/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * file.c * * File open, close, extend, truncate * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #define MLOG_MASK_PREFIX ML_INODE #include #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "sysfile.h" #include "inode.h" #include "ioctl.h" #include "journal.h" #include "mmap.h" #include "suballoc.h" #include "super.h" #include "buffer_head_io.h" static int ocfs2_sync_inode(struct inode *inode) { filemap_fdatawrite(inode->i_mapping); return sync_mapping_buffers(inode->i_mapping); } static int ocfs2_file_open(struct inode *inode, struct file *file) { int status; int mode = file->f_flags; struct ocfs2_inode_info *oi = OCFS2_I(inode); mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); spin_lock(&oi->ip_lock); /* Check that the inode hasn't been wiped from disk by another * node. If it hasn't then we're safe as long as we hold the * spin lock until our increment of open count. */ if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { spin_unlock(&oi->ip_lock); status = -ENOENT; goto leave; } if (mode & O_DIRECT) oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; oi->ip_open_count++; spin_unlock(&oi->ip_lock); status = 0; leave: mlog_exit(status); return status; } static int ocfs2_file_release(struct inode *inode, struct file *file) { struct ocfs2_inode_info *oi = OCFS2_I(inode); mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); spin_lock(&oi->ip_lock); if (!--oi->ip_open_count) oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; spin_unlock(&oi->ip_lock); mlog_exit(0); return 0; } static int ocfs2_sync_file(struct file *file, struct dentry *dentry, int datasync) { int err = 0; journal_t *journal; struct inode *inode = dentry->d_inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file, dentry, datasync, dentry->d_name.len, dentry->d_name.name); err = ocfs2_sync_inode(dentry->d_inode); if (err) goto bail; journal = osb->journal->j_journal; err = journal_force_commit(journal); bail: mlog_exit(err); return (err < 0) ? -EIO : 0; } int ocfs2_should_update_atime(struct inode *inode, struct vfsmount *vfsmnt) { struct timespec now; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return 0; if ((inode->i_flags & S_NOATIME) || ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; /* * We can be called with no vfsmnt structure - NFSD will * sometimes do this. * * Note that our action here is different than touch_atime() - * if we can't tell whether this is a noatime mount, then we * don't know whether to trust the value of s_atime_quantum. */ if (vfsmnt == NULL) return 0; if ((vfsmnt->mnt_flags & MNT_NOATIME) || ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; if (vfsmnt->mnt_flags & MNT_RELATIME) { if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) return 1; return 0; } now = CURRENT_TIME; if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) return 0; else return 1; } int ocfs2_update_inode_atime(struct inode *inode, struct buffer_head *bh) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle; struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; mlog_entry_void(); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (handle == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_journal_access(handle, inode, bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } /* * Don't use ocfs2_mark_inode_dirty() here as we don't always * have i_mutex to guard against concurrent changes to other * inode fields. */ inode->i_atime = CURRENT_TIME; di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ret = ocfs2_journal_dirty(handle, bh); if (ret < 0) mlog_errno(ret); out_commit: ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: mlog_exit(ret); return ret; } static int ocfs2_set_inode_size(handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; mlog_entry_void(); i_size_write(inode, new_i_size); inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_ctime = inode->i_mtime = CURRENT_TIME; status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } bail: mlog_exit(status); return status; } static int ocfs2_simple_size_update(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (handle == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_set_inode_size(handle, inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; handle_t *handle; struct ocfs2_dinode *di; u64 cluster_bytes; mlog_entry_void(); /* TODO: This needs to actually orphan the inode in this * transaction. */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } status = ocfs2_journal_access(handle, inode, fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } /* * Do this before setting i_size. */ cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, cluster_bytes); if (status) { mlog_errno(status); goto out_commit; } i_size_write(inode, new_i_size); inode->i_blocks = ocfs2_align_bytes_to_sectors(new_i_size); inode->i_ctime = inode->i_mtime = CURRENT_TIME; di = (struct ocfs2_dinode *) fe_bh->b_data; di->i_size = cpu_to_le64(new_i_size); di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); status = ocfs2_journal_dirty(handle, fe_bh); if (status < 0) mlog_errno(status); out_commit: ocfs2_commit_trans(osb, handle); out: mlog_exit(status); return status; } static int ocfs2_truncate_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int status = 0; struct ocfs2_dinode *fe = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_truncate_context *tc = NULL; mlog_entry("(inode = %llu, new_i_size = %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)new_i_size); fe = (struct ocfs2_dinode *) di_bh->b_data; if (!OCFS2_IS_VALID_DINODE(fe)) { OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); status = -EIO; goto bail; } mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), "Inode %llu, inode i_size = %lld != di " "i_size = %llu, i_flags = 0x%x\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, i_size_read(inode), (unsigned long long)le64_to_cpu(fe->i_size), le32_to_cpu(fe->i_flags)); if (new_i_size > le64_to_cpu(fe->i_size)) { mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n", (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); status = -EINVAL; mlog_errno(status); goto bail; } mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n", (unsigned long long)le64_to_cpu(fe->i_blkno), (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); /* lets handle the simple truncate cases before doing any more * cluster locking. */ if (new_i_size == le64_to_cpu(fe->i_size)) goto bail; down_write(&OCFS2_I(inode)->ip_alloc_sem); /* This forces other nodes to sync and drop their pages. Do * this even if we have a truncate without allocation change - * ocfs2 cluster sizes can be much greater than page size, so * we have to truncate them anyway. */ status = ocfs2_data_lock(inode, 1); if (status < 0) { up_write(&OCFS2_I(inode)->ip_alloc_sem); mlog_errno(status); goto bail; } unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(inode->i_mapping, new_i_size); /* alright, we're going to need to do a full blown alloc size * change. Orphan the inode so that recovery can complete the * truncate if necessary. This does the task of marking * i_size. */ status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); if (status < 0) { mlog_errno(status); goto bail_unlock_data; } status = ocfs2_prepare_truncate(osb, inode, di_bh, &tc); if (status < 0) { mlog_errno(status); goto bail_unlock_data; } status = ocfs2_commit_truncate(osb, inode, di_bh, tc); if (status < 0) { mlog_errno(status); goto bail_unlock_data; } /* TODO: orphan dir cleanup here. */ bail_unlock_data: ocfs2_data_unlock(inode, 1); up_write(&OCFS2_I(inode)->ip_alloc_sem); bail: mlog_exit(status); return status; } /* * extend allocation only here. * we'll update all the disk stuff, and oip->alloc_size * * expect stuff to be locked, a transaction started and enough data / * metadata reservations in the contexts. * * Will return -EAGAIN, and a reason if a restart is needed. * If passed in, *reason will always be set, even in error. */ int ocfs2_do_extend_allocation(struct ocfs2_super *osb, struct inode *inode, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct buffer_head *fe_bh, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret) { int status = 0; int free_extents; struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data; enum ocfs2_alloc_restarted reason = RESTART_NONE; u32 bit_off, num_bits; u64 block; u8 flags = 0; BUG_ON(!clusters_to_add); if (mark_unwritten) flags = OCFS2_EXT_UNWRITTEN; free_extents = ocfs2_num_free_extents(osb, inode, fe); if (free_extents < 0) { status = free_extents; mlog_errno(status); goto leave; } /* there are two cases which could cause us to EAGAIN in the * we-need-more-metadata case: * 1) we haven't reserved *any* * 2) we are so fragmented, we've needed to add metadata too * many times. */ if (!free_extents && !meta_ac) { mlog(0, "we haven't reserved any metadata!\n"); status = -EAGAIN; reason = RESTART_META; goto leave; } else if ((!free_extents) && (ocfs2_alloc_context_bits_left(meta_ac) < ocfs2_extend_meta_needed(fe))) { mlog(0, "filesystem is really fragmented...\n"); status = -EAGAIN; reason = RESTART_META; goto leave; } status = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, &num_bits); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } BUG_ON(num_bits > clusters_to_add); /* reserve our write early -- insert_extent may update the inode */ status = ocfs2_journal_access(handle, inode, fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } block = ocfs2_clusters_to_blocks(osb->sb, bit_off); mlog(0, "Allocating %u clusters at block %u for inode %llu\n", num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); status = ocfs2_insert_extent(osb, handle, inode, fe_bh, *logical_offset, block, num_bits, flags, meta_ac); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_journal_dirty(handle, fe_bh); if (status < 0) { mlog_errno(status); goto leave; } clusters_to_add -= num_bits; *logical_offset += num_bits; if (clusters_to_add) { mlog(0, "need to alloc once more, clusters = %u, wanted = " "%u\n", fe->i_clusters, clusters_to_add); status = -EAGAIN; reason = RESTART_TRANS; } leave: mlog_exit(status); if (reason_ret) *reason_ret = reason; return status; } /* * For a given allocation, determine which allocators will need to be * accessed, and lock them, reserving the appropriate number of bits. * * Sparse file systems call this from ocfs2_write_begin_nolock() * and ocfs2_allocate_unwritten_extents(). * * File systems which don't support holes call this from * ocfs2_extend_allocation(). */ int ocfs2_lock_allocators(struct inode *inode, struct ocfs2_dinode *di, u32 clusters_to_add, u32 extents_to_split, struct ocfs2_alloc_context **data_ac, struct ocfs2_alloc_context **meta_ac) { int ret = 0, num_free_extents; unsigned int max_recs_needed = clusters_to_add + 2 * extents_to_split; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); *meta_ac = NULL; if (data_ac) *data_ac = NULL; BUG_ON(clusters_to_add != 0 && data_ac == NULL); mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, " "clusters_to_add = %u, extents_to_split = %u\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, i_size_read(inode), le32_to_cpu(di->i_clusters), clusters_to_add, extents_to_split); num_free_extents = ocfs2_num_free_extents(osb, inode, di); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } /* * Sparse allocation file systems need to be more conservative * with reserving room for expansion - the actual allocation * happens while we've got a journal handle open so re-taking * a cluster lock (because we ran out of room for another * extent) will violate ordering rules. * * Most of the time we'll only be seeing this 1 cluster at a time * anyway. * * Always lock for any unwritten extents - we might want to * add blocks during a split. */ if (!num_free_extents || (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) { ret = ocfs2_reserve_new_metadata(osb, di, meta_ac); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } } if (clusters_to_add == 0) goto out; ret = ocfs2_reserve_clusters(osb, clusters_to_add, data_ac); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } out: if (ret) { if (*meta_ac) { ocfs2_free_alloc_context(*meta_ac); *meta_ac = NULL; } /* * We cannot have an error and a non null *data_ac. */ } return ret; } static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, u32 clusters_to_add, int mark_unwritten) { int status = 0; int restart_func = 0; int credits; u32 prev_clusters; struct buffer_head *bh = NULL; struct ocfs2_dinode *fe = NULL; handle_t *handle = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; enum ocfs2_alloc_restarted why; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog_entry("(clusters_to_add = %u)\n", clusters_to_add); /* * This function only exists for file systems which don't * support holes. */ BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, OCFS2_BH_CACHED, inode); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) bh->b_data; if (!OCFS2_IS_VALID_DINODE(fe)) { OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); status = -EIO; goto leave; } restart_all: BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); status = ocfs2_lock_allocators(inode, fe, clusters_to_add, 0, &data_ac, &meta_ac); if (status) { mlog_errno(status); goto leave; } credits = ocfs2_calc_extend_credits(osb->sb, fe, clusters_to_add); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } restarted_transaction: /* reserve a write to the file entry early on - that we if we * run out of credits in the allocation path, we can still * update i_size. */ status = ocfs2_journal_access(handle, inode, bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } prev_clusters = OCFS2_I(inode)->ip_clusters; status = ocfs2_do_extend_allocation(osb, inode, &logical_start, clusters_to_add, mark_unwritten, bh, handle, data_ac, meta_ac, &why); if ((status < 0) && (status != -EAGAIN)) { if (status != -ENOSPC) mlog_errno(status); goto leave; } status = ocfs2_journal_dirty(handle, bh); if (status < 0) { mlog_errno(status); goto leave; } spin_lock(&OCFS2_I(inode)->ip_lock); clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); spin_unlock(&OCFS2_I(inode)->ip_lock); if (why != RESTART_NONE && clusters_to_add) { if (why == RESTART_META) { mlog(0, "restarting function.\n"); restart_func = 1; } else { BUG_ON(why != RESTART_TRANS); mlog(0, "restarting transaction.\n"); /* TODO: This can be more intelligent. */ credits = ocfs2_calc_extend_credits(osb->sb, fe, clusters_to_add); status = ocfs2_extend_trans(handle, credits); if (status < 0) { /* handle still has to be committed at * this point. */ status = -ENOMEM; mlog_errno(status); goto leave; } goto restarted_transaction; } } mlog(0, "fe: i_clusters = %u, i_size=%llu\n", le32_to_cpu(fe->i_clusters), (unsigned long long)le64_to_cpu(fe->i_size)); mlog(0, "inode: ip_clusters=%u, i_size=%lld\n", OCFS2_I(inode)->ip_clusters, i_size_read(inode)); leave: if (handle) { ocfs2_commit_trans(osb, handle); handle = NULL; } if (data_ac) { ocfs2_free_alloc_context(data_ac); data_ac = NULL; } if (meta_ac) { ocfs2_free_alloc_context(meta_ac); meta_ac = NULL; } if ((!status) && restart_func) { restart_func = 0; goto restart_all; } if (bh) { brelse(bh); bh = NULL; } mlog_exit(status); return status; } static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, u32 clusters_to_add, int mark_unwritten) { int ret; /* * The alloc sem blocks peope in read/write from reading our * allocation until we're done changing it. We depend on * i_mutex to block other extend/truncate calls while we're * here. */ down_write(&OCFS2_I(inode)->ip_alloc_sem); ret = __ocfs2_extend_allocation(inode, logical_start, clusters_to_add, mark_unwritten); up_write(&OCFS2_I(inode)->ip_alloc_sem); return ret; } /* Some parts of this taken from generic_cont_expand, which turned out * to be too fragile to do exactly what we need without us having to * worry about recursive locking in ->prepare_write() and * ->commit_write(). */ static int ocfs2_write_zero_page(struct inode *inode, u64 size) { struct address_space *mapping = inode->i_mapping; struct page *page; unsigned long index; unsigned int offset; handle_t *handle = NULL; int ret; offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */ /* ugh. in prepare/commit_write, if from==to==start of block, we ** skip the prepare. make sure we never send an offset for the start ** of a block */ if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { offset++; } index = size >> PAGE_CACHE_SHIFT; page = grab_cache_page(mapping, index); if (!page) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_prepare_write_nolock(inode, page, offset, offset); if (ret < 0) { mlog_errno(ret); goto out_unlock; } if (ocfs2_should_order_data(inode)) { handle = ocfs2_start_walk_page_trans(inode, page, offset, offset); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out_unlock; } } /* must not update i_size! */ ret = block_commit_write(page, offset, offset); if (ret < 0) mlog_errno(ret); else ret = 0; if (handle) ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out_unlock: unlock_page(page); page_cache_release(page); out: return ret; } static int ocfs2_zero_extend(struct inode *inode, u64 zero_to_size) { int ret = 0; u64 start_off; struct super_block *sb = inode->i_sb; start_off = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); while (start_off < zero_to_size) { ret = ocfs2_write_zero_page(inode, start_off); if (ret < 0) { mlog_errno(ret); goto out; } start_off += sb->s_blocksize; /* * Very large extends have the potential to lock up * the cpu for extended periods of time. */ cond_resched(); } out: return ret; } /* * A tail_to_skip value > 0 indicates that we're being called from * ocfs2_file_aio_write(). This has the following implications: * * - we don't want to update i_size * - di_bh will be NULL, which is fine because it's only used in the * case where we want to update i_size. * - ocfs2_zero_extend() will then only be filling the hole created * between i_size and the start of the write. */ static int ocfs2_extend_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size, size_t tail_to_skip) { int ret = 0; u32 clusters_to_add = 0; BUG_ON(!tail_to_skip && !di_bh); /* setattr sometimes calls us like this. */ if (new_i_size == 0) goto out; if (i_size_read(inode) == new_i_size) goto out; BUG_ON(new_i_size < i_size_read(inode)); if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { BUG_ON(tail_to_skip != 0); goto out_update_size; } clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size) - OCFS2_I(inode)->ip_clusters; /* * protect the pages that ocfs2_zero_extend is going to be * pulling into the page cache.. we do this before the * metadata extend so that we don't get into the situation * where we've extended the metadata but can't get the data * lock to zero. */ ret = ocfs2_data_lock(inode, 1); if (ret < 0) { mlog_errno(ret); goto out; } if (clusters_to_add) { ret = ocfs2_extend_allocation(inode, OCFS2_I(inode)->ip_clusters, clusters_to_add, 0); if (ret < 0) { mlog_errno(ret); goto out_unlock; } } /* * Call this even if we don't add any clusters to the tree. We * still need to zero the area between the old i_size and the * new i_size. */ ret = ocfs2_zero_extend(inode, (u64)new_i_size - tail_to_skip); if (ret < 0) { mlog_errno(ret); goto out_unlock; } out_update_size: if (!tail_to_skip) { /* We're being called from ocfs2_setattr() which wants * us to update i_size */ ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); } out_unlock: if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) ocfs2_data_unlock(inode, 1); out: return ret; } int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) { int status = 0, size_change; struct inode *inode = dentry->d_inode; struct super_block *sb = inode->i_sb; struct ocfs2_super *osb = OCFS2_SB(sb); struct buffer_head *bh = NULL; handle_t *handle = NULL; mlog_entry("(0x%p, '%.*s')\n", dentry, dentry->d_name.len, dentry->d_name.name); if (attr->ia_valid & ATTR_MODE) mlog(0, "mode change: %d\n", attr->ia_mode); if (attr->ia_valid & ATTR_UID) mlog(0, "uid change: %d\n", attr->ia_uid); if (attr->ia_valid & ATTR_GID) mlog(0, "gid change: %d\n", attr->ia_gid); if (attr->ia_valid & ATTR_SIZE) mlog(0, "size change...\n"); if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME)) mlog(0, "time change...\n"); #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ | ATTR_GID | ATTR_UID | ATTR_MODE) if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) { mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid); return 0; } status = inode_change_ok(inode, attr); if (status) return status; size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; if (size_change) { status = ocfs2_rw_lock(inode, 1); if (status < 0) { mlog_errno(status); goto bail; } } status = ocfs2_meta_lock(inode, &bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail_unlock_rw; } if (size_change && attr->ia_size != i_size_read(inode)) { if (i_size_read(inode) > attr->ia_size) status = ocfs2_truncate_file(inode, bh, attr->ia_size); else status = ocfs2_extend_file(inode, bh, attr->ia_size, 0); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); status = -ENOSPC; goto bail_unlock; } } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } /* * This will intentionally not wind up calling vmtruncate(), * since all the work for a size change has been done above. * Otherwise, we could get into problems with truncate as * ip_alloc_sem is used there to protect against i_size * changes. */ status = inode_setattr(inode, attr); if (status < 0) { mlog_errno(status); goto bail_commit; } status = ocfs2_mark_inode_dirty(handle, inode, bh); if (status < 0) mlog_errno(status); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock: ocfs2_meta_unlock(inode, 1); bail_unlock_rw: if (size_change) ocfs2_rw_unlock(inode, 1); bail: if (bh) brelse(bh); mlog_exit(status); return status; } int ocfs2_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; struct super_block *sb = dentry->d_inode->i_sb; struct ocfs2_super *osb = sb->s_fs_info; int err; mlog_entry_void(); err = ocfs2_inode_revalidate(dentry); if (err) { if (err != -ENOENT) mlog_errno(err); goto bail; } generic_fillattr(inode, stat); /* We set the blksize from the cluster size for performance */ stat->blksize = osb->s_clustersize; bail: mlog_exit(err); return err; } int ocfs2_permission(struct inode *inode, int mask, struct nameidata *nd) { int ret; mlog_entry_void(); ret = ocfs2_meta_lock(inode, NULL, 0); if (ret) { if (ret != -ENOENT) mlog_errno(ret); goto out; } ret = generic_permission(inode, mask, NULL); ocfs2_meta_unlock(inode, 0); out: mlog_exit(ret); return ret; } static int __ocfs2_write_remove_suid(struct inode *inode, struct buffer_head *bh) { int ret; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di; mlog_entry("(Inode %llu, mode 0%o)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (handle == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_journal_access(handle, inode, bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out_trans; } inode->i_mode &= ~S_ISUID; if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) inode->i_mode &= ~S_ISGID; di = (struct ocfs2_dinode *) bh->b_data; di->i_mode = cpu_to_le16(inode->i_mode); ret = ocfs2_journal_dirty(handle, bh); if (ret < 0) mlog_errno(ret); out_trans: ocfs2_commit_trans(osb, handle); out: mlog_exit(ret); return ret; } /* * Will look for holes and unwritten extents in the range starting at * pos for count bytes (inclusive). */ static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, size_t count) { int ret = 0; unsigned int extent_flags; u32 cpos, clusters, extent_len, phys_cpos; struct super_block *sb = inode->i_sb; cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, &extent_flags); if (ret < 0) { mlog_errno(ret); goto out; } if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { ret = 1; break; } if (extent_len > clusters) extent_len = clusters; clusters -= extent_len; cpos += extent_len; } out: return ret; } static int ocfs2_write_remove_suid(struct inode *inode) { int ret; struct buffer_head *bh = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), oi->ip_blkno, &bh, OCFS2_BH_CACHED, inode); if (ret < 0) { mlog_errno(ret); goto out; } ret = __ocfs2_write_remove_suid(inode, bh); out: brelse(bh); return ret; } /* * Allocate enough extents to cover the region starting at byte offset * start for len bytes. Existing extents are skipped, any extents * added are marked as "unwritten". */ static int ocfs2_allocate_unwritten_extents(struct inode *inode, u64 start, u64 len) { int ret; u32 cpos, phys_cpos, clusters, alloc_size; /* * We consider both start and len to be inclusive. */ cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); clusters -= cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &alloc_size, NULL); if (ret) { mlog_errno(ret); goto out; } /* * Hole or existing extent len can be arbitrary, so * cap it to our own allocation request. */ if (alloc_size > clusters) alloc_size = clusters; if (phys_cpos) { /* * We already have an allocation at this * region so we can safely skip it. */ goto next; } ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } next: cpos += alloc_size; clusters -= alloc_size; } ret = 0; out: return ret; } static int __ocfs2_remove_inode_range(struct inode *inode, struct buffer_head *di_bh, u32 cpos, u32 phys_cpos, u32 len, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; ret = ocfs2_lock_allocators(inode, di, 0, 1, NULL, &meta_ac); if (ret) { mlog_errno(ret); return ret; } mutex_lock(&tl_inode->i_mutex); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, OCFS2_REMOVE_EXTENT_CREDITS); if (handle == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_journal_access(handle, inode, di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_remove_extent(inode, di_bh, cpos, len, handle, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out_commit; } OCFS2_I(inode)->ip_clusters -= len; di->i_clusters = cpu_to_le32(OCFS2_I(inode)->ip_clusters); ret = ocfs2_journal_dirty(handle, di_bh); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); if (ret) mlog_errno(ret); out_commit: ocfs2_commit_trans(osb, handle); out: mutex_unlock(&tl_inode->i_mutex); if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } /* * Truncate a byte range, avoiding pages within partial clusters. This * preserves those pages for the zeroing code to write to. */ static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, u64 byte_len) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); loff_t start, end; struct address_space *mapping = inode->i_mapping; start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); end = byte_start + byte_len; end = end & ~(osb->s_clustersize - 1); if (start < end) { unmap_mapping_range(mapping, start, end - start, 0); truncate_inode_pages_range(mapping, start, end - 1); } } static int ocfs2_zero_partial_clusters(struct inode *inode, u64 start, u64 len) { int ret = 0; u64 tmpend, end = start + len; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int csize = osb->s_clustersize; handle_t *handle; /* * The "start" and "end" values are NOT necessarily part of * the range whose allocation is being deleted. Rather, this * is what the user passed in with the request. We must zero * partial clusters here. There's no need to worry about * physical allocation - the zeroing code knows to skip holes. */ mlog(0, "byte start: %llu, end: %llu\n", (unsigned long long)start, (unsigned long long)end); /* * If both edges are on a cluster boundary then there's no * zeroing required as the region is part of the allocation to * be truncated. */ if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) goto out; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (handle == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * We want to get the byte offset of the end of the 1st cluster. */ tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); if (tmpend > end) tmpend = end; mlog(0, "1st range: start: %llu, tmpend: %llu\n", (unsigned long long)start, (unsigned long long)tmpend); ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); if (ret) mlog_errno(ret); if (tmpend < end) { /* * This may make start and end equal, but the zeroing * code will skip any work in that case so there's no * need to catch it up here. */ start = end & ~(osb->s_clustersize - 1); mlog(0, "2nd range: start: %llu, end: %llu\n", (unsigned long long)start, (unsigned long long)end); ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); if (ret) mlog_errno(ret); } ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_remove_inode_range(struct inode *inode, struct buffer_head *di_bh, u64 byte_start, u64 byte_len) { int ret = 0; u32 trunc_start, trunc_len, cpos, phys_cpos, alloc_size; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_cached_dealloc_ctxt dealloc; ocfs2_init_dealloc_ctxt(&dealloc); if (byte_len == 0) return 0; trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); trunc_len = (byte_start + byte_len) >> osb->s_clustersize_bits; if (trunc_len >= trunc_start) trunc_len -= trunc_start; else trunc_len = 0; mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)byte_start, (unsigned long long)byte_len, trunc_start, trunc_len); ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); if (ret) { mlog_errno(ret); goto out; } cpos = trunc_start; while (trunc_len) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &alloc_size, NULL); if (ret) { mlog_errno(ret); goto out; } if (alloc_size > trunc_len) alloc_size = trunc_len; /* Only do work for non-holes */ if (phys_cpos != 0) { ret = __ocfs2_remove_inode_range(inode, di_bh, cpos, phys_cpos, alloc_size, &dealloc); if (ret) { mlog_errno(ret); goto out; } } cpos += alloc_size; trunc_len -= alloc_size; } ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); out: ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); return ret; } /* * Parts of this function taken from xfs_change_file_space() */ static int __ocfs2_change_file_space(struct file *file, struct inode *inode, loff_t f_pos, unsigned int cmd, struct ocfs2_space_resv *sr, int change_size) { int ret; s64 llen; loff_t size; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *di_bh = NULL; handle_t *handle; unsigned long long max_off = inode->i_sb->s_maxbytes; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; mutex_lock(&inode->i_mutex); /* * This prevents concurrent writes on other nodes */ ret = ocfs2_rw_lock(inode, 1); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_meta_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out_rw_unlock; } if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { ret = -EPERM; goto out_meta_unlock; } switch (sr->l_whence) { case 0: /*SEEK_SET*/ break; case 1: /*SEEK_CUR*/ sr->l_start += f_pos; break; case 2: /*SEEK_END*/ sr->l_start += i_size_read(inode); break; default: ret = -EINVAL; goto out_meta_unlock; } sr->l_whence = 0; llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; if (sr->l_start < 0 || sr->l_start > max_off || (sr->l_start + llen) < 0 || (sr->l_start + llen) > max_off) { ret = -EINVAL; goto out_meta_unlock; } size = sr->l_start + sr->l_len; if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) { if (sr->l_len <= 0) { ret = -EINVAL; goto out_meta_unlock; } } if (file && should_remove_suid(file->f_path.dentry)) { ret = __ocfs2_write_remove_suid(inode, di_bh); if (ret) { mlog_errno(ret); goto out_meta_unlock; } } down_write(&OCFS2_I(inode)->ip_alloc_sem); switch (cmd) { case OCFS2_IOC_RESVSP: case OCFS2_IOC_RESVSP64: /* * This takes unsigned offsets, but the signed ones we * pass have been checked against overflow above. */ ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, sr->l_len); break; case OCFS2_IOC_UNRESVSP: case OCFS2_IOC_UNRESVSP64: ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, sr->l_len); break; default: ret = -EINVAL; } up_write(&OCFS2_I(inode)->ip_alloc_sem); if (ret) { mlog_errno(ret); goto out_meta_unlock; } /* * We update c/mtime for these changes */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_meta_unlock; } if (change_size && i_size_read(inode) < size) i_size_write(inode, size); inode->i_ctime = inode->i_mtime = CURRENT_TIME; ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); if (ret < 0) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out_meta_unlock: brelse(di_bh); ocfs2_meta_unlock(inode, 1); out_rw_unlock: ocfs2_rw_unlock(inode, 1); mutex_unlock(&inode->i_mutex); out: return ret; } int ocfs2_change_file_space(struct file *file, unsigned int cmd, struct ocfs2_space_resv *sr) { struct inode *inode = file->f_path.dentry->d_inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);; if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && !ocfs2_writes_unwritten_extents(osb)) return -ENOTTY; else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && !ocfs2_sparse_alloc(osb)) return -ENOTTY; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); } static long ocfs2_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_space_resv sr; int change_size = 1; if (!ocfs2_writes_unwritten_extents(osb)) return -EOPNOTSUPP; if (S_ISDIR(inode->i_mode)) return -ENODEV; if (mode & FALLOC_FL_KEEP_SIZE) change_size = 0; sr.l_whence = 0; sr.l_start = (s64)offset; sr.l_len = (s64)len; return __ocfs2_change_file_space(NULL, inode, offset, OCFS2_IOC_RESVSP64, &sr, change_size); } static int ocfs2_prepare_inode_for_write(struct dentry *dentry, loff_t *ppos, size_t count, int appending, int *direct_io) { int ret = 0, meta_level = appending; struct inode *inode = dentry->d_inode; u32 clusters; loff_t newsize, saved_pos; /* * We sample i_size under a read level meta lock to see if our write * is extending the file, if it is we back off and get a write level * meta lock. */ for(;;) { ret = ocfs2_meta_lock(inode, NULL, meta_level); if (ret < 0) { meta_level = -1; mlog_errno(ret); goto out; } /* Clear suid / sgid if necessary. We do this here * instead of later in the write path because * remove_suid() calls ->setattr without any hint that * we may have already done our cluster locking. Since * ocfs2_setattr() *must* take cluster locks to * proceeed, this will lead us to recursively lock the * inode. There's also the dinode i_size state which * can be lost via setattr during extending writes (we * set inode->i_size at the end of a write. */ if (should_remove_suid(dentry)) { if (meta_level == 0) { ocfs2_meta_unlock(inode, meta_level); meta_level = 1; continue; } ret = ocfs2_write_remove_suid(inode); if (ret < 0) { mlog_errno(ret); goto out_unlock; } } /* work on a copy of ppos until we're sure that we won't have * to recalculate it due to relocking. */ if (appending) { saved_pos = i_size_read(inode); mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos); } else { saved_pos = *ppos; } if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { loff_t end = saved_pos + count; /* * Skip the O_DIRECT checks if we don't need * them. */ if (!direct_io || !(*direct_io)) break; /* * Allowing concurrent direct writes means * i_size changes wouldn't be synchronized, so * one node could wind up truncating another * nodes writes. */ if (end > i_size_read(inode)) { *direct_io = 0; break; } /* * We don't fill holes during direct io, so * check for them here. If any are found, the * caller will have to retake some cluster * locks and initiate the io as buffered. */ ret = ocfs2_check_range_for_holes(inode, saved_pos, count); if (ret == 1) { *direct_io = 0; ret = 0; } else if (ret < 0) mlog_errno(ret); break; } /* * The rest of this loop is concerned with legacy file * systems which don't support sparse files. */ newsize = count + saved_pos; mlog(0, "pos=%lld newsize=%lld cursize=%lld\n", (long long) saved_pos, (long long) newsize, (long long) i_size_read(inode)); /* No need for a higher level metadata lock if we're * never going past i_size. */ if (newsize <= i_size_read(inode)) break; if (meta_level == 0) { ocfs2_meta_unlock(inode, meta_level); meta_level = 1; continue; } spin_lock(&OCFS2_I(inode)->ip_lock); clusters = ocfs2_clusters_for_bytes(inode->i_sb, newsize) - OCFS2_I(inode)->ip_clusters; spin_unlock(&OCFS2_I(inode)->ip_lock); mlog(0, "Writing at EOF, may need more allocation: " "i_size = %lld, newsize = %lld, need %u clusters\n", (long long) i_size_read(inode), (long long) newsize, clusters); /* We only want to continue the rest of this loop if * our extend will actually require more * allocation. */ if (!clusters) break; ret = ocfs2_extend_file(inode, NULL, newsize, count); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto out_unlock; } break; } if (appending) *ppos = saved_pos; out_unlock: ocfs2_meta_unlock(inode, meta_level); out: return ret; } static inline void ocfs2_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes) { const struct iovec *iov = *iovp; size_t base = *basep; do { int copy = min(bytes, iov->iov_len - base); bytes -= copy; base += copy; if (iov->iov_len == base) { iov++; base = 0; } } while (bytes); *iovp = iov; *basep = base; } static struct page * ocfs2_get_write_source(char **ret_src_buf, const struct iovec *cur_iov, size_t iov_offset) { int ret; char *buf = cur_iov->iov_base + iov_offset; struct page *src_page = NULL; unsigned long off; off = (unsigned long)(buf) & ~PAGE_CACHE_MASK; if (!segment_eq(get_fs(), KERNEL_DS)) { /* * Pull in the user page. We want to do this outside * of the meta data locks in order to preserve locking * order in case of page fault. */ ret = get_user_pages(current, current->mm, (unsigned long)buf & PAGE_CACHE_MASK, 1, 0, 0, &src_page, NULL); if (ret == 1) *ret_src_buf = kmap(src_page) + off; else src_page = ERR_PTR(-EFAULT); } else { *ret_src_buf = buf; } return src_page; } static void ocfs2_put_write_source(struct page *page) { if (page) { kunmap(page); page_cache_release(page); } } static ssize_t ocfs2_file_buffered_write(struct file *file, loff_t *ppos, const struct iovec *iov, unsigned long nr_segs, size_t count, ssize_t o_direct_written) { int ret = 0; ssize_t copied, total = 0; size_t iov_offset = 0, bytes; loff_t pos; const struct iovec *cur_iov = iov; struct page *user_page, *page; char * uninitialized_var(buf); char *dst; void *fsdata; /* * handle partial DIO write. Adjust cur_iov if needed. */ ocfs2_set_next_iovec(&cur_iov, &iov_offset, o_direct_written); do { pos = *ppos; user_page = ocfs2_get_write_source(&buf, cur_iov, iov_offset); if (IS_ERR(user_page)) { ret = PTR_ERR(user_page); goto out; } /* Stay within our page boundaries */ bytes = min((PAGE_CACHE_SIZE - ((unsigned long)pos & ~PAGE_CACHE_MASK)), (PAGE_CACHE_SIZE - ((unsigned long)buf & ~PAGE_CACHE_MASK))); /* Stay within the vector boundary */ bytes = min_t(size_t, bytes, cur_iov->iov_len - iov_offset); /* Stay within count */ bytes = min(bytes, count); page = NULL; ret = ocfs2_write_begin(file, file->f_mapping, pos, bytes, 0, &page, &fsdata); if (ret) { mlog_errno(ret); goto out; } dst = kmap_atomic(page, KM_USER0); memcpy(dst + (pos & (loff_t)(PAGE_CACHE_SIZE - 1)), buf, bytes); kunmap_atomic(dst, KM_USER0); flush_dcache_page(page); ocfs2_put_write_source(user_page); copied = ocfs2_write_end(file, file->f_mapping, pos, bytes, bytes, page, fsdata); if (copied < 0) { mlog_errno(copied); ret = copied; goto out; } total += copied; *ppos = pos + copied; count -= copied; ocfs2_set_next_iovec(&cur_iov, &iov_offset, copied); } while(count); out: return total ? total : ret; } static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { int ret, direct_io, appending, rw_level, have_alloc_sem = 0; int can_do_direct, sync = 0; ssize_t written = 0; size_t ocount; /* original count */ size_t count; /* after file limit checks */ loff_t *ppos = &iocb->ki_pos; struct file *file = iocb->ki_filp; struct inode *inode = file->f_path.dentry->d_inode; mlog_entry("(0x%p, %u, '%.*s')\n", file, (unsigned int)nr_segs, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); if (iocb->ki_left == 0) return 0; ret = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); if (ret) return ret; count = ocount; vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); appending = file->f_flags & O_APPEND ? 1 : 0; direct_io = file->f_flags & O_DIRECT ? 1 : 0; mutex_lock(&inode->i_mutex); relock: /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */ if (direct_io) { down_read(&inode->i_alloc_sem); have_alloc_sem = 1; } /* concurrent O_DIRECT writes are allowed */ rw_level = !direct_io; ret = ocfs2_rw_lock(inode, rw_level); if (ret < 0) { mlog_errno(ret); goto out_sems; } can_do_direct = direct_io; ret = ocfs2_prepare_inode_for_write(file->f_path.dentry, ppos, iocb->ki_left, appending, &can_do_direct); if (ret < 0) { mlog_errno(ret); goto out; } /* * We can't complete the direct I/O as requested, fall back to * buffered I/O. */ if (direct_io && !can_do_direct) { ocfs2_rw_unlock(inode, rw_level); up_read(&inode->i_alloc_sem); have_alloc_sem = 0; rw_level = -1; direct_io = 0; sync = 1; goto relock; } if (!sync && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) sync = 1; /* * XXX: Is it ok to execute these checks a second time? */ ret = generic_write_checks(file, ppos, &count, S_ISBLK(inode->i_mode)); if (ret) goto out; /* * Set pos so that sync_page_range_nolock() below understands * where to start from. We might've moved it around via the * calls above. The range we want to actually sync starts from * *ppos here. * */ pos = *ppos; /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); if (direct_io) { written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, ppos, count, ocount); if (written < 0) { ret = written; goto out_dio; } } else { written = ocfs2_file_buffered_write(file, ppos, iov, nr_segs, count, written); if (written < 0) { ret = written; if (ret != -EFAULT || ret != -ENOSPC) mlog_errno(ret); goto out; } } out_dio: /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); /* * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io * function pointer which is called when o_direct io completes so that * it can unlock our rw lock. (it's the clustered equivalent of * i_alloc_sem; protects truncate from racing with pending ios). * Unfortunately there are error cases which call end_io and others * that don't. so we don't have to unlock the rw_lock if either an * async dio is going to do it in the future or an end_io after an * error has already done it. */ if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { rw_level = -1; have_alloc_sem = 0; } out: if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); out_sems: if (have_alloc_sem) up_read(&inode->i_alloc_sem); if (written > 0 && sync) { ssize_t err; err = sync_page_range_nolock(inode, file->f_mapping, pos, count); if (err < 0) written = err; } mutex_unlock(&inode->i_mutex); mlog_exit(ret); return written ? written : ret; } static int ocfs2_splice_write_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, struct splice_desc *sd) { int ret, count; ssize_t copied = 0; struct file *file = sd->u.file; unsigned int offset; struct page *page = NULL; void *fsdata; char *src, *dst; ret = buf->ops->confirm(pipe, buf); if (ret) goto out; offset = sd->pos & ~PAGE_CACHE_MASK; count = sd->len; if (count + offset > PAGE_CACHE_SIZE) count = PAGE_CACHE_SIZE - offset; ret = ocfs2_write_begin(file, file->f_mapping, sd->pos, count, 0, &page, &fsdata); if (ret) { mlog_errno(ret); goto out; } src = buf->ops->map(pipe, buf, 1); dst = kmap_atomic(page, KM_USER1); memcpy(dst + offset, src + buf->offset, count); kunmap_atomic(dst, KM_USER1); buf->ops->unmap(pipe, buf, src); copied = ocfs2_write_end(file, file->f_mapping, sd->pos, count, count, page, fsdata); if (copied < 0) { mlog_errno(copied); ret = copied; goto out; } out: return copied ? copied : ret; } static ssize_t __ocfs2_file_splice_write(struct pipe_inode_info *pipe, struct file *out, loff_t *ppos, size_t len, unsigned int flags) { int ret, err; struct address_space *mapping = out->f_mapping; struct inode *inode = mapping->host; struct splice_desc sd = { .total_len = len, .flags = flags, .pos = *ppos, .u.file = out, }; ret = __splice_from_pipe(pipe, &sd, ocfs2_splice_write_actor); if (ret > 0) { *ppos += ret; if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { err = generic_osync_inode(inode, mapping, OSYNC_METADATA|OSYNC_DATA); if (err) ret = err; } } return ret; } static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, struct file *out, loff_t *ppos, size_t len, unsigned int flags) { int ret; struct inode *inode = out->f_path.dentry->d_inode; mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe, (unsigned int)len, out->f_path.dentry->d_name.len, out->f_path.dentry->d_name.name); inode_double_lock(inode, pipe->inode); ret = ocfs2_rw_lock(inode, 1); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_prepare_inode_for_write(out->f_path.dentry, ppos, len, 0, NULL); if (ret < 0) { mlog_errno(ret); goto out_unlock; } /* ok, we're done with i_size and alloc work */ ret = __ocfs2_file_splice_write(pipe, out, ppos, len, flags); out_unlock: ocfs2_rw_unlock(inode, 1); out: inode_double_unlock(inode, pipe->inode); mlog_exit(ret); return ret; } static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { int ret = 0; struct inode *inode = in->f_path.dentry->d_inode; mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe, (unsigned int)len, in->f_path.dentry->d_name.len, in->f_path.dentry->d_name.name); /* * See the comment in ocfs2_file_aio_read() */ ret = ocfs2_meta_lock(inode, NULL, 0); if (ret < 0) { mlog_errno(ret); goto bail; } ocfs2_meta_unlock(inode, 0); ret = generic_file_splice_read(in, ppos, pipe, len, flags); bail: mlog_exit(ret); return ret; } static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; struct file *filp = iocb->ki_filp; struct inode *inode = filp->f_path.dentry->d_inode; mlog_entry("(0x%p, %u, '%.*s')\n", filp, (unsigned int)nr_segs, filp->f_path.dentry->d_name.len, filp->f_path.dentry->d_name.name); if (!inode) { ret = -EINVAL; mlog_errno(ret); goto bail; } /* * buffered reads protect themselves in ->readpage(). O_DIRECT reads * need locks to protect pending reads from racing with truncate. */ if (filp->f_flags & O_DIRECT) { down_read(&inode->i_alloc_sem); have_alloc_sem = 1; ret = ocfs2_rw_lock(inode, 0); if (ret < 0) { mlog_errno(ret); goto bail; } rw_level = 0; /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); } /* * We're fine letting folks race truncates and extending * writes with read across the cluster, just like they can * locally. Hence no rw_lock during read. * * Take and drop the meta data lock to update inode fields * like i_size. This allows the checks down below * generic_file_aio_read() a chance of actually working. */ ret = ocfs2_meta_lock_atime(inode, filp->f_vfsmnt, &lock_level); if (ret < 0) { mlog_errno(ret); goto bail; } ocfs2_meta_unlock(inode, lock_level); ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); if (ret == -EINVAL) mlog(ML_ERROR, "generic_file_aio_read returned -EINVAL\n"); /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); /* see ocfs2_file_aio_write */ if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { rw_level = -1; have_alloc_sem = 0; } bail: if (have_alloc_sem) up_read(&inode->i_alloc_sem); if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); mlog_exit(ret); return ret; } const struct inode_operations ocfs2_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .fallocate = ocfs2_fallocate, }; const struct inode_operations ocfs2_special_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, }; const struct file_operations ocfs2_fops = { .read = do_sync_read, .write = do_sync_write, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .aio_read = ocfs2_file_aio_read, .aio_write = ocfs2_file_aio_write, .ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .splice_read = ocfs2_file_splice_read, .splice_write = ocfs2_file_splice_write, }; const struct file_operations ocfs2_dops = { .read = generic_read_dir, .readdir = ocfs2_readdir, .fsync = ocfs2_sync_file, .ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif };