/* * guest access functions * * Copyright IBM Corp. 2014 * */ #include #include #include #include "kvm-s390.h" #include "gaccess.h" #include union asce { unsigned long val; struct { unsigned long origin : 52; /* Region- or Segment-Table Origin */ unsigned long : 2; unsigned long g : 1; /* Subspace Group Control */ unsigned long p : 1; /* Private Space Control */ unsigned long s : 1; /* Storage-Alteration-Event Control */ unsigned long x : 1; /* Space-Switch-Event Control */ unsigned long r : 1; /* Real-Space Control */ unsigned long : 1; unsigned long dt : 2; /* Designation-Type Control */ unsigned long tl : 2; /* Region- or Segment-Table Length */ }; }; enum { ASCE_TYPE_SEGMENT = 0, ASCE_TYPE_REGION3 = 1, ASCE_TYPE_REGION2 = 2, ASCE_TYPE_REGION1 = 3 }; union region1_table_entry { unsigned long val; struct { unsigned long rto: 52;/* Region-Table Origin */ unsigned long : 2; unsigned long p : 1; /* DAT-Protection Bit */ unsigned long : 1; unsigned long tf : 2; /* Region-Second-Table Offset */ unsigned long i : 1; /* Region-Invalid Bit */ unsigned long : 1; unsigned long tt : 2; /* Table-Type Bits */ unsigned long tl : 2; /* Region-Second-Table Length */ }; }; union region2_table_entry { unsigned long val; struct { unsigned long rto: 52;/* Region-Table Origin */ unsigned long : 2; unsigned long p : 1; /* DAT-Protection Bit */ unsigned long : 1; unsigned long tf : 2; /* Region-Third-Table Offset */ unsigned long i : 1; /* Region-Invalid Bit */ unsigned long : 1; unsigned long tt : 2; /* Table-Type Bits */ unsigned long tl : 2; /* Region-Third-Table Length */ }; }; struct region3_table_entry_fc0 { unsigned long sto: 52;/* Segment-Table Origin */ unsigned long : 1; unsigned long fc : 1; /* Format-Control */ unsigned long p : 1; /* DAT-Protection Bit */ unsigned long : 1; unsigned long tf : 2; /* Segment-Table Offset */ unsigned long i : 1; /* Region-Invalid Bit */ unsigned long cr : 1; /* Common-Region Bit */ unsigned long tt : 2; /* Table-Type Bits */ unsigned long tl : 2; /* Segment-Table Length */ }; struct region3_table_entry_fc1 { unsigned long rfaa : 33; /* Region-Frame Absolute Address */ unsigned long : 14; unsigned long av : 1; /* ACCF-Validity Control */ unsigned long acc: 4; /* Access-Control Bits */ unsigned long f : 1; /* Fetch-Protection Bit */ unsigned long fc : 1; /* Format-Control */ unsigned long p : 1; /* DAT-Protection Bit */ unsigned long co : 1; /* Change-Recording Override */ unsigned long : 2; unsigned long i : 1; /* Region-Invalid Bit */ unsigned long cr : 1; /* Common-Region Bit */ unsigned long tt : 2; /* Table-Type Bits */ unsigned long : 2; }; union region3_table_entry { unsigned long val; struct region3_table_entry_fc0 fc0; struct region3_table_entry_fc1 fc1; struct { unsigned long : 53; unsigned long fc : 1; /* Format-Control */ unsigned long : 4; unsigned long i : 1; /* Region-Invalid Bit */ unsigned long cr : 1; /* Common-Region Bit */ unsigned long tt : 2; /* Table-Type Bits */ unsigned long : 2; }; }; struct segment_entry_fc0 { unsigned long pto: 53;/* Page-Table Origin */ unsigned long fc : 1; /* Format-Control */ unsigned long p : 1; /* DAT-Protection Bit */ unsigned long : 3; unsigned long i : 1; /* Segment-Invalid Bit */ unsigned long cs : 1; /* Common-Segment Bit */ unsigned long tt : 2; /* Table-Type Bits */ unsigned long : 2; }; struct segment_entry_fc1 { unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ unsigned long : 3; unsigned long av : 1; /* ACCF-Validity Control */ unsigned long acc: 4; /* Access-Control Bits */ unsigned long f : 1; /* Fetch-Protection Bit */ unsigned long fc : 1; /* Format-Control */ unsigned long p : 1; /* DAT-Protection Bit */ unsigned long co : 1; /* Change-Recording Override */ unsigned long : 2; unsigned long i : 1; /* Segment-Invalid Bit */ unsigned long cs : 1; /* Common-Segment Bit */ unsigned long tt : 2; /* Table-Type Bits */ unsigned long : 2; }; union segment_table_entry { unsigned long val; struct segment_entry_fc0 fc0; struct segment_entry_fc1 fc1; struct { unsigned long : 53; unsigned long fc : 1; /* Format-Control */ unsigned long : 4; unsigned long i : 1; /* Segment-Invalid Bit */ unsigned long cs : 1; /* Common-Segment Bit */ unsigned long tt : 2; /* Table-Type Bits */ unsigned long : 2; }; }; enum { TABLE_TYPE_SEGMENT = 0, TABLE_TYPE_REGION3 = 1, TABLE_TYPE_REGION2 = 2, TABLE_TYPE_REGION1 = 3 }; union page_table_entry { unsigned long val; struct { unsigned long pfra : 52; /* Page-Frame Real Address */ unsigned long z : 1; /* Zero Bit */ unsigned long i : 1; /* Page-Invalid Bit */ unsigned long p : 1; /* DAT-Protection Bit */ unsigned long co : 1; /* Change-Recording Override */ unsigned long : 8; }; }; /* * vaddress union in order to easily decode a virtual address into its * region first index, region second index etc. parts. */ union vaddress { unsigned long addr; struct { unsigned long rfx : 11; unsigned long rsx : 11; unsigned long rtx : 11; unsigned long sx : 11; unsigned long px : 8; unsigned long bx : 12; }; struct { unsigned long rfx01 : 2; unsigned long : 9; unsigned long rsx01 : 2; unsigned long : 9; unsigned long rtx01 : 2; unsigned long : 9; unsigned long sx01 : 2; unsigned long : 29; }; }; /* * raddress union which will contain the result (real or absolute address) * after a page table walk. The rfaa, sfaa and pfra members are used to * simply assign them the value of a region, segment or page table entry. */ union raddress { unsigned long addr; unsigned long rfaa : 33; /* Region-Frame Absolute Address */ unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ unsigned long pfra : 52; /* Page-Frame Real Address */ }; union alet { u32 val; struct { u32 reserved : 7; u32 p : 1; u32 alesn : 8; u32 alen : 16; }; }; union ald { u32 val; struct { u32 : 1; u32 alo : 24; u32 all : 7; }; }; struct ale { unsigned long i : 1; /* ALEN-Invalid Bit */ unsigned long : 5; unsigned long fo : 1; /* Fetch-Only Bit */ unsigned long p : 1; /* Private Bit */ unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ unsigned long : 32; unsigned long : 1; unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ unsigned long : 6; unsigned long astesn : 32; /* ASTE Sequence Number */ } __packed; struct aste { unsigned long i : 1; /* ASX-Invalid Bit */ unsigned long ato : 29; /* Authority-Table Origin */ unsigned long : 1; unsigned long b : 1; /* Base-Space Bit */ unsigned long ax : 16; /* Authorization Index */ unsigned long atl : 12; /* Authority-Table Length */ unsigned long : 2; unsigned long ca : 1; /* Controlled-ASN Bit */ unsigned long ra : 1; /* Reusable-ASN Bit */ unsigned long asce : 64; /* Address-Space-Control Element */ unsigned long ald : 32; unsigned long astesn : 32; /* .. more fields there */ } __packed; int ipte_lock_held(struct kvm_vcpu *vcpu) { union ipte_control *ic = kvm_s390_get_ipte_control(vcpu->kvm); if (vcpu->arch.sie_block->eca & 1) return ic->kh != 0; return vcpu->kvm->arch.ipte_lock_count != 0; } static void ipte_lock_simple(struct kvm_vcpu *vcpu) { union ipte_control old, new, *ic; mutex_lock(&vcpu->kvm->arch.ipte_mutex); vcpu->kvm->arch.ipte_lock_count++; if (vcpu->kvm->arch.ipte_lock_count > 1) goto out; ic = kvm_s390_get_ipte_control(vcpu->kvm); do { old = READ_ONCE(*ic); while (old.k) { cond_resched(); old = READ_ONCE(*ic); } new = old; new.k = 1; } while (cmpxchg(&ic->val, old.val, new.val) != old.val); out: mutex_unlock(&vcpu->kvm->arch.ipte_mutex); } static void ipte_unlock_simple(struct kvm_vcpu *vcpu) { union ipte_control old, new, *ic; mutex_lock(&vcpu->kvm->arch.ipte_mutex); vcpu->kvm->arch.ipte_lock_count--; if (vcpu->kvm->arch.ipte_lock_count) goto out; ic = kvm_s390_get_ipte_control(vcpu->kvm); do { old = READ_ONCE(*ic); new = old; new.k = 0; } while (cmpxchg(&ic->val, old.val, new.val) != old.val); wake_up(&vcpu->kvm->arch.ipte_wq); out: mutex_unlock(&vcpu->kvm->arch.ipte_mutex); } static void ipte_lock_siif(struct kvm_vcpu *vcpu) { union ipte_control old, new, *ic; ic = kvm_s390_get_ipte_control(vcpu->kvm); do { old = READ_ONCE(*ic); while (old.kg) { cond_resched(); old = READ_ONCE(*ic); } new = old; new.k = 1; new.kh++; } while (cmpxchg(&ic->val, old.val, new.val) != old.val); } static void ipte_unlock_siif(struct kvm_vcpu *vcpu) { union ipte_control old, new, *ic; ic = kvm_s390_get_ipte_control(vcpu->kvm); do { old = READ_ONCE(*ic); new = old; new.kh--; if (!new.kh) new.k = 0; } while (cmpxchg(&ic->val, old.val, new.val) != old.val); if (!new.kh) wake_up(&vcpu->kvm->arch.ipte_wq); } void ipte_lock(struct kvm_vcpu *vcpu) { if (vcpu->arch.sie_block->eca & 1) ipte_lock_siif(vcpu); else ipte_lock_simple(vcpu); } void ipte_unlock(struct kvm_vcpu *vcpu) { if (vcpu->arch.sie_block->eca & 1) ipte_unlock_siif(vcpu); else ipte_unlock_simple(vcpu); } static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar, int write) { union alet alet; struct ale ale; struct aste aste; unsigned long ald_addr, authority_table_addr; union ald ald; int eax, rc; u8 authority_table; if (ar >= NUM_ACRS) return -EINVAL; save_access_regs(vcpu->run->s.regs.acrs); alet.val = vcpu->run->s.regs.acrs[ar]; if (ar == 0 || alet.val == 0) { asce->val = vcpu->arch.sie_block->gcr[1]; return 0; } else if (alet.val == 1) { asce->val = vcpu->arch.sie_block->gcr[7]; return 0; } if (alet.reserved) return PGM_ALET_SPECIFICATION; if (alet.p) ald_addr = vcpu->arch.sie_block->gcr[5]; else ald_addr = vcpu->arch.sie_block->gcr[2]; ald_addr &= 0x7fffffc0; rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); if (rc) return rc; if (alet.alen / 8 > ald.all) return PGM_ALEN_TRANSLATION; if (0x7fffffff - ald.alo * 128 < alet.alen * 16) return PGM_ADDRESSING; rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, sizeof(struct ale)); if (rc) return rc; if (ale.i == 1) return PGM_ALEN_TRANSLATION; if (ale.alesn != alet.alesn) return PGM_ALE_SEQUENCE; rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); if (rc) return rc; if (aste.i) return PGM_ASTE_VALIDITY; if (aste.astesn != ale.astesn) return PGM_ASTE_SEQUENCE; if (ale.p == 1) { eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; if (ale.aleax != eax) { if (eax / 16 > aste.atl) return PGM_EXTENDED_AUTHORITY; authority_table_addr = aste.ato * 4 + eax / 4; rc = read_guest_real(vcpu, authority_table_addr, &authority_table, sizeof(u8)); if (rc) return rc; if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) return PGM_EXTENDED_AUTHORITY; } } if (ale.fo == 1 && write) return PGM_PROTECTION; asce->val = aste.asce; return 0; } struct trans_exc_code_bits { unsigned long addr : 52; /* Translation-exception Address */ unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */ unsigned long : 6; unsigned long b60 : 1; unsigned long b61 : 1; unsigned long as : 2; /* ASCE Identifier */ }; enum { FSI_UNKNOWN = 0, /* Unknown wether fetch or store */ FSI_STORE = 1, /* Exception was due to store operation */ FSI_FETCH = 2 /* Exception was due to fetch operation */ }; static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar, int write) { int rc; psw_t *psw = &vcpu->arch.sie_block->gpsw; struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; struct trans_exc_code_bits *tec_bits; memset(pgm, 0, sizeof(*pgm)); tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code; tec_bits->fsi = write ? FSI_STORE : FSI_FETCH; tec_bits->as = psw_bits(*psw).as; if (!psw_bits(*psw).t) { asce->val = 0; asce->r = 1; return 0; } switch (psw_bits(vcpu->arch.sie_block->gpsw).as) { case PSW_AS_PRIMARY: asce->val = vcpu->arch.sie_block->gcr[1]; return 0; case PSW_AS_SECONDARY: asce->val = vcpu->arch.sie_block->gcr[7]; return 0; case PSW_AS_HOME: asce->val = vcpu->arch.sie_block->gcr[13]; return 0; case PSW_AS_ACCREG: rc = ar_translation(vcpu, asce, ar, write); switch (rc) { case PGM_ALEN_TRANSLATION: case PGM_ALE_SEQUENCE: case PGM_ASTE_VALIDITY: case PGM_ASTE_SEQUENCE: case PGM_EXTENDED_AUTHORITY: vcpu->arch.pgm.exc_access_id = ar; break; case PGM_PROTECTION: tec_bits->b60 = 1; tec_bits->b61 = 1; break; } if (rc > 0) pgm->code = rc; return rc; } return 0; } static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) { return kvm_read_guest(kvm, gpa, val, sizeof(*val)); } /** * guest_translate - translate a guest virtual into a guest absolute address * @vcpu: virtual cpu * @gva: guest virtual address * @gpa: points to where guest physical (absolute) address should be stored * @asce: effective asce * @write: indicates if access is a write access * * Translate a guest virtual address into a guest absolute address by means * of dynamic address translation as specified by the architecture. * If the resulting absolute address is not available in the configuration * an addressing exception is indicated and @gpa will not be changed. * * Returns: - zero on success; @gpa contains the resulting absolute address * - a negative value if guest access failed due to e.g. broken * guest mapping * - a positve value if an access exception happened. In this case * the returned value is the program interruption code as defined * by the architecture */ static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, unsigned long *gpa, const union asce asce, int write) { union vaddress vaddr = {.addr = gva}; union raddress raddr = {.addr = gva}; union page_table_entry pte; int dat_protection = 0; union ctlreg0 ctlreg0; unsigned long ptr; int edat1, edat2; ctlreg0.val = vcpu->arch.sie_block->gcr[0]; edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); if (asce.r) goto real_address; ptr = asce.origin * 4096; switch (asce.dt) { case ASCE_TYPE_REGION1: if (vaddr.rfx01 > asce.tl) return PGM_REGION_FIRST_TRANS; ptr += vaddr.rfx * 8; break; case ASCE_TYPE_REGION2: if (vaddr.rfx) return PGM_ASCE_TYPE; if (vaddr.rsx01 > asce.tl) return PGM_REGION_SECOND_TRANS; ptr += vaddr.rsx * 8; break; case ASCE_TYPE_REGION3: if (vaddr.rfx || vaddr.rsx) return PGM_ASCE_TYPE; if (vaddr.rtx01 > asce.tl) return PGM_REGION_THIRD_TRANS; ptr += vaddr.rtx * 8; break; case ASCE_TYPE_SEGMENT: if (vaddr.rfx || vaddr.rsx || vaddr.rtx) return PGM_ASCE_TYPE; if (vaddr.sx01 > asce.tl) return PGM_SEGMENT_TRANSLATION; ptr += vaddr.sx * 8; break; } switch (asce.dt) { case ASCE_TYPE_REGION1: { union region1_table_entry rfte; if (kvm_is_error_gpa(vcpu->kvm, ptr)) return PGM_ADDRESSING; if (deref_table(vcpu->kvm, ptr, &rfte.val)) return -EFAULT; if (rfte.i) return PGM_REGION_FIRST_TRANS; if (rfte.tt != TABLE_TYPE_REGION1) return PGM_TRANSLATION_SPEC; if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) return PGM_REGION_SECOND_TRANS; if (edat1) dat_protection |= rfte.p; ptr = rfte.rto * 4096 + vaddr.rsx * 8; } /* fallthrough */ case ASCE_TYPE_REGION2: { union region2_table_entry rste; if (kvm_is_error_gpa(vcpu->kvm, ptr)) return PGM_ADDRESSING; if (deref_table(vcpu->kvm, ptr, &rste.val)) return -EFAULT; if (rste.i) return PGM_REGION_SECOND_TRANS; if (rste.tt != TABLE_TYPE_REGION2) return PGM_TRANSLATION_SPEC; if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) return PGM_REGION_THIRD_TRANS; if (edat1) dat_protection |= rste.p; ptr = rste.rto * 4096 + vaddr.rtx * 8; } /* fallthrough */ case ASCE_TYPE_REGION3: { union region3_table_entry rtte; if (kvm_is_error_gpa(vcpu->kvm, ptr)) return PGM_ADDRESSING; if (deref_table(vcpu->kvm, ptr, &rtte.val)) return -EFAULT; if (rtte.i) return PGM_REGION_THIRD_TRANS; if (rtte.tt != TABLE_TYPE_REGION3) return PGM_TRANSLATION_SPEC; if (rtte.cr && asce.p && edat2) return PGM_TRANSLATION_SPEC; if (rtte.fc && edat2) { dat_protection |= rtte.fc1.p; raddr.rfaa = rtte.fc1.rfaa; goto absolute_address; } if (vaddr.sx01 < rtte.fc0.tf) return PGM_SEGMENT_TRANSLATION; if (vaddr.sx01 > rtte.fc0.tl) return PGM_SEGMENT_TRANSLATION; if (edat1) dat_protection |= rtte.fc0.p; ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8; } /* fallthrough */ case ASCE_TYPE_SEGMENT: { union segment_table_entry ste; if (kvm_is_error_gpa(vcpu->kvm, ptr)) return PGM_ADDRESSING; if (deref_table(vcpu->kvm, ptr, &ste.val)) return -EFAULT; if (ste.i) return PGM_SEGMENT_TRANSLATION; if (ste.tt != TABLE_TYPE_SEGMENT) return PGM_TRANSLATION_SPEC; if (ste.cs && asce.p) return PGM_TRANSLATION_SPEC; if (ste.fc && edat1) { dat_protection |= ste.fc1.p; raddr.sfaa = ste.fc1.sfaa; goto absolute_address; } dat_protection |= ste.fc0.p; ptr = ste.fc0.pto * 2048 + vaddr.px * 8; } } if (kvm_is_error_gpa(vcpu->kvm, ptr)) return PGM_ADDRESSING; if (deref_table(vcpu->kvm, ptr, &pte.val)) return -EFAULT; if (pte.i) return PGM_PAGE_TRANSLATION; if (pte.z) return PGM_TRANSLATION_SPEC; if (pte.co && !edat1) return PGM_TRANSLATION_SPEC; dat_protection |= pte.p; raddr.pfra = pte.pfra; real_address: raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); absolute_address: if (write && dat_protection) return PGM_PROTECTION; if (kvm_is_error_gpa(vcpu->kvm, raddr.addr)) return PGM_ADDRESSING; *gpa = raddr.addr; return 0; } static inline int is_low_address(unsigned long ga) { /* Check for address ranges 0..511 and 4096..4607 */ return (ga & ~0x11fful) == 0; } static int low_address_protection_enabled(struct kvm_vcpu *vcpu, const union asce asce) { union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; psw_t *psw = &vcpu->arch.sie_block->gpsw; if (!ctlreg0.lap) return 0; if (psw_bits(*psw).t && asce.p) return 0; return 1; } static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, unsigned long *pages, unsigned long nr_pages, const union asce asce, int write) { struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; psw_t *psw = &vcpu->arch.sie_block->gpsw; struct trans_exc_code_bits *tec_bits; int lap_enabled, rc; tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code; lap_enabled = low_address_protection_enabled(vcpu, asce); while (nr_pages) { ga = kvm_s390_logical_to_effective(vcpu, ga); tec_bits->addr = ga >> PAGE_SHIFT; if (write && lap_enabled && is_low_address(ga)) { pgm->code = PGM_PROTECTION; return pgm->code; } ga &= PAGE_MASK; if (psw_bits(*psw).t) { rc = guest_translate(vcpu, ga, pages, asce, write); if (rc < 0) return rc; if (rc == PGM_PROTECTION) tec_bits->b61 = 1; if (rc) pgm->code = rc; } else { *pages = kvm_s390_real_to_abs(vcpu, ga); if (kvm_is_error_gpa(vcpu->kvm, *pages)) pgm->code = PGM_ADDRESSING; } if (pgm->code) return pgm->code; ga += PAGE_SIZE; pages++; nr_pages--; } return 0; } int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data, unsigned long len, int write) { psw_t *psw = &vcpu->arch.sie_block->gpsw; unsigned long _len, nr_pages, gpa, idx; unsigned long pages_array[2]; unsigned long *pages; int need_ipte_lock; union asce asce; int rc; if (!len) return 0; rc = get_vcpu_asce(vcpu, &asce, ar, write); if (rc) return rc; nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; pages = pages_array; if (nr_pages > ARRAY_SIZE(pages_array)) pages = vmalloc(nr_pages * sizeof(unsigned long)); if (!pages) return -ENOMEM; need_ipte_lock = psw_bits(*psw).t && !asce.r; if (need_ipte_lock) ipte_lock(vcpu); rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, write); for (idx = 0; idx < nr_pages && !rc; idx++) { gpa = *(pages + idx) + (ga & ~PAGE_MASK); _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len); if (write) rc = kvm_write_guest(vcpu->kvm, gpa, data, _len); else rc = kvm_read_guest(vcpu->kvm, gpa, data, _len); len -= _len; ga += _len; data += _len; } if (need_ipte_lock) ipte_unlock(vcpu); if (nr_pages > ARRAY_SIZE(pages_array)) vfree(pages); return rc; } int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, void *data, unsigned long len, int write) { unsigned long _len, gpa; int rc = 0; while (len && !rc) { gpa = kvm_s390_real_to_abs(vcpu, gra); _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len); if (write) rc = write_guest_abs(vcpu, gpa, data, _len); else rc = read_guest_abs(vcpu, gpa, data, _len); len -= _len; gra += _len; data += _len; } return rc; } /** * guest_translate_address - translate guest logical into guest absolute address * * Parameter semantics are the same as the ones from guest_translate. * The memory contents at the guest address are not changed. * * Note: The IPTE lock is not taken during this function, so the caller * has to take care of this. */ int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar, unsigned long *gpa, int write) { struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; psw_t *psw = &vcpu->arch.sie_block->gpsw; struct trans_exc_code_bits *tec; union asce asce; int rc; gva = kvm_s390_logical_to_effective(vcpu, gva); tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code; rc = get_vcpu_asce(vcpu, &asce, ar, write); tec->addr = gva >> PAGE_SHIFT; if (rc) return rc; if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) { if (write) { rc = pgm->code = PGM_PROTECTION; return rc; } } if (psw_bits(*psw).t && !asce.r) { /* Use DAT? */ rc = guest_translate(vcpu, gva, gpa, asce, write); if (rc > 0) { if (rc == PGM_PROTECTION) tec->b61 = 1; pgm->code = rc; } } else { rc = 0; *gpa = kvm_s390_real_to_abs(vcpu, gva); if (kvm_is_error_gpa(vcpu->kvm, *gpa)) rc = pgm->code = PGM_ADDRESSING; } return rc; } /** * check_gva_range - test a range of guest virtual addresses for accessibility */ int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar, unsigned long length, int is_write) { unsigned long gpa; unsigned long currlen; int rc = 0; ipte_lock(vcpu); while (length > 0 && !rc) { currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE)); rc = guest_translate_address(vcpu, gva, ar, &gpa, is_write); gva += currlen; length -= currlen; } ipte_unlock(vcpu); return rc; } /** * kvm_s390_check_low_addr_prot_real - check for low-address protection * @gra: Guest real address * * Checks whether an address is subject to low-address protection and set * up vcpu->arch.pgm accordingly if necessary. * * Return: 0 if no protection exception, or PGM_PROTECTION if protected. */ int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) { struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; psw_t *psw = &vcpu->arch.sie_block->gpsw; struct trans_exc_code_bits *tec_bits; union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; if (!ctlreg0.lap || !is_low_address(gra)) return 0; memset(pgm, 0, sizeof(*pgm)); tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code; tec_bits->fsi = FSI_STORE; tec_bits->as = psw_bits(*psw).as; tec_bits->addr = gra >> PAGE_SHIFT; pgm->code = PGM_PROTECTION; return pgm->code; }