/* * drivers/serial/sh-sci.c * * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) * * Copyright (C) 2002 - 2006 Paul Mundt * * based off of the old drivers/char/sh-sci.c by: * * Copyright (C) 1999, 2000 Niibe Yutaka * Copyright (C) 2000 Sugioka Toshinobu * Modified to support multiple serial ports. Stuart Menefy (May 2000). * Modified to support SecureEdge. David McCullough (2002) * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #undef DEBUG #include <linux/module.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/major.h> #include <linux/string.h> #include <linux/sysrq.h> #include <linux/ioport.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/console.h> #include <linux/platform_device.h> #ifdef CONFIG_CPU_FREQ #include <linux/notifier.h> #include <linux/cpufreq.h> #endif #if defined(CONFIG_SUPERH) && !defined(CONFIG_SUPERH64) #include <asm/clock.h> #include <asm/sh_bios.h> #include <asm/kgdb.h> #endif #include <asm/sci.h> #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include "sh-sci.h" struct sci_port { struct uart_port port; /* Port type */ unsigned int type; /* Port IRQs: ERI, RXI, TXI, BRI (optional) */ unsigned int irqs[SCIx_NR_IRQS]; /* Port pin configuration */ void (*init_pins)(struct uart_port *port, unsigned int cflag); /* Port enable callback */ void (*enable)(struct uart_port *port); /* Port disable callback */ void (*disable)(struct uart_port *port); /* Break timer */ struct timer_list break_timer; int break_flag; }; #ifdef CONFIG_SH_KGDB static struct sci_port *kgdb_sci_port; #endif #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE static struct sci_port *serial_console_port; #endif /* Function prototypes */ static void sci_stop_tx(struct uart_port *port); #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS static struct sci_port sci_ports[SCI_NPORTS]; static struct uart_driver sci_uart_driver; #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && \ defined(CONFIG_SH_STANDARD_BIOS) || defined(CONFIG_SH_KGDB) static inline void handle_error(struct uart_port *port) { /* Clear error flags */ sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); } static int get_char(struct uart_port *port) { unsigned long flags; unsigned short status; int c; spin_lock_irqsave(&port->lock, flags); do { status = sci_in(port, SCxSR); if (status & SCxSR_ERRORS(port)) { handle_error(port); continue; } } while (!(status & SCxSR_RDxF(port))); c = sci_in(port, SCxRDR); sci_in(port, SCxSR); /* Dummy read */ sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); spin_unlock_irqrestore(&port->lock, flags); return c; } #endif /* CONFIG_SH_STANDARD_BIOS || CONFIG_SH_KGDB */ #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || defined(CONFIG_SH_KGDB) static void put_char(struct uart_port *port, char c) { unsigned long flags; unsigned short status; spin_lock_irqsave(&port->lock, flags); do { status = sci_in(port, SCxSR); } while (!(status & SCxSR_TDxE(port))); sci_out(port, SCxTDR, c); sci_in(port, SCxSR); /* Dummy read */ sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); spin_unlock_irqrestore(&port->lock, flags); } #endif #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE static void put_string(struct sci_port *sci_port, const char *buffer, int count) { struct uart_port *port = &sci_port->port; const unsigned char *p = buffer; int i; #if defined(CONFIG_SH_STANDARD_BIOS) || defined(CONFIG_SH_KGDB) int checksum; int usegdb=0; #ifdef CONFIG_SH_STANDARD_BIOS /* This call only does a trap the first time it is * called, and so is safe to do here unconditionally */ usegdb |= sh_bios_in_gdb_mode(); #endif #ifdef CONFIG_SH_KGDB usegdb |= (kgdb_in_gdb_mode && (port == kgdb_sci_port)); #endif if (usegdb) { /* $<packet info>#<checksum>. */ do { unsigned char c; put_char(port, '$'); put_char(port, 'O'); /* 'O'utput to console */ checksum = 'O'; for (i=0; i<count; i++) { /* Don't use run length encoding */ int h, l; c = *p++; h = highhex(c); l = lowhex(c); put_char(port, h); put_char(port, l); checksum += h + l; } put_char(port, '#'); put_char(port, highhex(checksum)); put_char(port, lowhex(checksum)); } while (get_char(port) != '+'); } else #endif /* CONFIG_SH_STANDARD_BIOS || CONFIG_SH_KGDB */ for (i=0; i<count; i++) { if (*p == 10) put_char(port, '\r'); put_char(port, *p++); } } #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ #ifdef CONFIG_SH_KGDB static int kgdb_sci_getchar(void) { int c; /* Keep trying to read a character, this could be neater */ while ((c = get_char(kgdb_sci_port)) < 0) cpu_relax(); return c; } static inline void kgdb_sci_putchar(int c) { put_char(kgdb_sci_port, c); } #endif /* CONFIG_SH_KGDB */ #if defined(__H8300S__) enum { sci_disable, sci_enable }; static void h8300_sci_config(struct uart_port* port, unsigned int ctrl) { volatile unsigned char *mstpcrl=(volatile unsigned char *)MSTPCRL; int ch = (port->mapbase - SMR0) >> 3; unsigned char mask = 1 << (ch+1); if (ctrl == sci_disable) { *mstpcrl |= mask; } else { *mstpcrl &= ~mask; } } static inline void h8300_sci_enable(struct uart_port *port) { h8300_sci_config(port, sci_enable); } static inline void h8300_sci_disable(struct uart_port *port) { h8300_sci_config(port, sci_disable); } #endif #if defined(SCI_ONLY) || defined(SCI_AND_SCIF) && \ defined(__H8300H__) || defined(__H8300S__) static void sci_init_pins_sci(struct uart_port* port, unsigned int cflag) { int ch = (port->mapbase - SMR0) >> 3; /* set DDR regs */ H8300_GPIO_DDR(h8300_sci_pins[ch].port, h8300_sci_pins[ch].rx, H8300_GPIO_INPUT); H8300_GPIO_DDR(h8300_sci_pins[ch].port, h8300_sci_pins[ch].tx, H8300_GPIO_OUTPUT); /* tx mark output*/ H8300_SCI_DR(ch) |= h8300_sci_pins[ch].tx; } #else #define sci_init_pins_sci NULL #endif #if defined(CONFIG_CPU_SUBTYPE_SH7707) || defined(CONFIG_CPU_SUBTYPE_SH7709) static void sci_init_pins_irda(struct uart_port *port, unsigned int cflag) { unsigned int fcr_val = 0; if (cflag & CRTSCTS) fcr_val |= SCFCR_MCE; sci_out(port, SCFCR, fcr_val); } #else #define sci_init_pins_irda NULL #endif #ifdef SCI_ONLY #define sci_init_pins_scif NULL #endif #if defined(SCIF_ONLY) || defined(SCI_AND_SCIF) #if defined(CONFIG_CPU_SUBTYPE_SH7300) || defined(CONFIG_CPU_SUBTYPE_SH7710) /* SH7300 doesn't use RTS/CTS */ static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag) { sci_out(port, SCFCR, 0); } #elif defined(CONFIG_CPU_SH3) /* For SH7705, SH7706, SH7707, SH7709, SH7709A, SH7729 */ static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag) { unsigned int fcr_val = 0; unsigned short data; /* We need to set SCPCR to enable RTS/CTS */ data = ctrl_inw(SCPCR); /* Clear out SCP7MD1,0, SCP6MD1,0, SCP4MD1,0*/ ctrl_outw(data & 0x0fcf, SCPCR); if (cflag & CRTSCTS) fcr_val |= SCFCR_MCE; else { /* We need to set SCPCR to enable RTS/CTS */ data = ctrl_inw(SCPCR); /* Clear out SCP7MD1,0, SCP4MD1,0, Set SCP6MD1,0 = {01} (output) */ ctrl_outw((data & 0x0fcf) | 0x1000, SCPCR); data = ctrl_inb(SCPDR); /* Set /RTS2 (bit6) = 0 */ ctrl_outb(data & 0xbf, SCPDR); } sci_out(port, SCFCR, fcr_val); } #else /* For SH7750 */ static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag) { unsigned int fcr_val = 0; if (cflag & CRTSCTS) { fcr_val |= SCFCR_MCE; } else { #ifdef CONFIG_CPU_SUBTYPE_SH7343 /* Nothing */ #elif defined(CONFIG_CPU_SUBTYPE_SH7780) ctrl_outw(0x0080, SCSPTR0); /* Set RTS = 1 */ #else ctrl_outw(0x0080, SCSPTR2); /* Set RTS = 1 */ #endif } sci_out(port, SCFCR, fcr_val); } #endif #if defined(CONFIG_CPU_SUBTYPE_SH7760) || defined(CONFIG_CPU_SUBTYPE_SH7780) static inline int scif_txroom(struct uart_port *port) { return SCIF_TXROOM_MAX - (sci_in(port, SCTFDR) & 0x7f); } static inline int scif_rxroom(struct uart_port *port) { return sci_in(port, SCRFDR) & 0x7f; } #else static inline int scif_txroom(struct uart_port *port) { return SCIF_TXROOM_MAX - (sci_in(port, SCFDR) >> 8); } static inline int scif_rxroom(struct uart_port *port) { return sci_in(port, SCFDR) & SCIF_RFDC_MASK; } #endif #endif /* SCIF_ONLY || SCI_AND_SCIF */ static inline int sci_txroom(struct uart_port *port) { return ((sci_in(port, SCxSR) & SCI_TDRE) != 0); } static inline int sci_rxroom(struct uart_port *port) { return ((sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0); } /* ********************************************************************** * * the interrupt related routines * * ********************************************************************** */ static void sci_transmit_chars(struct uart_port *port) { struct circ_buf *xmit = &port->info->xmit; unsigned int stopped = uart_tx_stopped(port); unsigned short status; unsigned short ctrl; int count; status = sci_in(port, SCxSR); if (!(status & SCxSR_TDxE(port))) { ctrl = sci_in(port, SCSCR); if (uart_circ_empty(xmit)) { ctrl &= ~SCI_CTRL_FLAGS_TIE; } else { ctrl |= SCI_CTRL_FLAGS_TIE; } sci_out(port, SCSCR, ctrl); return; } #ifndef SCI_ONLY if (port->type == PORT_SCIF) count = scif_txroom(port); else #endif count = sci_txroom(port); do { unsigned char c; if (port->x_char) { c = port->x_char; port->x_char = 0; } else if (!uart_circ_empty(xmit) && !stopped) { c = xmit->buf[xmit->tail]; xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); } else { break; } sci_out(port, SCxTDR, c); port->icount.tx++; } while (--count > 0); sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (uart_circ_empty(xmit)) { sci_stop_tx(port); } else { ctrl = sci_in(port, SCSCR); #if !defined(SCI_ONLY) if (port->type == PORT_SCIF) { sci_in(port, SCxSR); /* Dummy read */ sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); } #endif ctrl |= SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); } } /* On SH3, SCIF may read end-of-break as a space->mark char */ #define STEPFN(c) ({int __c=(c); (((__c-1)|(__c)) == -1); }) static inline void sci_receive_chars(struct uart_port *port) { struct sci_port *sci_port = (struct sci_port *)port; struct tty_struct *tty = port->info->tty; int i, count, copied = 0; unsigned short status; unsigned char flag; status = sci_in(port, SCxSR); if (!(status & SCxSR_RDxF(port))) return; while (1) { #if !defined(SCI_ONLY) if (port->type == PORT_SCIF) count = scif_rxroom(port); else #endif count = sci_rxroom(port); /* Don't copy more bytes than there is room for in the buffer */ count = tty_buffer_request_room(tty, count); /* If for any reason we can't copy more data, we're done! */ if (count == 0) break; if (port->type == PORT_SCI) { char c = sci_in(port, SCxRDR); if (uart_handle_sysrq_char(port, c) || sci_port->break_flag) count = 0; else { tty_insert_flip_char(tty, c, TTY_NORMAL); } } else { for (i=0; i<count; i++) { char c = sci_in(port, SCxRDR); status = sci_in(port, SCxSR); #if defined(CONFIG_CPU_SH3) /* Skip "chars" during break */ if (sci_port->break_flag) { if ((c == 0) && (status & SCxSR_FER(port))) { count--; i--; continue; } /* Nonzero => end-of-break */ pr_debug("scif: debounce<%02x>\n", c); sci_port->break_flag = 0; if (STEPFN(c)) { count--; i--; continue; } } #endif /* CONFIG_CPU_SH3 */ if (uart_handle_sysrq_char(port, c)) { count--; i--; continue; } /* Store data and status */ if (status&SCxSR_FER(port)) { flag = TTY_FRAME; pr_debug("sci: frame error\n"); } else if (status&SCxSR_PER(port)) { flag = TTY_PARITY; pr_debug("sci: parity error\n"); } else flag = TTY_NORMAL; tty_insert_flip_char(tty, c, flag); } } sci_in(port, SCxSR); /* dummy read */ sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); copied += count; port->icount.rx += count; } if (copied) { /* Tell the rest of the system the news. New characters! */ tty_flip_buffer_push(tty); } else { sci_in(port, SCxSR); /* dummy read */ sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); } } #define SCI_BREAK_JIFFIES (HZ/20) /* The sci generates interrupts during the break, * 1 per millisecond or so during the break period, for 9600 baud. * So dont bother disabling interrupts. * But dont want more than 1 break event. * Use a kernel timer to periodically poll the rx line until * the break is finished. */ static void sci_schedule_break_timer(struct sci_port *port) { port->break_timer.expires = jiffies + SCI_BREAK_JIFFIES; add_timer(&port->break_timer); } /* Ensure that two consecutive samples find the break over. */ static void sci_break_timer(unsigned long data) { struct sci_port *port = (struct sci_port *)data; if (sci_rxd_in(&port->port) == 0) { port->break_flag = 1; sci_schedule_break_timer(port); } else if (port->break_flag == 1) { /* break is over. */ port->break_flag = 2; sci_schedule_break_timer(port); } else port->break_flag = 0; } static inline int sci_handle_errors(struct uart_port *port) { int copied = 0; unsigned short status = sci_in(port, SCxSR); struct tty_struct *tty = port->info->tty; if (status & SCxSR_ORER(port)) { /* overrun error */ if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) copied++; pr_debug("sci: overrun error\n"); } if (status & SCxSR_FER(port)) { if (sci_rxd_in(port) == 0) { /* Notify of BREAK */ struct sci_port *sci_port = (struct sci_port *)port; if (!sci_port->break_flag) { sci_port->break_flag = 1; sci_schedule_break_timer(sci_port); /* Do sysrq handling. */ if (uart_handle_break(port)) return 0; pr_debug("sci: BREAK detected\n"); if (tty_insert_flip_char(tty, 0, TTY_BREAK)) copied++; } } else { /* frame error */ if (tty_insert_flip_char(tty, 0, TTY_FRAME)) copied++; pr_debug("sci: frame error\n"); } } if (status & SCxSR_PER(port)) { /* parity error */ if (tty_insert_flip_char(tty, 0, TTY_PARITY)) copied++; pr_debug("sci: parity error\n"); } if (copied) tty_flip_buffer_push(tty); return copied; } static inline int sci_handle_breaks(struct uart_port *port) { int copied = 0; unsigned short status = sci_in(port, SCxSR); struct tty_struct *tty = port->info->tty; struct sci_port *s = &sci_ports[port->line]; if (!s->break_flag && status & SCxSR_BRK(port)) { #if defined(CONFIG_CPU_SH3) /* Debounce break */ s->break_flag = 1; #endif /* Notify of BREAK */ if (tty_insert_flip_char(tty, 0, TTY_BREAK)) copied++; pr_debug("sci: BREAK detected\n"); } #if defined(SCIF_ORER) /* XXX: Handle SCIF overrun error */ if (port->type == PORT_SCIF && (sci_in(port, SCLSR) & SCIF_ORER) != 0) { sci_out(port, SCLSR, 0); if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) { copied++; pr_debug("sci: overrun error\n"); } } #endif if (copied) tty_flip_buffer_push(tty); return copied; } static irqreturn_t sci_rx_interrupt(int irq, void *port) { /* I think sci_receive_chars has to be called irrespective * of whether the I_IXOFF is set, otherwise, how is the interrupt * to be disabled? */ sci_receive_chars(port); return IRQ_HANDLED; } static irqreturn_t sci_tx_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; spin_lock_irq(&port->lock); sci_transmit_chars(port); spin_unlock_irq(&port->lock); return IRQ_HANDLED; } static irqreturn_t sci_er_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; /* Handle errors */ if (port->type == PORT_SCI) { if (sci_handle_errors(port)) { /* discard character in rx buffer */ sci_in(port, SCxSR); sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); } } else { #if defined(SCIF_ORER) if((sci_in(port, SCLSR) & SCIF_ORER) != 0) { struct tty_struct *tty = port->info->tty; sci_out(port, SCLSR, 0); tty_insert_flip_char(tty, 0, TTY_OVERRUN); tty_flip_buffer_push(tty); pr_debug("scif: overrun error\n"); } #endif sci_rx_interrupt(irq, ptr); } sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); /* Kick the transmission */ sci_tx_interrupt(irq, ptr); return IRQ_HANDLED; } static irqreturn_t sci_br_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; /* Handle BREAKs */ sci_handle_breaks(port); #ifdef CONFIG_SH_KGDB /* Break into the debugger if a break is detected */ BREAKPOINT(); #endif sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port)); return IRQ_HANDLED; } static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) { unsigned short ssr_status, scr_status; struct uart_port *port = ptr; ssr_status = sci_in(port,SCxSR); scr_status = sci_in(port,SCSCR); /* Tx Interrupt */ if ((ssr_status & 0x0020) && (scr_status & 0x0080)) sci_tx_interrupt(irq, ptr); /* Rx Interrupt */ if ((ssr_status & 0x0002) && (scr_status & 0x0040)) sci_rx_interrupt(irq, ptr); /* Error Interrupt */ if ((ssr_status & 0x0080) && (scr_status & 0x0400)) sci_er_interrupt(irq, ptr); /* Break Interrupt */ if ((ssr_status & 0x0010) && (scr_status & 0x0200)) sci_br_interrupt(irq, ptr); return IRQ_HANDLED; } #ifdef CONFIG_CPU_FREQ /* * Here we define a transistion notifier so that we can update all of our * ports' baud rate when the peripheral clock changes. */ static int sci_notifier(struct notifier_block *self, unsigned long phase, void *p) { struct cpufreq_freqs *freqs = p; int i; if ((phase == CPUFREQ_POSTCHANGE) || (phase == CPUFREQ_RESUMECHANGE)){ for (i = 0; i < SCI_NPORTS; i++) { struct uart_port *port = &sci_ports[i].port; struct clk *clk; /* * Update the uartclk per-port if frequency has * changed, since it will no longer necessarily be * consistent with the old frequency. * * Really we want to be able to do something like * uart_change_speed() or something along those lines * here to implicitly reset the per-port baud rate.. * * Clean this up later.. */ clk = clk_get("module_clk"); port->uartclk = clk_get_rate(clk) * 16; clk_put(clk); } printk(KERN_INFO "%s: got a postchange notification " "for cpu %d (old %d, new %d)\n", __FUNCTION__, freqs->cpu, freqs->old, freqs->new); } return NOTIFY_OK; } static struct notifier_block sci_nb = { &sci_notifier, NULL, 0 }; #endif /* CONFIG_CPU_FREQ */ static int sci_request_irq(struct sci_port *port) { int i; irqreturn_t (*handlers[4])(int irq, void *ptr) = { sci_er_interrupt, sci_rx_interrupt, sci_tx_interrupt, sci_br_interrupt, }; const char *desc[] = { "SCI Receive Error", "SCI Receive Data Full", "SCI Transmit Data Empty", "SCI Break" }; if (port->irqs[0] == port->irqs[1]) { if (!port->irqs[0]) { printk(KERN_ERR "sci: Cannot allocate irq.(IRQ=0)\n"); return -ENODEV; } if (request_irq(port->irqs[0], sci_mpxed_interrupt, SA_INTERRUPT, "sci", port)) { printk(KERN_ERR "sci: Cannot allocate irq.\n"); return -ENODEV; } } else { for (i = 0; i < ARRAY_SIZE(handlers); i++) { if (!port->irqs[i]) continue; if (request_irq(port->irqs[i], handlers[i], SA_INTERRUPT, desc[i], port)) { printk(KERN_ERR "sci: Cannot allocate irq.\n"); return -ENODEV; } } } return 0; } static void sci_free_irq(struct sci_port *port) { int i; if (port->irqs[0] == port->irqs[1]) { if (!port->irqs[0]) printk("sci: sci_free_irq error\n"); else free_irq(port->irqs[0], port); } else { for (i = 0; i < ARRAY_SIZE(port->irqs); i++) { if (!port->irqs[i]) continue; free_irq(port->irqs[i], port); } } } static unsigned int sci_tx_empty(struct uart_port *port) { /* Can't detect */ return TIOCSER_TEMT; } static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) { /* This routine is used for seting signals of: DTR, DCD, CTS/RTS */ /* We use SCIF's hardware for CTS/RTS, so don't need any for that. */ /* If you have signals for DTR and DCD, please implement here. */ } static unsigned int sci_get_mctrl(struct uart_port *port) { /* This routine is used for geting signals of: DTR, DCD, DSR, RI, and CTS/RTS */ return TIOCM_DTR | TIOCM_RTS | TIOCM_DSR; } static void sci_start_tx(struct uart_port *port) { unsigned short ctrl; /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl |= SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); } static void sci_stop_tx(struct uart_port *port) { unsigned short ctrl; /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl &= ~SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); } static void sci_start_rx(struct uart_port *port, unsigned int tty_start) { unsigned short ctrl; /* Set RIE (Receive Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl |= SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE; sci_out(port, SCSCR, ctrl); } static void sci_stop_rx(struct uart_port *port) { unsigned short ctrl; /* Clear RIE (Receive Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl &= ~(SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE); sci_out(port, SCSCR, ctrl); } static void sci_enable_ms(struct uart_port *port) { /* Nothing here yet .. */ } static void sci_break_ctl(struct uart_port *port, int break_state) { /* Nothing here yet .. */ } static int sci_startup(struct uart_port *port) { struct sci_port *s = &sci_ports[port->line]; if (s->enable) s->enable(port); sci_request_irq(s); sci_start_tx(port); sci_start_rx(port, 1); return 0; } static void sci_shutdown(struct uart_port *port) { struct sci_port *s = &sci_ports[port->line]; sci_stop_rx(port); sci_stop_tx(port); sci_free_irq(s); if (s->disable) s->disable(port); } static void sci_set_termios(struct uart_port *port, struct termios *termios, struct termios *old) { struct sci_port *s = &sci_ports[port->line]; unsigned int status, baud, smr_val; unsigned long flags; int t; baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16); switch (baud) { case 0: t = -1; break; default: { #if defined(CONFIG_SUPERH) && !defined(CONFIG_SUPERH64) struct clk *clk = clk_get("module_clk"); t = SCBRR_VALUE(baud, clk_get_rate(clk)); clk_put(clk); #else t = SCBRR_VALUE(baud); #endif } break; } spin_lock_irqsave(&port->lock, flags); do { status = sci_in(port, SCxSR); } while (!(status & SCxSR_TEND(port))); sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ #if !defined(SCI_ONLY) if (port->type == PORT_SCIF) sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); #endif smr_val = sci_in(port, SCSMR) & 3; if ((termios->c_cflag & CSIZE) == CS7) smr_val |= 0x40; if (termios->c_cflag & PARENB) smr_val |= 0x20; if (termios->c_cflag & PARODD) smr_val |= 0x30; if (termios->c_cflag & CSTOPB) smr_val |= 0x08; uart_update_timeout(port, termios->c_cflag, baud); sci_out(port, SCSMR, smr_val); if (t > 0) { if(t >= 256) { sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1); t >>= 2; } else { sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3); } sci_out(port, SCBRR, t); udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ } if (likely(s->init_pins)) s->init_pins(port, termios->c_cflag); sci_out(port, SCSCR, SCSCR_INIT(port)); if ((termios->c_cflag & CREAD) != 0) sci_start_rx(port,0); spin_unlock_irqrestore(&port->lock, flags); } static const char *sci_type(struct uart_port *port) { switch (port->type) { case PORT_SCI: return "sci"; case PORT_SCIF: return "scif"; case PORT_IRDA: return "irda"; } return 0; } static void sci_release_port(struct uart_port *port) { /* Nothing here yet .. */ } static int sci_request_port(struct uart_port *port) { /* Nothing here yet .. */ return 0; } static void sci_config_port(struct uart_port *port, int flags) { struct sci_port *s = &sci_ports[port->line]; port->type = s->type; switch (port->type) { case PORT_SCI: s->init_pins = sci_init_pins_sci; break; case PORT_SCIF: s->init_pins = sci_init_pins_scif; break; case PORT_IRDA: s->init_pins = sci_init_pins_irda; break; } #if defined(CONFIG_CPU_SUBTYPE_SH5_101) || defined(CONFIG_CPU_SUBTYPE_SH5_103) if (port->mapbase == 0) port->mapbase = onchip_remap(SCIF_ADDR_SH5, 1024, "SCIF"); port->membase = (void __iomem *)port->mapbase; #endif } static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) { struct sci_port *s = &sci_ports[port->line]; if (ser->irq != s->irqs[SCIx_TXI_IRQ] || ser->irq > NR_IRQS) return -EINVAL; if (ser->baud_base < 2400) /* No paper tape reader for Mitch.. */ return -EINVAL; return 0; } static struct uart_ops sci_uart_ops = { .tx_empty = sci_tx_empty, .set_mctrl = sci_set_mctrl, .get_mctrl = sci_get_mctrl, .start_tx = sci_start_tx, .stop_tx = sci_stop_tx, .stop_rx = sci_stop_rx, .enable_ms = sci_enable_ms, .break_ctl = sci_break_ctl, .startup = sci_startup, .shutdown = sci_shutdown, .set_termios = sci_set_termios, .type = sci_type, .release_port = sci_release_port, .request_port = sci_request_port, .config_port = sci_config_port, .verify_port = sci_verify_port, }; static void __init sci_init_ports(void) { static int first = 1; int i; if (!first) return; first = 0; for (i = 0; i < SCI_NPORTS; i++) { sci_ports[i].port.ops = &sci_uart_ops; sci_ports[i].port.iotype = UPIO_MEM; sci_ports[i].port.line = i; sci_ports[i].port.fifosize = 1; #if defined(__H8300H__) || defined(__H8300S__) #ifdef __H8300S__ sci_ports[i].enable = h8300_sci_enable; sci_ports[i].disable = h8300_sci_disable; #endif sci_ports[i].port.uartclk = CONFIG_CPU_CLOCK; #elif defined(CONFIG_SUPERH64) sci_ports[i].port.uartclk = current_cpu_data.module_clock * 16; #else /* * XXX: We should use a proper SCI/SCIF clock */ { struct clk *clk = clk_get("module_clk"); sci_ports[i].port.uartclk = clk_get_rate(clk) * 16; clk_put(clk); } #endif sci_ports[i].break_timer.data = (unsigned long)&sci_ports[i]; sci_ports[i].break_timer.function = sci_break_timer; init_timer(&sci_ports[i].break_timer); } } int __init early_sci_setup(struct uart_port *port) { if (unlikely(port->line > SCI_NPORTS)) return -ENODEV; sci_init_ports(); sci_ports[port->line].port.membase = port->membase; sci_ports[port->line].port.mapbase = port->mapbase; sci_ports[port->line].port.type = port->type; return 0; } #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { put_string(serial_console_port, s, count); } static int __init serial_console_setup(struct console *co, char *options) { struct uart_port *port; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; int ret; /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index >= SCI_NPORTS) co->index = 0; serial_console_port = &sci_ports[co->index]; port = &serial_console_port->port; /* * Also need to check port->type, we don't actually have any * UPIO_PORT ports, but uart_report_port() handily misreports * it anyways if we don't have a port available by the time this is * called. */ if (!port->type) return -ENODEV; if (!port->membase || !port->mapbase) return -ENODEV; spin_lock_init(&port->lock); port->type = serial_console_port->type; if (port->flags & UPF_IOREMAP) sci_config_port(port, 0); if (serial_console_port->enable) serial_console_port->enable(port); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); ret = uart_set_options(port, co, baud, parity, bits, flow); #if defined(__H8300H__) || defined(__H8300S__) /* disable rx interrupt */ if (ret == 0) sci_stop_rx(port); #endif return ret; } static struct console serial_console = { .name = "ttySC", .device = uart_console_device, .write = serial_console_write, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &sci_uart_driver, }; static int __init sci_console_init(void) { sci_init_ports(); register_console(&serial_console); return 0; } console_initcall(sci_console_init); #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ #ifdef CONFIG_SH_KGDB /* * FIXME: Most of this can go away.. at the moment, we rely on * arch/sh/kernel/setup.c to do the command line parsing for kgdb, though * most of that can easily be done here instead. * * For the time being, just accept the values that were parsed earlier.. */ static void __init kgdb_console_get_options(struct uart_port *port, int *baud, int *parity, int *bits) { *baud = kgdb_baud; *parity = tolower(kgdb_parity); *bits = kgdb_bits - '0'; } /* * The naming here is somewhat misleading, since kgdb_console_setup() takes * care of the early-on initialization for kgdb, regardless of whether we * actually use kgdb as a console or not. * * On the plus side, this lets us kill off the old kgdb_sci_setup() nonsense. */ int __init kgdb_console_setup(struct console *co, char *options) { struct uart_port *port = &sci_ports[kgdb_portnum].port; int baud = 38400; int bits = 8; int parity = 'n'; int flow = 'n'; spin_lock_init(&port->lock); if (co->index != kgdb_portnum) co->index = kgdb_portnum; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else kgdb_console_get_options(port, &baud, &parity, &bits); kgdb_getchar = kgdb_sci_getchar; kgdb_putchar = kgdb_sci_putchar; return uart_set_options(port, co, baud, parity, bits, flow); } #endif /* CONFIG_SH_KGDB */ #ifdef CONFIG_SH_KGDB_CONSOLE static struct console kgdb_console = { .name = "ttySC", .write = kgdb_console_write, .setup = kgdb_console_setup, .flags = CON_PRINTBUFFER | CON_ENABLED, .index = -1, .data = &sci_uart_driver, }; /* Register the KGDB console so we get messages (d'oh!) */ static int __init kgdb_console_init(void) { sci_init_ports(); register_console(&kgdb_console); return 0; } console_initcall(kgdb_console_init); #endif /* CONFIG_SH_KGDB_CONSOLE */ #if defined(CONFIG_SH_KGDB_CONSOLE) #define SCI_CONSOLE &kgdb_console #elif defined(CONFIG_SERIAL_SH_SCI_CONSOLE) #define SCI_CONSOLE &serial_console #else #define SCI_CONSOLE 0 #endif static char banner[] __initdata = KERN_INFO "SuperH SCI(F) driver initialized\n"; static struct uart_driver sci_uart_driver = { .owner = THIS_MODULE, .driver_name = "sci", .dev_name = "ttySC", .major = SCI_MAJOR, .minor = SCI_MINOR_START, .nr = SCI_NPORTS, .cons = SCI_CONSOLE, }; /* * Register a set of serial devices attached to a platform device. The * list is terminated with a zero flags entry, which means we expect * all entries to have at least UPF_BOOT_AUTOCONF set. Platforms that need * remapping (such as sh64) should also set UPF_IOREMAP. */ static int __devinit sci_probe(struct platform_device *dev) { struct plat_sci_port *p = dev->dev.platform_data; int i; for (i = 0; p && p->flags != 0 && i < SCI_NPORTS; p++, i++) { struct sci_port *sciport = &sci_ports[i]; sciport->port.mapbase = p->mapbase; /* * For the simple (and majority of) cases where we don't need * to do any remapping, just cast the cookie directly. */ if (p->mapbase && !p->membase && !(p->flags & UPF_IOREMAP)) p->membase = (void __iomem *)p->mapbase; sciport->port.membase = p->membase; sciport->port.irq = p->irqs[SCIx_TXI_IRQ]; sciport->port.flags = p->flags; sciport->port.dev = &dev->dev; sciport->type = sciport->port.type = p->type; memcpy(&sciport->irqs, &p->irqs, sizeof(p->irqs)); uart_add_one_port(&sci_uart_driver, &sciport->port); } #ifdef CONFIG_CPU_FREQ cpufreq_register_notifier(&sci_nb, CPUFREQ_TRANSITION_NOTIFIER); dev_info(&dev->dev, "sci: CPU frequency notifier registered\n"); #endif #ifdef CONFIG_SH_STANDARD_BIOS sh_bios_gdb_detach(); #endif return 0; } static int __devexit sci_remove(struct platform_device *dev) { int i; for (i = 0; i < SCI_NPORTS; i++) uart_remove_one_port(&sci_uart_driver, &sci_ports[i].port); return 0; } static int sci_suspend(struct platform_device *dev, pm_message_t state) { int i; for (i = 0; i < SCI_NPORTS; i++) { struct sci_port *p = &sci_ports[i]; if (p->type != PORT_UNKNOWN && p->port.dev == &dev->dev) uart_suspend_port(&sci_uart_driver, &p->port); } return 0; } static int sci_resume(struct platform_device *dev) { int i; for (i = 0; i < SCI_NPORTS; i++) { struct sci_port *p = &sci_ports[i]; if (p->type != PORT_UNKNOWN && p->port.dev == &dev->dev) uart_resume_port(&sci_uart_driver, &p->port); } return 0; } static struct platform_driver sci_driver = { .probe = sci_probe, .remove = __devexit_p(sci_remove), .suspend = sci_suspend, .resume = sci_resume, .driver = { .name = "sh-sci", .owner = THIS_MODULE, }, }; static int __init sci_init(void) { int ret; printk(banner); sci_init_ports(); ret = uart_register_driver(&sci_uart_driver); if (likely(ret == 0)) { ret = platform_driver_register(&sci_driver); if (unlikely(ret)) uart_unregister_driver(&sci_uart_driver); } return ret; } static void __exit sci_exit(void) { platform_driver_unregister(&sci_driver); uart_unregister_driver(&sci_uart_driver); } module_init(sci_init); module_exit(sci_exit); MODULE_LICENSE("GPL");