/* * ec.c - ACPI Embedded Controller Driver (v2.0) * * Copyright (C) 2006, 2007 Alexey Starikovskiy * Copyright (C) 2006 Denis Sadykov * Copyright (C) 2004 Luming Yu * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define ACPI_EC_CLASS "embedded_controller" #define ACPI_EC_DEVICE_NAME "Embedded Controller" #define ACPI_EC_FILE_INFO "info" #undef PREFIX #define PREFIX "ACPI: EC: " /* EC status register */ #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ /* EC commands */ enum ec_command { ACPI_EC_COMMAND_READ = 0x80, ACPI_EC_COMMAND_WRITE = 0x81, ACPI_EC_BURST_ENABLE = 0x82, ACPI_EC_BURST_DISABLE = 0x83, ACPI_EC_COMMAND_QUERY = 0x84, }; /* EC events */ enum ec_event { ACPI_EC_EVENT_OBF_1 = 1, /* Output buffer full */ ACPI_EC_EVENT_IBF_0, /* Input buffer empty */ }; #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ static enum ec_mode { EC_INTR = 1, /* Output buffer full */ EC_POLL, /* Input buffer empty */ } acpi_ec_mode = EC_INTR; static int acpi_ec_remove(struct acpi_device *device, int type); static int acpi_ec_start(struct acpi_device *device); static int acpi_ec_stop(struct acpi_device *device, int type); static int acpi_ec_add(struct acpi_device *device); static const struct acpi_device_id ec_device_ids[] = { {"PNP0C09", 0}, {"", 0}, }; static struct acpi_driver acpi_ec_driver = { .name = "ec", .class = ACPI_EC_CLASS, .ids = ec_device_ids, .ops = { .add = acpi_ec_add, .remove = acpi_ec_remove, .start = acpi_ec_start, .stop = acpi_ec_stop, }, }; /* If we find an EC via the ECDT, we need to keep a ptr to its context */ /* External interfaces use first EC only, so remember */ typedef int (*acpi_ec_query_func) (void *data); struct acpi_ec_query_handler { struct list_head node; acpi_ec_query_func func; acpi_handle handle; void *data; u8 query_bit; }; static struct acpi_ec { acpi_handle handle; unsigned long gpe; unsigned long command_addr; unsigned long data_addr; unsigned long global_lock; struct mutex lock; atomic_t query_pending; atomic_t event_count; wait_queue_head_t wait; struct list_head list; } *boot_ec, *first_ec; /* -------------------------------------------------------------------------- Transaction Management -------------------------------------------------------------------------- */ static inline u8 acpi_ec_read_status(struct acpi_ec *ec) { return inb(ec->command_addr); } static inline u8 acpi_ec_read_data(struct acpi_ec *ec) { return inb(ec->data_addr); } static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) { outb(command, ec->command_addr); } static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) { outb(data, ec->data_addr); } static inline int acpi_ec_check_status(struct acpi_ec *ec, enum ec_event event, unsigned old_count) { u8 status = acpi_ec_read_status(ec); if (old_count == atomic_read(&ec->event_count)) return 0; if (event == ACPI_EC_EVENT_OBF_1) { if (status & ACPI_EC_FLAG_OBF) return 1; } else if (event == ACPI_EC_EVENT_IBF_0) { if (!(status & ACPI_EC_FLAG_IBF)) return 1; } return 0; } static int acpi_ec_wait(struct acpi_ec *ec, enum ec_event event, unsigned count, int force_poll) { if (unlikely(force_poll) || acpi_ec_mode == EC_POLL) { unsigned long delay = jiffies + msecs_to_jiffies(ACPI_EC_DELAY); while (time_before(jiffies, delay)) { if (acpi_ec_check_status(ec, event, 0)) return 0; } } else { if (wait_event_timeout(ec->wait, acpi_ec_check_status(ec, event, count), msecs_to_jiffies(ACPI_EC_DELAY)) || acpi_ec_check_status(ec, event, 0)) { return 0; } else { printk(KERN_ERR PREFIX "acpi_ec_wait timeout," " status = %d, expect_event = %d\n", acpi_ec_read_status(ec), event); } } return -ETIME; } static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, u8 command, const u8 * wdata, unsigned wdata_len, u8 * rdata, unsigned rdata_len, int force_poll) { int result = 0; unsigned count = atomic_read(&ec->event_count); acpi_ec_write_cmd(ec, command); for (; wdata_len > 0; --wdata_len) { result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBF_0, count, force_poll); if (result) { printk(KERN_ERR PREFIX "write_cmd timeout, command = %d\n", command); goto end; } count = atomic_read(&ec->event_count); acpi_ec_write_data(ec, *(wdata++)); } if (!rdata_len) { result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBF_0, count, force_poll); if (result) { printk(KERN_ERR PREFIX "finish-write timeout, command = %d\n", command); goto end; } } else if (command == ACPI_EC_COMMAND_QUERY) { atomic_set(&ec->query_pending, 0); } for (; rdata_len > 0; --rdata_len) { result = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF_1, count, force_poll); if (result) { printk(KERN_ERR PREFIX "read timeout, command = %d\n", command); goto end; } count = atomic_read(&ec->event_count); *(rdata++) = acpi_ec_read_data(ec); } end: return result; } static int acpi_ec_transaction(struct acpi_ec *ec, u8 command, const u8 * wdata, unsigned wdata_len, u8 * rdata, unsigned rdata_len, int force_poll) { int status; u32 glk; if (!ec || (wdata_len && !wdata) || (rdata_len && !rdata)) return -EINVAL; if (rdata) memset(rdata, 0, rdata_len); mutex_lock(&ec->lock); if (ec->global_lock) { status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); if (ACPI_FAILURE(status)) { mutex_unlock(&ec->lock); return -ENODEV; } } /* Make sure GPE is enabled before doing transaction */ acpi_enable_gpe(NULL, ec->gpe, ACPI_NOT_ISR); status = acpi_ec_wait(ec, ACPI_EC_EVENT_IBF_0, 0, 0); if (status) { printk(KERN_ERR PREFIX "input buffer is not empty, aborting transaction\n"); goto end; } status = acpi_ec_transaction_unlocked(ec, command, wdata, wdata_len, rdata, rdata_len, force_poll); end: if (ec->global_lock) acpi_release_global_lock(glk); mutex_unlock(&ec->lock); return status; } /* * Note: samsung nv5000 doesn't work with ec burst mode. * http://bugzilla.kernel.org/show_bug.cgi?id=4980 */ int acpi_ec_burst_enable(struct acpi_ec *ec) { u8 d; return acpi_ec_transaction(ec, ACPI_EC_BURST_ENABLE, NULL, 0, &d, 1, 0); } int acpi_ec_burst_disable(struct acpi_ec *ec) { return acpi_ec_transaction(ec, ACPI_EC_BURST_DISABLE, NULL, 0, NULL, 0, 0); } static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 * data) { int result; u8 d; result = acpi_ec_transaction(ec, ACPI_EC_COMMAND_READ, &address, 1, &d, 1, 0); *data = d; return result; } static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) { u8 wdata[2] = { address, data }; return acpi_ec_transaction(ec, ACPI_EC_COMMAND_WRITE, wdata, 2, NULL, 0, 0); } /* * Externally callable EC access functions. For now, assume 1 EC only */ int ec_burst_enable(void) { if (!first_ec) return -ENODEV; return acpi_ec_burst_enable(first_ec); } EXPORT_SYMBOL(ec_burst_enable); int ec_burst_disable(void) { if (!first_ec) return -ENODEV; return acpi_ec_burst_disable(first_ec); } EXPORT_SYMBOL(ec_burst_disable); int ec_read(u8 addr, u8 * val) { int err; u8 temp_data; if (!first_ec) return -ENODEV; err = acpi_ec_read(first_ec, addr, &temp_data); if (!err) { *val = temp_data; return 0; } else return err; } EXPORT_SYMBOL(ec_read); int ec_write(u8 addr, u8 val) { int err; if (!first_ec) return -ENODEV; err = acpi_ec_write(first_ec, addr, val); return err; } EXPORT_SYMBOL(ec_write); int ec_transaction(u8 command, const u8 * wdata, unsigned wdata_len, u8 * rdata, unsigned rdata_len, int force_poll) { if (!first_ec) return -ENODEV; return acpi_ec_transaction(first_ec, command, wdata, wdata_len, rdata, rdata_len, force_poll); } EXPORT_SYMBOL(ec_transaction); static int acpi_ec_query(struct acpi_ec *ec, u8 * data) { int result; u8 d; if (!ec || !data) return -EINVAL; /* * Query the EC to find out which _Qxx method we need to evaluate. * Note that successful completion of the query causes the ACPI_EC_SCI * bit to be cleared (and thus clearing the interrupt source). */ result = acpi_ec_transaction(ec, ACPI_EC_COMMAND_QUERY, NULL, 0, &d, 1, 0); if (result) return result; if (!d) return -ENODATA; *data = d; return 0; } /* -------------------------------------------------------------------------- Event Management -------------------------------------------------------------------------- */ int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, acpi_handle handle, acpi_ec_query_func func, void *data) { struct acpi_ec_query_handler *handler = kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL); if (!handler) return -ENOMEM; handler->query_bit = query_bit; handler->handle = handle; handler->func = func; handler->data = data; mutex_lock(&ec->lock); list_add_tail(&handler->node, &ec->list); mutex_unlock(&ec->lock); return 0; } EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) { struct acpi_ec_query_handler *handler; mutex_lock(&ec->lock); list_for_each_entry(handler, &ec->list, node) { if (query_bit == handler->query_bit) { list_del(&handler->node); kfree(handler); break; } } mutex_unlock(&ec->lock); } EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); static void acpi_ec_gpe_query(void *ec_cxt) { struct acpi_ec *ec = ec_cxt; u8 value = 0; struct acpi_ec_query_handler *handler, copy; if (!ec || acpi_ec_query(ec, &value)) return; mutex_lock(&ec->lock); list_for_each_entry(handler, &ec->list, node) { if (value == handler->query_bit) { /* have custom handler for this bit */ memcpy(©, handler, sizeof(copy)); mutex_unlock(&ec->lock); if (copy.func) { copy.func(copy.data); } else if (copy.handle) { acpi_evaluate_object(copy.handle, NULL, NULL, NULL); } return; } } mutex_unlock(&ec->lock); } static u32 acpi_ec_gpe_handler(void *data) { acpi_status status = AE_OK; u8 value; struct acpi_ec *ec = data; atomic_inc(&ec->event_count); if (acpi_ec_mode == EC_INTR) { wake_up(&ec->wait); } value = acpi_ec_read_status(ec); if ((value & ACPI_EC_FLAG_SCI) && !atomic_read(&ec->query_pending)) { atomic_set(&ec->query_pending, 1); status = acpi_os_execute(OSL_EC_BURST_HANDLER, acpi_ec_gpe_query, ec); } return status == AE_OK ? ACPI_INTERRUPT_HANDLED : ACPI_INTERRUPT_NOT_HANDLED; } /* -------------------------------------------------------------------------- Address Space Management -------------------------------------------------------------------------- */ static acpi_status acpi_ec_space_setup(acpi_handle region_handle, u32 function, void *handler_context, void **return_context) { /* * The EC object is in the handler context and is needed * when calling the acpi_ec_space_handler. */ *return_context = (function != ACPI_REGION_DEACTIVATE) ? handler_context : NULL; return AE_OK; } static acpi_status acpi_ec_space_handler(u32 function, acpi_physical_address address, u32 bits, acpi_integer *value, void *handler_context, void *region_context) { struct acpi_ec *ec = handler_context; int result = 0, i = 0; u8 temp = 0; if ((address > 0xFF) || !value || !handler_context) return AE_BAD_PARAMETER; if (function != ACPI_READ && function != ACPI_WRITE) return AE_BAD_PARAMETER; if (bits != 8 && acpi_strict) return AE_BAD_PARAMETER; while (bits - i > 0) { if (function == ACPI_READ) { result = acpi_ec_read(ec, address, &temp); (*value) |= ((acpi_integer)temp) << i; } else { temp = 0xff & ((*value) >> i); result = acpi_ec_write(ec, address, temp); } i += 8; ++address; } switch (result) { case -EINVAL: return AE_BAD_PARAMETER; break; case -ENODEV: return AE_NOT_FOUND; break; case -ETIME: return AE_TIME; break; default: return AE_OK; } } /* -------------------------------------------------------------------------- FS Interface (/proc) -------------------------------------------------------------------------- */ static struct proc_dir_entry *acpi_ec_dir; static int acpi_ec_read_info(struct seq_file *seq, void *offset) { struct acpi_ec *ec = seq->private; if (!ec) goto end; seq_printf(seq, "gpe:\t\t\t0x%02x\n", (u32) ec->gpe); seq_printf(seq, "ports:\t\t\t0x%02x, 0x%02x\n", (unsigned)ec->command_addr, (unsigned)ec->data_addr); seq_printf(seq, "use global lock:\t%s\n", ec->global_lock ? "yes" : "no"); end: return 0; } static int acpi_ec_info_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_ec_read_info, PDE(inode)->data); } static struct file_operations acpi_ec_info_ops = { .open = acpi_ec_info_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, .owner = THIS_MODULE, }; static int acpi_ec_add_fs(struct acpi_device *device) { struct proc_dir_entry *entry = NULL; if (!acpi_device_dir(device)) { acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device), acpi_ec_dir); if (!acpi_device_dir(device)) return -ENODEV; } entry = create_proc_entry(ACPI_EC_FILE_INFO, S_IRUGO, acpi_device_dir(device)); if (!entry) return -ENODEV; else { entry->proc_fops = &acpi_ec_info_ops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } return 0; } static int acpi_ec_remove_fs(struct acpi_device *device) { if (acpi_device_dir(device)) { remove_proc_entry(ACPI_EC_FILE_INFO, acpi_device_dir(device)); remove_proc_entry(acpi_device_bid(device), acpi_ec_dir); acpi_device_dir(device) = NULL; } return 0; } /* -------------------------------------------------------------------------- Driver Interface -------------------------------------------------------------------------- */ static acpi_status ec_parse_io_ports(struct acpi_resource *resource, void *context); static struct acpi_ec *make_acpi_ec(void) { struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); if (!ec) return NULL; atomic_set(&ec->query_pending, 1); atomic_set(&ec->event_count, 1); mutex_init(&ec->lock); init_waitqueue_head(&ec->wait); INIT_LIST_HEAD(&ec->list); return ec; } static acpi_status ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) { acpi_status status; struct acpi_ec *ec = context; status = acpi_walk_resources(handle, METHOD_NAME__CRS, ec_parse_io_ports, ec); if (ACPI_FAILURE(status)) return status; /* Get GPE bit assignment (EC events). */ /* TODO: Add support for _GPE returning a package */ status = acpi_evaluate_integer(handle, "_GPE", NULL, &ec->gpe); if (ACPI_FAILURE(status)) return status; /* Use the global lock for all EC transactions? */ acpi_evaluate_integer(handle, "_GLK", NULL, &ec->global_lock); ec->handle = handle; printk(KERN_INFO PREFIX "GPE = 0x%lx, I/O: command/status = 0x%lx, data = 0x%lx", ec->gpe, ec->command_addr, ec->data_addr); return AE_CTRL_TERMINATE; } static void ec_remove_handlers(struct acpi_ec *ec) { acpi_remove_address_space_handler(ec->handle, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler); acpi_remove_gpe_handler(NULL, ec->gpe, &acpi_ec_gpe_handler); } static int acpi_ec_add(struct acpi_device *device) { struct acpi_ec *ec = NULL; if (!device) return -EINVAL; strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_EC_CLASS); ec = make_acpi_ec(); if (!ec) return -ENOMEM; if (ec_parse_device(device->handle, 0, ec, NULL) != AE_CTRL_TERMINATE) { kfree(ec); return -EINVAL; } /* Check if we found the boot EC */ if (boot_ec) { if (boot_ec->gpe == ec->gpe) { mutex_lock(&boot_ec->lock); ec_remove_handlers(boot_ec); mutex_unlock(&boot_ec->lock); mutex_destroy(&boot_ec->lock); kfree(boot_ec); first_ec = boot_ec = NULL; } } if (!first_ec) first_ec = ec; ec->handle = device->handle; acpi_driver_data(device) = ec; acpi_ec_add_fs(device); return 0; } static int acpi_ec_remove(struct acpi_device *device, int type) { struct acpi_ec *ec; struct acpi_ec_query_handler *handler; if (!device) return -EINVAL; ec = acpi_driver_data(device); mutex_lock(&ec->lock); list_for_each_entry(handler, &ec->list, node) { list_del(&handler->node); kfree(handler); } mutex_unlock(&ec->lock); acpi_ec_remove_fs(device); acpi_driver_data(device) = NULL; if (ec == first_ec) first_ec = NULL; return 0; } static acpi_status ec_parse_io_ports(struct acpi_resource *resource, void *context) { struct acpi_ec *ec = context; if (resource->type != ACPI_RESOURCE_TYPE_IO) return AE_OK; /* * The first address region returned is the data port, and * the second address region returned is the status/command * port. */ if (ec->data_addr == 0) ec->data_addr = resource->data.io.minimum; else if (ec->command_addr == 0) ec->command_addr = resource->data.io.minimum; else return AE_CTRL_TERMINATE; return AE_OK; } static int ec_install_handlers(struct acpi_ec *ec) { acpi_status status; status = acpi_install_gpe_handler(NULL, ec->gpe, ACPI_GPE_EDGE_TRIGGERED, &acpi_ec_gpe_handler, ec); if (ACPI_FAILURE(status)) return -ENODEV; acpi_set_gpe_type(NULL, ec->gpe, ACPI_GPE_TYPE_RUNTIME); acpi_enable_gpe(NULL, ec->gpe, ACPI_NOT_ISR); status = acpi_install_address_space_handler(ec->handle, ACPI_ADR_SPACE_EC, &acpi_ec_space_handler, &acpi_ec_space_setup, ec); if (ACPI_FAILURE(status)) { acpi_remove_gpe_handler(NULL, ec->gpe, &acpi_ec_gpe_handler); return -ENODEV; } return 0; } static int acpi_ec_start(struct acpi_device *device) { struct acpi_ec *ec; int ret = 0; if (!device) return -EINVAL; ec = acpi_driver_data(device); if (!ec) return -EINVAL; ret = ec_install_handlers(ec); /* EC is fully operational, allow queries */ atomic_set(&ec->query_pending, 0); return ret; } static int acpi_ec_stop(struct acpi_device *device, int type) { struct acpi_ec *ec; if (!device) return -EINVAL; ec = acpi_driver_data(device); if (!ec) return -EINVAL; ec_remove_handlers(ec); return 0; } int __init acpi_ec_ecdt_probe(void) { int ret; acpi_status status; struct acpi_table_ecdt *ecdt_ptr; boot_ec = make_acpi_ec(); if (!boot_ec) return -ENOMEM; /* * Generate a boot ec context */ status = acpi_get_table(ACPI_SIG_ECDT, 1, (struct acpi_table_header **)&ecdt_ptr); if (ACPI_SUCCESS(status)) { printk(KERN_INFO PREFIX "EC description table is found, configuring boot EC\n\n"); boot_ec->command_addr = ecdt_ptr->control.address; boot_ec->data_addr = ecdt_ptr->data.address; boot_ec->gpe = ecdt_ptr->gpe; boot_ec->handle = ACPI_ROOT_OBJECT; } else { printk(KERN_DEBUG PREFIX "Look up EC in DSDT\n"); status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, boot_ec, NULL); if (ACPI_FAILURE(status)) goto error; } ret = ec_install_handlers(boot_ec); if (!ret) { first_ec = boot_ec; return 0; } error: kfree(boot_ec); boot_ec = NULL; return -ENODEV; } static int __init acpi_ec_init(void) { int result = 0; if (acpi_disabled) return 0; acpi_ec_dir = proc_mkdir(ACPI_EC_CLASS, acpi_root_dir); if (!acpi_ec_dir) return -ENODEV; /* Now register the driver for the EC */ result = acpi_bus_register_driver(&acpi_ec_driver); if (result < 0) { remove_proc_entry(ACPI_EC_CLASS, acpi_root_dir); return -ENODEV; } return result; } subsys_initcall(acpi_ec_init); /* EC driver currently not unloadable */ #if 0 static void __exit acpi_ec_exit(void) { acpi_bus_unregister_driver(&acpi_ec_driver); remove_proc_entry(ACPI_EC_CLASS, acpi_root_dir); return; } #endif /* 0 */ static int __init acpi_ec_set_intr_mode(char *str) { int intr; if (!get_option(&str, &intr)) return 0; acpi_ec_mode = (intr) ? EC_INTR : EC_POLL; printk(KERN_NOTICE PREFIX "%s mode.\n", intr ? "interrupt" : "polling"); return 1; } __setup("ec_intr=", acpi_ec_set_intr_mode);