x5365: core_count = 7; break; case 0x4306: core_count = 6; break; case 0x4301: case 0x4307: core_count = 5; break; case 0x4402: core_count = 3; break; default: /* SOL if we get here */ assert(0); core_count = 1; } } bcm->chip_id = chip_id_16; bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16; bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20; dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n", bcm->chip_id, bcm->chip_rev); dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count); if (bcm->core_chipcommon.available) { dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n", core_id, core_rev, core_vendor, bcm43xx_core_enabled(bcm) ? "enabled" : "disabled"); } if (bcm->core_chipcommon.available) current_core = 1; else current_core = 0; for ( ; current_core < core_count; current_core++) { struct bcm43xx_coreinfo *core; struct bcm43xx_coreinfo_80211 *ext_80211; err = _switch_core(bcm, current_core); if (err) goto out; /* Gather information */ /* fetch sb_id_hi from core information registers */ sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI); /* extract core_id, core_rev, core_vendor */ core_id = (sb_id_hi & 0xFFF0) >> 4; core_rev = (sb_id_hi & 0xF); core_vendor = (sb_id_hi & 0xFFFF0000) >> 16; dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n", current_core, core_id, core_rev, core_vendor, bcm43xx_core_enabled(bcm) ? "enabled" : "disabled" ); core = NULL; switch (core_id) { case BCM43xx_COREID_PCI: core = &bcm->core_pci; if (core->available) { printk(KERN_WARNING PFX "Multiple PCI cores found.\n"); continue; } break; case BCM43xx_COREID_80211: for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) { core = &(bcm->core_80211[i]); ext_80211 = &(bcm->core_80211_ext[i]); if (!core->available) break; core = NULL; } if (!core) { printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n", BCM43xx_MAX_80211_CORES); continue; } if (i != 0) { /* More than one 80211 core is only supported * by special chips. * There are chips with two 80211 cores, but with * dangling pins on the second core. Be careful * and ignore these cores here. */ if (bcm->pci_dev->device != 0x4324) { dprintk(KERN_INFO PFX "Ignoring additional 802.11 core.\n"); continue; } } switch (core_rev) { case 2: case 4: case 5: case 6: case 7: case 9: break; default: printk(KERN_ERR PFX "Error: Unsupported 80211 core revision %u\n", core_rev); err = -ENODEV; goto out; } bcm->nr_80211_available++; core->priv = ext_80211; bcm43xx_init_struct_phyinfo(&ext_80211->phy); bcm43xx_init_struct_radioinfo(&ext_80211->radio); break; case BCM43xx_COREID_CHIPCOMMON: printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n"); break; } if (core) { core->available = 1; core->id = core_id; core->rev = core_rev; core->index = current_core; } } if (!bcm->core_80211[0].available) { printk(KERN_ERR PFX "Error: No 80211 core found!\n"); err = -ENODEV; goto out; } err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]); assert(err == 0); out: return err; } static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm) { const u8 *mac = (const u8*)(bcm->net_dev->dev_addr); u8 *bssid = bcm->ieee->bssid; switch (bcm->ieee->iw_mode) { case IW_MODE_ADHOC: random_ether_addr(bssid); break; case IW_MODE_MASTER: case IW_MODE_INFRA: case IW_MODE_REPEAT: case IW_MODE_SECOND: case IW_MODE_MONITOR: memcpy(bssid, mac, ETH_ALEN); break; default: assert(0); } } static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm, u16 rate, int is_ofdm) { u16 offset; if (is_ofdm) { offset = 0x480; offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2; } else { offset = 0x4C0; offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2; } bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20, bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset)); } static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm) { switch (bcm43xx_current_phy(bcm)->type) { case BCM43xx_PHYTYPE_A: case BCM43xx_PHYTYPE_G: bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1); bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1); bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1); bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1); bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1); bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1); bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1); case BCM43xx_PHYTYPE_B: bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0); bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0); bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0); bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0); break; default: assert(0); } } static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm) { bcm43xx_chip_cleanup(bcm); bcm43xx_pio_free(bcm); bcm43xx_dma_free(bcm); bcm->current_core->initialized = 0; } /* http://bcm-specs.sipsolutions.net/80211Init */ static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm, int active_wlcore) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm); u32 ucodeflags; int err; u32 sbimconfiglow; u8 limit; if (bcm->chip_rev < 5) { sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW); sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK; sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK; if (bcm->bustype == BCM43xx_BUSTYPE_PCI) sbimconfiglow |= 0x32; else if (bcm->bustype == BCM43xx_BUSTYPE_SB) sbimconfiglow |= 0x53; else assert(0); bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow); } bcm43xx_phy_calibrate(bcm); err = bcm43xx_chip_init(bcm); if (err) goto out; bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev); ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET); if (0 /*FIXME: which condition has to be used here? */) ucodeflags |= 0x00000010; /* HW decryption needs to be set now */ ucodeflags |= 0x40000000; if (phy->type == BCM43xx_PHYTYPE_G) { ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY; if (phy->rev == 1) ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY; if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL; } else if (phy->type == BCM43xx_PHYTYPE_B) { ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY; if (phy->rev >= 2 && radio->version == 0x2050) ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY; } if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET)) { bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET, ucodeflags); } /* Short/Long Retry Limit. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing * the chip-internal counter. */ limit = limit_value(modparam_short_retry, 0, 0xF); bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit); limit = limit_value(modparam_long_retry, 0, 0xF); bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2); bcm43xx_rate_memory_init(bcm); /* Minimum Contention Window */ if (phy->type == BCM43xx_PHYTYPE_B) bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f); else bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f); /* Maximum Contention Window */ bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff); bcm43xx_gen_bssid(bcm); bcm43xx_write_mac_bssid_templates(bcm); if (bcm->current_core->rev >= 5) bcm43xx_write16(bcm, 0x043C, 0x000C); if (active_wlcore) { if (bcm43xx_using_pio(bcm)) err = bcm43xx_pio_init(bcm); else err = bcm43xx_dma_init(bcm); if (err) goto err_chip_cleanup; } bcm43xx_write16(bcm, 0x0612, 0x0050); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050); bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4); if (active_wlcore) { if (radio->initial_channel != 0xFF) bcm43xx_radio_selectchannel(bcm, radio->initial_channel, 0); } /* Don't enable MAC/IRQ here, as it will race with the IRQ handler. * We enable it later. */ bcm->current_core->initialized = 1; out: return err; err_chip_cleanup: bcm43xx_chip_cleanup(bcm); goto out; } static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm) { int err; u16 pci_status; err = bcm43xx_pctl_set_crystal(bcm, 1); if (err) goto out; bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status); bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT); out: return err; } static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm) { bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW); bcm43xx_pctl_set_crystal(bcm, 0); } static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm, u32 address, u32 data) { bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address); bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data); } static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm) { int err; struct bcm43xx_coreinfo *old_core; old_core = bcm->current_core; err = bcm43xx_switch_core(bcm, &bcm->core_pci); if (err) goto out; bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000); bcm43xx_switch_core(bcm, old_core); assert(err == 0); out: return err; } /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable. * To enable core 0, pass a core_mask of 1<<0 */ static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm, u32 core_mask) { u32 backplane_flag_nr; u32 value; struct bcm43xx_coreinfo *old_core; int err = 0; value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG); backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK; old_core = bcm->current_core; err = bcm43xx_switch_core(bcm, &bcm->core_pci); if (err) goto out; if (bcm->core_pci.rev < 6) { value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC); value |= (1 << backplane_flag_nr); bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value); } else { err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value); if (err) { printk(KERN_ERR PFX "Error: ICR setup failure!\n"); goto out_switch_back; } value |= core_mask << 8; err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value); if (err) { printk(KERN_ERR PFX "Error: ICR setup failure!\n"); goto out_switch_back; } } value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2); value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST; bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value); if (bcm->core_pci.rev < 5) { value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW); value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT) & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK; value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT) & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK; bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value); err = bcm43xx_pcicore_commit_settings(bcm); assert(err == 0); } out_switch_back: err = bcm43xx_switch_core(bcm, old_core); out: return err; } static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2) return; bcm43xx_mac_suspend(bcm); bcm43xx_phy_lo_g_measure(bcm); bcm43xx_mac_enable(bcm); } static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm) { bcm43xx_phy_lo_mark_all_unused(bcm); if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) { bcm43xx_mac_suspend(bcm); bcm43xx_calc_nrssi_slope(bcm); bcm43xx_mac_enable(bcm); } } static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm) { /* Update device statistics. */ bcm43xx_calculate_link_quality(bcm); } static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm); if (phy->type == BCM43xx_PHYTYPE_G) { //TODO: update_aci_moving_average if (radio->aci_enable && radio->aci_wlan_automatic) { bcm43xx_mac_suspend(bcm); if (!radio->aci_enable && 1 /*TODO: not scanning? */) { if (0 /*TODO: bunch of conditions*/) { bcm43xx_radio_set_interference_mitigation(bcm, BCM43xx_RADIO_INTERFMODE_MANUALWLAN); } } else if (1/*TODO*/) { /* if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) { bcm43xx_radio_set_interference_mitigation(bcm, BCM43xx_RADIO_INTERFMODE_NONE); } */ } bcm43xx_mac_enable(bcm); } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN && phy->rev == 1) { //TODO: implement rev1 workaround } } bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning? //TODO for APHY (temperature?) } static void do_periodic_work(struct bcm43xx_private *bcm) { unsigned int state; state = bcm->periodic_state; if (state % 8 == 0) bcm43xx_periodic_every120sec(bcm); if (state % 4 == 0) bcm43xx_periodic_every60sec(bcm); if (state % 2 == 0) bcm43xx_periodic_every30sec(bcm); if (state % 1 == 0) bcm43xx_periodic_every15sec(bcm); bcm->periodic_state = state + 1; schedule_delayed_work(&bcm->periodic_work, HZ * 15); } /* Estimate a "Badness" value based on the periodic work * state-machine state. "Badness" is worse (bigger), if the * periodic work will take longer. */ static int estimate_periodic_work_badness(unsigned int state) { int badness = 0; if (state % 8 == 0) /* every 120 sec */ badness += 10; if (state % 4 == 0) /* every 60 sec */ badness += 5; if (state % 2 == 0) /* every 30 sec */ badness += 1; if (state % 1 == 0) /* every 15 sec */ badness += 1; #define BADNESS_LIMIT 4 return badness; } static void bcm43xx_periodic_work_handler(void *d) { struct bcm43xx_private *bcm = d; unsigned long flags; u32 savedirqs = 0; int badness; badness = estimate_periodic_work_badness(bcm->periodic_state); if (badness > BADNESS_LIMIT) { /* Periodic work will take a long time, so we want it to * be preemtible. */ mutex_lock(&bcm->mutex); netif_stop_queue(bcm->net_dev); synchronize_net(); spin_lock_irqsave(&bcm->irq_lock, flags); bcm43xx_mac_suspend(bcm); if (bcm43xx_using_pio(bcm)) bcm43xx_pio_freeze_txqueues(bcm); savedirqs = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL); spin_unlock_irqrestore(&bcm->irq_lock, flags); bcm43xx_synchronize_irq(bcm); } else { /* Periodic work should take short time, so we want low * locking overhead. */ mutex_lock(&bcm->mutex); spin_lock_irqsave(&bcm->irq_lock, flags); } do_periodic_work(bcm); if (badness > BADNESS_LIMIT) { spin_lock_irqsave(&bcm->irq_lock, flags); tasklet_enable(&bcm->isr_tasklet); bcm43xx_interrupt_enable(bcm, savedirqs); if (bcm43xx_using_pio(bcm)) bcm43xx_pio_thaw_txqueues(bcm); bcm43xx_mac_enable(bcm); netif_wake_queue(bcm->net_dev); } mmiowb(); spin_unlock_irqrestore(&bcm->irq_lock, flags); mutex_unlock(&bcm->mutex); } void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm) { cancel_rearming_delayed_work(&bcm->periodic_work); } void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm) { struct work_struct *work = &(bcm->periodic_work); assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED); INIT_WORK(work, bcm43xx_periodic_work_handler, bcm); schedule_work(work); } static void bcm43xx_security_init(struct bcm43xx_private *bcm) { bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0056) * 2; bcm43xx_clear_keys(bcm); } static int bcm43xx_rng_read(struct hwrng *rng, u32 *data) { struct bcm43xx_private *bcm = (struct bcm43xx_private *)rng->priv; unsigned long flags; spin_lock_irqsave(&(bcm)->irq_lock, flags); *data = bcm43xx_read16(bcm, BCM43xx_MMIO_RNG); spin_unlock_irqrestore(&(bcm)->irq_lock, flags); return (sizeof(u16)); } static void bcm43xx_rng_exit(struct bcm43xx_private *bcm) { hwrng_unregister(&bcm->rng); } static int bcm43xx_rng_init(struct bcm43xx_private *bcm) { int err; snprintf(bcm->rng_name, ARRAY_SIZE(bcm->rng_name), "%s_%s", KBUILD_MODNAME, bcm->net_dev->name); bcm->rng.name = bcm->rng_name; bcm->rng.data_read = bcm43xx_rng_read; bcm->rng.priv = (unsigned long)bcm; err = hwrng_register(&bcm->rng); if (err) printk(KERN_ERR PFX "RNG init failed (%d)\n", err); return err; } static int bcm43xx_shutdown_all_wireless_cores(struct bcm43xx_private *bcm) { int ret = 0; int i, err; struct bcm43xx_coreinfo *core; bcm43xx_set_status(bcm, BCM43xx_STAT_SHUTTINGDOWN); for (i = 0; i < bcm->nr_80211_available; i++) { core = &(bcm->core_80211[i]); assert(core->available); if (!core->initialized) continue; err = bcm43xx_switch_core(bcm, core); if (err) { dprintk(KERN_ERR PFX "shutdown_all_wireless_cores " "switch_core failed (%d)\n", err); ret = err; continue; } bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL); bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */ bcm43xx_wireless_core_cleanup(bcm); if (core == bcm->active_80211_core) bcm->active_80211_core = NULL; } free_irq(bcm->irq, bcm); bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT); return ret; } /* This is the opposite of bcm43xx_init_board() */ static void bcm43xx_free_board(struct bcm43xx_private *bcm) { bcm43xx_rng_exit(bcm); bcm43xx_sysfs_unregister(bcm); bcm43xx_periodic_tasks_delete(bcm); mutex_lock(&(bcm)->mutex); bcm43xx_shutdown_all_wireless_cores(bcm); bcm43xx_pctl_set_crystal(bcm, 0); mutex_unlock(&(bcm)->mutex); } static void prepare_phydata_for_init(struct bcm43xx_phyinfo *phy) { phy->antenna_diversity = 0xFFFF; memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig)); memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos)); /* Flags */ phy->calibrated = 0; phy->is_locked = 0; if (phy->_lo_pairs) { memset(phy->_lo_pairs, 0, sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT); } memset(phy->loopback_gain, 0, sizeof(phy->loopback_gain)); } static void prepare_radiodata_for_init(struct bcm43xx_private *bcm, struct bcm43xx_radioinfo *radio) { int i; /* Set default attenuation values. */ radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm); radio->radio_atten = bcm43xx_default_radio_attenuation(bcm); radio->txctl1 = bcm43xx_default_txctl1(bcm); radio->txctl2 = 0xFFFF; radio->txpwr_offset = 0; /* NRSSI */ radio->nrssislope = 0; for (i = 0; i < ARRAY_SIZE(radio->nrssi); i++) radio->nrssi[i] = -1000; for (i = 0; i < ARRAY_SIZE(radio->nrssi_lt); i++) radio->nrssi_lt[i] = i; radio->lofcal = 0xFFFF; radio->initval = 0xFFFF; radio->aci_enable = 0; radio->aci_wlan_automatic = 0; radio->aci_hw_rssi = 0; } static void prepare_priv_for_init(struct bcm43xx_private *bcm) { int i; struct bcm43xx_coreinfo *core; struct bcm43xx_coreinfo_80211 *wlext; assert(!bcm->active_80211_core); bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING); /* Flags */ bcm->was_initialized = 0; bcm->reg124_set_0x4 = 0; /* Stats */ memset(&bcm->stats, 0, sizeof(bcm->stats)); /* Wireless core data */ for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) { core = &(bcm->core_80211[i]); wlext = core->priv; if (!core->available) continue; assert(wlext == &(bcm->core_80211_ext[i])); prepare_phydata_for_init(&wlext->phy); prepare_radiodata_for_init(bcm, &wlext->radio); } /* IRQ related flags */ bcm->irq_reason = 0; memset(bcm->dma_reason, 0, sizeof(bcm->dma_reason)); bcm->irq_savedstate = BCM43xx_IRQ_INITIAL; bcm->mac_suspended = 1; /* Noise calculation context */ memset(&bcm->noisecalc, 0, sizeof(bcm->noisecalc)); /* Periodic work context */ bcm->periodic_state = 0; } static int wireless_core_up(struct bcm43xx_private *bcm, int active_wlcore) { int err; if (!bcm43xx_core_enabled(bcm)) bcm43xx_wireless_core_reset(bcm, 1); if (!active_wlcore) bcm43xx_wireless_core_mark_inactive(bcm); err = bcm43xx_wireless_core_init(bcm, active_wlcore); if (err) goto out; if (!active_wlcore) bcm43xx_radio_turn_off(bcm); out: return err; } /* Select and enable the "to be used" wireless core. * Locking: bcm->mutex must be aquired before calling this. * bcm->irq_lock must not be aquired. */ int bcm43xx_select_wireless_core(struct bcm43xx_private *bcm, int phytype) { int i, err; struct bcm43xx_coreinfo *active_core = NULL; struct bcm43xx_coreinfo_80211 *active_wlext = NULL; struct bcm43xx_coreinfo *core; struct bcm43xx_coreinfo_80211 *wlext; int adjust_active_sbtmstatelow = 0; might_sleep(); if (phytype < 0) { /* If no phytype is requested, select the first core. */ assert(bcm->core_80211[0].available); wlext = bcm->core_80211[0].priv; phytype = wlext->phy.type; } /* Find the requested core. */ for (i = 0; i < bcm->nr_80211_available; i++) { core = &(bcm->core_80211[i]); wlext = core->priv; if (wlext->phy.type == phytype) { active_core = core; active_wlext = wlext; break; } } if (!active_core) return -ESRCH; /* No such PHYTYPE on this board. */ if (bcm->active_80211_core) { /* We already selected a wl core in the past. * So first clean up everything. */ dprintk(KERN_INFO PFX "select_wireless_core: cleanup\n"); ieee80211softmac_stop(bcm->net_dev); bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED); err = bcm43xx_disable_interrupts_sync(bcm); assert(!err); tasklet_enable(&bcm->isr_tasklet); err = bcm43xx_shutdown_all_wireless_cores(bcm); if (err) goto error; /* Ok, everything down, continue to re-initialize. */ bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING); } /* Reset all data structures. */ prepare_priv_for_init(bcm); err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST); if (err) goto error; /* Mark all unused cores "inactive". */ for (i = 0; i < bcm->nr_80211_available; i++) { core = &(bcm->core_80211[i]); wlext = core->priv; if (core == active_core) continue; err = bcm43xx_switch_core(bcm, core); if (err) { dprintk(KERN_ERR PFX "Could not switch to inactive " "802.11 core (%d)\n", err); goto error; } err = wireless_core_up(bcm, 0); if (err) { dprintk(KERN_ERR PFX "core_up for inactive 802.11 core " "failed (%d)\n", err); goto error; } adjust_active_sbtmstatelow = 1; } /* Now initialize the active 802.11 core. */ err = bcm43xx_switch_core(bcm, active_core); if (err) { dprintk(KERN_ERR PFX "Could not switch to active " "802.11 core (%d)\n", err); goto error; } if (adjust_active_sbtmstatelow && active_wlext->phy.type == BCM43xx_PHYTYPE_G) { u32 sbtmstatelow; sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW); sbtmstatelow |= 0x20000000; bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow); } err = wireless_core_up(bcm, 1); if (err) { dprintk(KERN_ERR PFX "core_up for active 802.11 core " "failed (%d)\n", err); goto error; } err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC); if (err) goto error; bcm->active_80211_core = active_core; bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC); bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr)); bcm43xx_security_init(bcm); ieee80211softmac_start(bcm->net_dev); /* Let's go! Be careful after enabling the IRQs. * Don't switch cores, for example. */ bcm43xx_mac_enable(bcm); bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED); err = bcm43xx_initialize_irq(bcm); if (err) goto error; bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate); dprintk(KERN_INFO PFX "Selected 802.11 core (phytype %d)\n", active_wlext->phy.type); return 0; error: bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT); bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW); return err; } static int bcm43xx_init_board(struct bcm43xx_private *bcm) { int err; mutex_lock(&(bcm)->mutex); tasklet_enable(&bcm->isr_tasklet); err = bcm43xx_pctl_set_crystal(bcm, 1); if (err) goto err_tasklet; err = bcm43xx_pctl_init(bcm); if (err) goto err_crystal_off; err = bcm43xx_select_wireless_core(bcm, -1); if (err) goto err_crystal_off; err = bcm43xx_sysfs_register(bcm); if (err) goto err_wlshutdown; bcm43xx_periodic_tasks_setup(bcm); err = bcm43xx_rng_init(bcm); if (err) goto err_sysfs_unreg; /*FIXME: This should be handled by softmac instead. */ schedule_work(&bcm->softmac->associnfo.work); out: mutex_unlock(&(bcm)->mutex); return err; err_sysfs_unreg: bcm43xx_sysfs_unregister(bcm); err_wlshutdown: bcm43xx_shutdown_all_wireless_cores(bcm); err_crystal_off: bcm43xx_pctl_set_crystal(bcm, 0); err_tasklet: tasklet_disable(&bcm->isr_tasklet); goto out; } static void bcm43xx_detach_board(struct bcm43xx_private *bcm) { struct pci_dev *pci_dev = bcm->pci_dev; int i; bcm43xx_chipset_detach(bcm); /* Do _not_ access the chip, after it is detached. */ pci_iounmap(pci_dev, bcm->mmio_addr); pci_release_regions(pci_dev); pci_disable_device(pci_dev); /* Free allocated structures/fields */ for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) { kfree(bcm->core_80211_ext[i].phy._lo_pairs); if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl) kfree(bcm->core_80211_ext[i].phy.tssi2dbm); } } static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm) { struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm); u16 value; u8 phy_version; u8 phy_type; u8 phy_rev; int phy_rev_ok = 1; void *p; value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER); phy_version = (value & 0xF000) >> 12; phy_type = (value & 0x0F00) >> 8; phy_rev = (value & 0x000F); dprintk(KERN_INFO PFX "Detected PHY: Version: %x, Type %x, Revision %x\n", phy_version, phy_type, phy_rev); switch (phy_type) { case BCM43xx_PHYTYPE_A: if (phy_rev >= 4) phy_rev_ok = 0; /*FIXME: We need to switch the ieee->modulation, etc.. flags, * if we switch 80211 cores after init is done. * As we do not implement on the fly switching between * wireless cores, I will leave this as a future task. */ bcm->ieee->modulation = IEEE80211_OFDM_MODULATION; bcm->ieee->mode = IEEE_A; bcm->ieee->freq_band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND; break; case BCM43xx_PHYTYPE_B: if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7) phy_rev_ok = 0; bcm->ieee->modulation = IEEE80211_CCK_MODULATION; bcm->ieee->mode = IEEE_B; bcm->ieee->freq_band = IEEE80211_24GHZ_BAND; break; case BCM43xx_PHYTYPE_G: if (phy_rev > 7) phy_rev_ok = 0; bcm->ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION; bcm->ieee->mode = IEEE_G; bcm->ieee->freq_band = IEEE80211_24GHZ_BAND; break; default: printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n", phy_type); return -ENODEV; }; if (!phy_rev_ok) { printk(KERN_WARNING PFX "Invalid PHY Revision %x\n", phy_rev); } phy->version = phy_version; phy->type = phy_type; phy->rev = phy_rev; if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) { p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT, GFP_KERNEL); if (!p) return -ENOMEM; phy->_lo_pairs = p; } return 0; } static int bcm43xx_attach_board(struct bcm43xx_private *bcm) { struct pci_dev *pci_dev = bcm->pci_dev; struct net_device *net_dev = bcm->net_dev; int err; int i; u32 coremask; err = pci_enable_device(pci_dev); if (err) { printk(KERN_ERR PFX "pci_enable_device() failed\n"); goto out; } err = pci_request_regions(pci_dev, KBUILD_MODNAME); if (err) { printk(KERN_ERR PFX "pci_request_regions() failed\n"); goto err_pci_disable; } /* enable PCI bus-mastering */ pci_set_master(pci_dev); bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL); if (!bcm->mmio_addr) { printk(KERN_ERR PFX "pci_iomap() failed\n"); err = -EIO; goto err_pci_release; } net_dev->base_addr = (unsigned long)bcm->mmio_addr; bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID, &bcm->board_vendor); bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID, &bcm->board_type); bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID, &bcm->board_revision); err = bcm43xx_chipset_attach(bcm); if (err) goto err_iounmap; err = bcm43xx_pctl_init(bcm); if (err) goto err_chipset_detach; err = bcm43xx_probe_cores(bcm); if (err) goto err_chipset_detach; /* Attach all IO cores to the backplane. */ coremask = 0; for (i = 0; i < bcm->nr_80211_available; i++) coremask |= (1 << bcm->core_80211[i].index); //FIXME: Also attach some non80211 cores? err = bcm43xx_setup_backplane_pci_connection(bcm, coremask); if (err) { printk(KERN_ERR PFX "Backplane->PCI connection failed!\n"); goto err_chipset_detach; } err = bcm43xx_sprom_extract(bcm); if (err) goto err_chipset_detach; err = bcm43xx_leds_init(bcm); if (err) goto err_chipset_detach; for (i = 0; i < bcm->nr_80211_available; i++) { err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]); assert(err != -ENODEV); if (err) goto err_80211_unwind; /* Enable the selected wireless core. * Connect PHY only on the first core. */ bcm43xx_wireless_core_reset(bcm, (i == 0)); err = bcm43xx_read_phyinfo(bcm); if (err && (i == 0)) goto err_80211_unwind; err = bcm43xx_read_radioinfo(bcm); if (err && (i == 0)) goto err_80211_unwind; err = bcm43xx_validate_chip(bcm); if (err && (i == 0)) goto err_80211_unwind; bcm43xx_radio_turn_off(bcm); err = bcm43xx_phy_init_tssi2dbm_table(bcm); if (err) goto err_80211_unwind; bcm43xx_wireless_core_disable(bcm); } err = bcm43xx_geo_init(bcm); if (err) goto err_80211_unwind; bcm43xx_pctl_set_crystal(bcm, 0); /* Set the MAC address in the networking subsystem */ if (is_valid_ether_addr(bcm->sprom.et1macaddr)) memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6); else memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6); snprintf(bcm->nick, IW_ESSID_MAX_SIZE, "Broadcom %04X", bcm->chip_id); assert(err == 0); out: return err; err_80211_unwind: for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) { kfree(bcm->core_80211_ext[i].phy._lo_pairs); if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl) kfree(bcm->core_80211_ext[i].phy.tssi2dbm); } err_chipset_detach: bcm43xx_chipset_detach(bcm); err_iounmap: pci_iounmap(pci_dev, bcm->mmio_addr); err_pci_release: pci_release_regions(pci_dev); err_pci_disable: pci_disable_device(pci_dev); goto out; } /* Do the Hardware IO operations to send the txb */ static inline int bcm43xx_tx(struct bcm43xx_private *bcm, struct ieee80211_txb *txb) { int err = -ENODEV; if (bcm43xx_using_pio(bcm)) err = bcm43xx_pio_tx(bcm, txb); else err = bcm43xx_dma_tx(bcm, txb); bcm->net_dev->trans_start = jiffies; return err; } static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev, u8 channel) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); struct bcm43xx_radioinfo *radio; unsigned long flags; mutex_lock(&bcm->mutex); spin_lock_irqsave(&bcm->irq_lock, flags); if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) { bcm43xx_mac_suspend(bcm); bcm43xx_radio_selectchannel(bcm, channel, 0); bcm43xx_mac_enable(bcm); } else { radio = bcm43xx_current_radio(bcm); radio->initial_channel = channel; } spin_unlock_irqrestore(&bcm->irq_lock, flags); mutex_unlock(&bcm->mutex); } /* set_security() callback in struct ieee80211_device */ static void bcm43xx_ieee80211_set_security(struct net_device *net_dev, struct ieee80211_security *sec) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); struct ieee80211_security *secinfo = &bcm->ieee->sec; unsigned long flags; int keyidx; dprintk(KERN_INFO PFX "set security called"); mutex_lock(&bcm->mutex); spin_lock_irqsave(&bcm->irq_lock, flags); for (keyidx = 0; keyidxflags & (1<encode_alg[keyidx] = sec->encode_alg[keyidx]; secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx]; memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN); } if (sec->flags & SEC_ACTIVE_KEY) { secinfo->active_key = sec->active_key; dprintk(", .active_key = %d", sec->active_key); } if (sec->flags & SEC_UNICAST_GROUP) { secinfo->unicast_uses_group = sec->unicast_uses_group; dprintk(", .unicast_uses_group = %d", sec->unicast_uses_group); } if (sec->flags & SEC_LEVEL) { secinfo->level = sec->level; dprintk(", .level = %d", sec->level); } if (sec->flags & SEC_ENABLED) { secinfo->enabled = sec->enabled; dprintk(", .enabled = %d", sec->enabled); } if (sec->flags & SEC_ENCRYPT) { secinfo->encrypt = sec->encrypt; dprintk(", .encrypt = %d", sec->encrypt); } if (sec->flags & SEC_AUTH_MODE) { secinfo->auth_mode = sec->auth_mode; dprintk(", .auth_mode = %d", sec->auth_mode); } dprintk("\n"); if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED && !bcm->ieee->host_encrypt) { if (secinfo->enabled) { /* upload WEP keys to hardware */ char null_address[6] = { 0 }; u8 algorithm = 0; for (keyidx = 0; keyidxflags & (1<encode_alg[keyidx]) { case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break; case SEC_ALG_WEP: algorithm = BCM43xx_SEC_ALGO_WEP; if (secinfo->key_sizes[keyidx] == 13) algorithm = BCM43xx_SEC_ALGO_WEP104; break; case SEC_ALG_TKIP: FIXME(); algorithm = BCM43xx_SEC_ALGO_TKIP; break; case SEC_ALG_CCMP: FIXME(); algorithm = BCM43xx_SEC_ALGO_AES; break; default: assert(0); break; } bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]); bcm->key[keyidx].enabled = 1; bcm->key[keyidx].algorithm = algorithm; } } else bcm43xx_clear_keys(bcm); } spin_unlock_irqrestore(&bcm->irq_lock, flags); mutex_unlock(&bcm->mutex); } /* hard_start_xmit() callback in struct ieee80211_device */ static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb, struct net_device *net_dev, int pri) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); int err = -ENODEV; unsigned long flags; spin_lock_irqsave(&bcm->irq_lock, flags); if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)) err = bcm43xx_tx(bcm, txb); spin_unlock_irqrestore(&bcm->irq_lock, flags); if (unlikely(err)) return NETDEV_TX_BUSY; return NETDEV_TX_OK; } static struct net_device_stats * bcm43xx_net_get_stats(struct net_device *net_dev) { return &(bcm43xx_priv(net_dev)->ieee->stats); } static void bcm43xx_net_tx_timeout(struct net_device *net_dev) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); unsigned long flags; spin_lock_irqsave(&bcm->irq_lock, flags); bcm43xx_controller_restart(bcm, "TX timeout"); spin_unlock_irqrestore(&bcm->irq_lock, flags); } #ifdef CONFIG_NET_POLL_CONTROLLER static void bcm43xx_net_poll_controller(struct net_device *net_dev) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); unsigned long flags; local_irq_save(flags); if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) bcm43xx_interrupt_handler(bcm->irq, bcm, NULL); local_irq_restore(flags); } #endif /* CONFIG_NET_POLL_CONTROLLER */ static int bcm43xx_net_open(struct net_device *net_dev) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); return bcm43xx_init_board(bcm); } static int bcm43xx_net_stop(struct net_device *net_dev) { struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); int err; ieee80211softmac_stop(net_dev); err = bcm43xx_disable_interrupts_sync(bcm); assert(!err); bcm43xx_free_board(bcm); flush_scheduled_work(); return 0; } static int bcm43xx_init_private(struct bcm43xx_private *bcm, struct net_device *net_dev, struct pci_dev *pci_dev) { int err; bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT); bcm->ieee = netdev_priv(net_dev); bcm->softmac = ieee80211_priv(net_dev); bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan; bcm->irq_savedstate = BCM43xx_IRQ_INITIAL; bcm->mac_suspended = 1; bcm->pci_dev = pci_dev; bcm->net_dev = net_dev; bcm->bad_frames_preempt = modparam_bad_frames_preempt; spin_lock_init(&bcm->irq_lock); spin_lock_init(&bcm->leds_lock); mutex_init(&bcm->mutex); tasklet_init(&bcm->isr_tasklet, (void (*)(unsigned long))bcm43xx_interrupt_tasklet, (unsigned long)bcm); tasklet_disable_nosync(&bcm->isr_tasklet); if (modparam_pio) { bcm->__using_pio = 1; } else { err = pci_set_dma_mask(pci_dev, DMA_30BIT_MASK); err |= pci_set_consistent_dma_mask(pci_dev, DMA_30BIT_MASK); if (err) { #ifdef CONFIG_BCM43XX_PIO printk(KERN_WARNING PFX "DMA not supported. Falling back to PIO.\n"); bcm->__using_pio = 1; #else printk(KERN_ERR PFX "FATAL: DMA not supported and PIO not configured. " "Recompile the driver with PIO support, please.\n"); return -ENODEV; #endif /* CONFIG_BCM43XX_PIO */ } } bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD; /* default to sw encryption for now */ bcm->ieee->host_build_iv = 0; bcm->ieee->host_encrypt = 1; bcm->ieee->host_decrypt = 1; bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE; bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr); bcm->ieee->set_security = bcm43xx_ieee80211_set_security; bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit; return 0; } static int __devinit bcm43xx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *net_dev; struct bcm43xx_private *bcm; int err; #ifdef CONFIG_BCM947XX if ((pdev->bus->number == 0) && (pdev->device != 0x0800)) return -ENODEV; #endif #ifdef DEBUG_SINGLE_DEVICE_ONLY if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY)) return -ENODEV; #endif net_dev = alloc_ieee80211softmac(sizeof(*bcm)); if (!net_dev) { printk(KERN_ERR PFX "could not allocate ieee80211 device %s\n", pci_name(pdev)); err = -ENOMEM; goto out; } /* initialize the net_device struct */ SET_MODULE_OWNER(net_dev); SET_NETDEV_DEV(net_dev, &pdev->dev); net_dev->open = bcm43xx_net_open; net_dev->stop = bcm43xx_net_stop; net_dev->get_stats = bcm43xx_net_get_stats; net_dev->tx_timeout = bcm43xx_net_tx_timeout; #ifdef CONFIG_NET_POLL_CONTROLLER net_dev->poll_controller = bcm43xx_net_poll_controller; #endif net_dev->wireless_handlers = &bcm43xx_wx_handlers_def; net_dev->irq = pdev->irq; SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops); /* initialize the bcm43xx_private struct */ bcm = bcm43xx_priv(net_dev); memset(bcm, 0, sizeof(*bcm)); err = bcm43xx_init_private(bcm, net_dev, pdev); if (err) goto err_free_netdev; pci_set_drvdata(pdev, net_dev); err = bcm43xx_attach_board(bcm); if (err) goto err_free_netdev; err = register_netdev(net_dev); if (err) { printk(KERN_ERR PFX "Cannot register net device, " "aborting.\n"); err = -ENOMEM; goto err_detach_board; } bcm43xx_debugfs_add_device(bcm); assert(err == 0); out: return err; err_detach_board: bcm43xx_detach_board(bcm); err_free_netdev: free_ieee80211softmac(net_dev); goto out; } static void __devexit bcm43xx_remove_one(struct pci_dev *pdev) { struct net_device *net_dev = pci_get_drvdata(pdev); struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); bcm43xx_debugfs_remove_device(bcm); unregister_netdev(net_dev); bcm43xx_detach_board(bcm); free_ieee80211softmac(net_dev); } /* Hard-reset the chip. Do not call this directly. * Use bcm43xx_controller_restart() */ static void bcm43xx_chip_reset(void *_bcm) { struct bcm43xx_private *bcm = _bcm; struct bcm43xx_phyinfo *phy; int err = -ENODEV; mutex_lock(&(bcm)->mutex); if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) { bcm43xx_periodic_tasks_delete(bcm); phy = bcm43xx_current_phy(bcm); err = bcm43xx_select_wireless_core(bcm, phy->type); if (!err) bcm43xx_periodic_tasks_setup(bcm); } mutex_unlock(&(bcm)->mutex); printk(KERN_ERR PFX "Controller restart%s\n", (err == 0) ? "ed" : " failed"); } /* Hard-reset the chip. * This can be called from interrupt or process context. * bcm->irq_lock must be locked. */ void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason) { if (bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED) return; printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason); INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset, bcm); schedule_work(&bcm->restart_work); } #ifdef CONFIG_PM static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *net_dev = pci_get_drvdata(pdev); struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); int err; dprintk(KERN_INFO PFX "Suspending...\n"); netif_device_detach(net_dev); bcm->was_initialized = 0; if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) { bcm->was_initialized = 1; ieee80211softmac_stop(net_dev); err = bcm43xx_disable_interrupts_sync(bcm); if (unlikely(err)) { dprintk(KERN_ERR PFX "Suspend failed.\n"); return -EAGAIN; } bcm->firmware_norelease = 1; bcm43xx_free_board(bcm); bcm->firmware_norelease = 0; } bcm43xx_chipset_detach(bcm); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); dprintk(KERN_INFO PFX "Device suspended.\n"); return 0; } static int bcm43xx_resume(struct pci_dev *pdev) { struct net_device *net_dev = pci_get_drvdata(pdev); struct bcm43xx_private *bcm = bcm43xx_priv(net_dev); int err = 0; dprintk(KERN_INFO PFX "Resuming...\n"); pci_set_power_state(pdev, 0); pci_enable_device(pdev); pci_restore_state(pdev); bcm43xx_chipset_attach(bcm); if (bcm->was_initialized) err = bcm43xx_init_board(bcm); if (err) { printk(KERN_ERR PFX "Resume failed!\n"); return err; } netif_device_attach(net_dev); dprintk(KERN_INFO PFX "Device resumed.\n"); return 0; } #endif /* CONFIG_PM */ static struct pci_driver bcm43xx_pci_driver = { .name = KBUILD_MODNAME, .id_table = bcm43xx_pci_tbl, .probe = bcm43xx_init_one, .remove = __devexit_p(bcm43xx_remove_one), #ifdef CONFIG_PM .suspend = bcm43xx_suspend, .resume = bcm43xx_resume, #endif /* CONFIG_PM */ }; static int __init bcm43xx_init(void) { printk(KERN_INFO KBUILD_MODNAME " driver\n"); bcm43xx_debugfs_init(); return pci_register_driver(&bcm43xx_pci_driver); } static void __exit bcm43xx_exit(void) { pci_unregister_driver(&bcm43xx_pci_driver); bcm43xx_debugfs_exit(); } module_init(bcm43xx_init) module_exit(bcm43xx_exit)