/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "nfit.h" /* * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is * irrelevant. */ #include static bool force_enable_dimms; module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); static struct workqueue_struct *nfit_wq; struct nfit_table_prev { struct list_head spas; struct list_head memdevs; struct list_head dcrs; struct list_head bdws; struct list_head idts; struct list_head flushes; }; static u8 nfit_uuid[NFIT_UUID_MAX][16]; const u8 *to_nfit_uuid(enum nfit_uuids id) { return nfit_uuid[id]; } EXPORT_SYMBOL(to_nfit_uuid); static struct acpi_nfit_desc *to_acpi_nfit_desc( struct nvdimm_bus_descriptor *nd_desc) { return container_of(nd_desc, struct acpi_nfit_desc, nd_desc); } static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; /* * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct * acpi_device. */ if (!nd_desc->provider_name || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) return NULL; return to_acpi_device(acpi_desc->dev); } static int xlat_status(void *buf, unsigned int cmd) { struct nd_cmd_ars_status *ars_status; struct nd_cmd_ars_start *ars_start; struct nd_cmd_ars_cap *ars_cap; u16 flags; switch (cmd) { case ND_CMD_ARS_CAP: ars_cap = buf; if ((ars_cap->status & 0xffff) == NFIT_ARS_CAP_NONE) return -ENOTTY; /* Command failed */ if (ars_cap->status & 0xffff) return -EIO; /* No supported scan types for this range */ flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; if ((ars_cap->status >> 16 & flags) == 0) return -ENOTTY; break; case ND_CMD_ARS_START: ars_start = buf; /* ARS is in progress */ if ((ars_start->status & 0xffff) == NFIT_ARS_START_BUSY) return -EBUSY; /* Command failed */ if (ars_start->status & 0xffff) return -EIO; break; case ND_CMD_ARS_STATUS: ars_status = buf; /* Command failed */ if (ars_status->status & 0xffff) return -EIO; /* Check extended status (Upper two bytes) */ if (ars_status->status == NFIT_ARS_STATUS_DONE) return 0; /* ARS is in progress */ if (ars_status->status == NFIT_ARS_STATUS_BUSY) return -EBUSY; /* No ARS performed for the current boot */ if (ars_status->status == NFIT_ARS_STATUS_NONE) return -EAGAIN; /* * ARS interrupted, either we overflowed or some other * agent wants the scan to stop. If we didn't overflow * then just continue with the returned results. */ if (ars_status->status == NFIT_ARS_STATUS_INTR) { if (ars_status->flags & NFIT_ARS_F_OVERFLOW) return -ENOSPC; return 0; } /* Unknown status */ if (ars_status->status >> 16) return -EIO; break; default: break; } return 0; } static int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) { struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); const struct nd_cmd_desc *desc = NULL; union acpi_object in_obj, in_buf, *out_obj; struct device *dev = acpi_desc->dev; const char *cmd_name, *dimm_name; unsigned long dsm_mask; acpi_handle handle; const u8 *uuid; u32 offset; int rc, i; if (nvdimm) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); struct acpi_device *adev = nfit_mem->adev; if (!adev) return -ENOTTY; dimm_name = nvdimm_name(nvdimm); cmd_name = nvdimm_cmd_name(cmd); dsm_mask = nfit_mem->dsm_mask; desc = nd_cmd_dimm_desc(cmd); uuid = to_nfit_uuid(NFIT_DEV_DIMM); handle = adev->handle; } else { struct acpi_device *adev = to_acpi_dev(acpi_desc); cmd_name = nvdimm_bus_cmd_name(cmd); dsm_mask = nd_desc->dsm_mask; desc = nd_cmd_bus_desc(cmd); uuid = to_nfit_uuid(NFIT_DEV_BUS); handle = adev->handle; dimm_name = "bus"; } if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) return -ENOTTY; if (!test_bit(cmd, &dsm_mask)) return -ENOTTY; in_obj.type = ACPI_TYPE_PACKAGE; in_obj.package.count = 1; in_obj.package.elements = &in_buf; in_buf.type = ACPI_TYPE_BUFFER; in_buf.buffer.pointer = buf; in_buf.buffer.length = 0; /* libnvdimm has already validated the input envelope */ for (i = 0; i < desc->in_num; i++) in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, i, buf); if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) { dev_dbg(dev, "%s:%s cmd: %s input length: %d\n", __func__, dimm_name, cmd_name, in_buf.buffer.length); print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, in_buf.buffer.pointer, min_t(u32, 128, in_buf.buffer.length), true); } out_obj = acpi_evaluate_dsm(handle, uuid, 1, cmd, &in_obj); if (!out_obj) { dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name, cmd_name); return -EINVAL; } if (out_obj->package.type != ACPI_TYPE_BUFFER) { dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n", __func__, dimm_name, cmd_name, out_obj->type); rc = -EINVAL; goto out; } if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) { dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name, cmd_name, out_obj->buffer.length); print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, out_obj->buffer.pointer, min_t(u32, 128, out_obj->buffer.length), true); } for (i = 0, offset = 0; i < desc->out_num; i++) { u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, (u32 *) out_obj->buffer.pointer); if (offset + out_size > out_obj->buffer.length) { dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n", __func__, dimm_name, cmd_name, i); break; } if (in_buf.buffer.length + offset + out_size > buf_len) { dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n", __func__, dimm_name, cmd_name, i); rc = -ENXIO; goto out; } memcpy(buf + in_buf.buffer.length + offset, out_obj->buffer.pointer + offset, out_size); offset += out_size; } if (offset + in_buf.buffer.length < buf_len) { if (i >= 1) { /* * status valid, return the number of bytes left * unfilled in the output buffer */ rc = buf_len - offset - in_buf.buffer.length; if (cmd_rc) *cmd_rc = xlat_status(buf, cmd); } else { dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", __func__, dimm_name, cmd_name, buf_len, offset); rc = -ENXIO; } } else rc = 0; out: ACPI_FREE(out_obj); return rc; } static const char *spa_type_name(u16 type) { static const char *to_name[] = { [NFIT_SPA_VOLATILE] = "volatile", [NFIT_SPA_PM] = "pmem", [NFIT_SPA_DCR] = "dimm-control-region", [NFIT_SPA_BDW] = "block-data-window", [NFIT_SPA_VDISK] = "volatile-disk", [NFIT_SPA_VCD] = "volatile-cd", [NFIT_SPA_PDISK] = "persistent-disk", [NFIT_SPA_PCD] = "persistent-cd", }; if (type > NFIT_SPA_PCD) return "unknown"; return to_name[type]; } static int nfit_spa_type(struct acpi_nfit_system_address *spa) { int i; for (i = 0; i < NFIT_UUID_MAX; i++) if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0) return i; return -1; } static bool add_spa(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_system_address *spa) { size_t length = min_t(size_t, sizeof(*spa), spa->header.length); struct device *dev = acpi_desc->dev; struct nfit_spa *nfit_spa; list_for_each_entry(nfit_spa, &prev->spas, list) { if (memcmp(nfit_spa->spa, spa, length) == 0) { list_move_tail(&nfit_spa->list, &acpi_desc->spas); return true; } } nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa), GFP_KERNEL); if (!nfit_spa) return false; INIT_LIST_HEAD(&nfit_spa->list); nfit_spa->spa = spa; list_add_tail(&nfit_spa->list, &acpi_desc->spas); dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__, spa->range_index, spa_type_name(nfit_spa_type(spa))); return true; } static bool add_memdev(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_memory_map *memdev) { size_t length = min_t(size_t, sizeof(*memdev), memdev->header.length); struct device *dev = acpi_desc->dev; struct nfit_memdev *nfit_memdev; list_for_each_entry(nfit_memdev, &prev->memdevs, list) if (memcmp(nfit_memdev->memdev, memdev, length) == 0) { list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); return true; } nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev), GFP_KERNEL); if (!nfit_memdev) return false; INIT_LIST_HEAD(&nfit_memdev->list); nfit_memdev->memdev = memdev; list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n", __func__, memdev->device_handle, memdev->range_index, memdev->region_index); return true; } static bool add_dcr(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_control_region *dcr) { size_t length = min_t(size_t, sizeof(*dcr), dcr->header.length); struct device *dev = acpi_desc->dev; struct nfit_dcr *nfit_dcr; list_for_each_entry(nfit_dcr, &prev->dcrs, list) if (memcmp(nfit_dcr->dcr, dcr, length) == 0) { list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); return true; } nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr), GFP_KERNEL); if (!nfit_dcr) return false; INIT_LIST_HEAD(&nfit_dcr->list); nfit_dcr->dcr = dcr; list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__, dcr->region_index, dcr->windows); return true; } static bool add_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_data_region *bdw) { size_t length = min_t(size_t, sizeof(*bdw), bdw->header.length); struct device *dev = acpi_desc->dev; struct nfit_bdw *nfit_bdw; list_for_each_entry(nfit_bdw, &prev->bdws, list) if (memcmp(nfit_bdw->bdw, bdw, length) == 0) { list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); return true; } nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw), GFP_KERNEL); if (!nfit_bdw) return false; INIT_LIST_HEAD(&nfit_bdw->list); nfit_bdw->bdw = bdw; list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__, bdw->region_index, bdw->windows); return true; } static bool add_idt(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_interleave *idt) { size_t length = min_t(size_t, sizeof(*idt), idt->header.length); struct device *dev = acpi_desc->dev; struct nfit_idt *nfit_idt; list_for_each_entry(nfit_idt, &prev->idts, list) if (memcmp(nfit_idt->idt, idt, length) == 0) { list_move_tail(&nfit_idt->list, &acpi_desc->idts); return true; } nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt), GFP_KERNEL); if (!nfit_idt) return false; INIT_LIST_HEAD(&nfit_idt->list); nfit_idt->idt = idt; list_add_tail(&nfit_idt->list, &acpi_desc->idts); dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__, idt->interleave_index, idt->line_count); return true; } static bool add_flush(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_flush_address *flush) { size_t length = min_t(size_t, sizeof(*flush), flush->header.length); struct device *dev = acpi_desc->dev; struct nfit_flush *nfit_flush; list_for_each_entry(nfit_flush, &prev->flushes, list) if (memcmp(nfit_flush->flush, flush, length) == 0) { list_move_tail(&nfit_flush->list, &acpi_desc->flushes); return true; } nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush), GFP_KERNEL); if (!nfit_flush) return false; INIT_LIST_HEAD(&nfit_flush->list); nfit_flush->flush = flush; list_add_tail(&nfit_flush->list, &acpi_desc->flushes); dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__, flush->device_handle, flush->hint_count); return true; } static void *add_table(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, void *table, const void *end) { struct device *dev = acpi_desc->dev; struct acpi_nfit_header *hdr; void *err = ERR_PTR(-ENOMEM); if (table >= end) return NULL; hdr = table; if (!hdr->length) { dev_warn(dev, "found a zero length table '%d' parsing nfit\n", hdr->type); return NULL; } switch (hdr->type) { case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: if (!add_spa(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_MEMORY_MAP: if (!add_memdev(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_CONTROL_REGION: if (!add_dcr(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_DATA_REGION: if (!add_bdw(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_INTERLEAVE: if (!add_idt(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: if (!add_flush(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_SMBIOS: dev_dbg(dev, "%s: smbios\n", __func__); break; default: dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); break; } return table + hdr->length; } static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem) { u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; u16 dcr = nfit_mem->dcr->region_index; struct nfit_spa *nfit_spa; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { u16 range_index = nfit_spa->spa->range_index; int type = nfit_spa_type(nfit_spa->spa); struct nfit_memdev *nfit_memdev; if (type != NFIT_SPA_BDW) continue; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { if (nfit_memdev->memdev->range_index != range_index) continue; if (nfit_memdev->memdev->device_handle != device_handle) continue; if (nfit_memdev->memdev->region_index != dcr) continue; nfit_mem->spa_bdw = nfit_spa->spa; return; } } dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", nfit_mem->spa_dcr->range_index); nfit_mem->bdw = NULL; } static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) { u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; struct nfit_memdev *nfit_memdev; struct nfit_flush *nfit_flush; struct nfit_bdw *nfit_bdw; struct nfit_idt *nfit_idt; u16 idt_idx, range_index; list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { if (nfit_bdw->bdw->region_index != dcr) continue; nfit_mem->bdw = nfit_bdw->bdw; break; } if (!nfit_mem->bdw) return; nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); if (!nfit_mem->spa_bdw) return; range_index = nfit_mem->spa_bdw->range_index; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { if (nfit_memdev->memdev->range_index != range_index || nfit_memdev->memdev->region_index != dcr) continue; nfit_mem->memdev_bdw = nfit_memdev->memdev; idt_idx = nfit_memdev->memdev->interleave_index; list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { if (nfit_idt->idt->interleave_index != idt_idx) continue; nfit_mem->idt_bdw = nfit_idt->idt; break; } list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { if (nfit_flush->flush->device_handle != nfit_memdev->memdev->device_handle) continue; nfit_mem->nfit_flush = nfit_flush; break; } break; } } static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa) { struct nfit_mem *nfit_mem, *found; struct nfit_memdev *nfit_memdev; int type = nfit_spa_type(spa); switch (type) { case NFIT_SPA_DCR: case NFIT_SPA_PM: break; default: return 0; } list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct nfit_dcr *nfit_dcr; u32 device_handle; u16 dcr; if (nfit_memdev->memdev->range_index != spa->range_index) continue; found = NULL; dcr = nfit_memdev->memdev->region_index; device_handle = nfit_memdev->memdev->device_handle; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) { found = nfit_mem; break; } if (found) nfit_mem = found; else { nfit_mem = devm_kzalloc(acpi_desc->dev, sizeof(*nfit_mem), GFP_KERNEL); if (!nfit_mem) return -ENOMEM; INIT_LIST_HEAD(&nfit_mem->list); list_add(&nfit_mem->list, &acpi_desc->dimms); } list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { if (nfit_dcr->dcr->region_index != dcr) continue; /* * Record the control region for the dimm. For * the ACPI 6.1 case, where there are separate * control regions for the pmem vs blk * interfaces, be sure to record the extended * blk details. */ if (!nfit_mem->dcr) nfit_mem->dcr = nfit_dcr->dcr; else if (nfit_mem->dcr->windows == 0 && nfit_dcr->dcr->windows) nfit_mem->dcr = nfit_dcr->dcr; break; } if (dcr && !nfit_mem->dcr) { dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", spa->range_index, dcr); return -ENODEV; } if (type == NFIT_SPA_DCR) { struct nfit_idt *nfit_idt; u16 idt_idx; /* multiple dimms may share a SPA when interleaved */ nfit_mem->spa_dcr = spa; nfit_mem->memdev_dcr = nfit_memdev->memdev; idt_idx = nfit_memdev->memdev->interleave_index; list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { if (nfit_idt->idt->interleave_index != idt_idx) continue; nfit_mem->idt_dcr = nfit_idt->idt; break; } nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); } else { /* * A single dimm may belong to multiple SPA-PM * ranges, record at least one in addition to * any SPA-DCR range. */ nfit_mem->memdev_pmem = nfit_memdev->memdev; } } return 0; } static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) { struct nfit_mem *a = container_of(_a, typeof(*a), list); struct nfit_mem *b = container_of(_b, typeof(*b), list); u32 handleA, handleB; handleA = __to_nfit_memdev(a)->device_handle; handleB = __to_nfit_memdev(b)->device_handle; if (handleA < handleB) return -1; else if (handleA > handleB) return 1; return 0; } static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; /* * For each SPA-DCR or SPA-PMEM address range find its * corresponding MEMDEV(s). From each MEMDEV find the * corresponding DCR. Then, if we're operating on a SPA-DCR, * try to find a SPA-BDW and a corresponding BDW that references * the DCR. Throw it all into an nfit_mem object. Note, that * BDWs are optional. */ list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { int rc; rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa); if (rc) return rc; } list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); return 0; } static ssize_t revision_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); } static DEVICE_ATTR_RO(revision); static struct attribute *acpi_nfit_attributes[] = { &dev_attr_revision.attr, NULL, }; static struct attribute_group acpi_nfit_attribute_group = { .name = "nfit", .attrs = acpi_nfit_attributes, }; static const struct attribute_group *acpi_nfit_attribute_groups[] = { &nvdimm_bus_attribute_group, &acpi_nfit_attribute_group, NULL, }; static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return __to_nfit_memdev(nfit_mem); } static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return nfit_mem->dcr; } static ssize_t handle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); return sprintf(buf, "%#x\n", memdev->device_handle); } static DEVICE_ATTR_RO(handle); static ssize_t phys_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); return sprintf(buf, "%#x\n", memdev->physical_id); } static DEVICE_ATTR_RO(phys_id); static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "%#x\n", dcr->vendor_id); } static DEVICE_ATTR_RO(vendor); static ssize_t rev_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "%#x\n", dcr->revision_id); } static DEVICE_ATTR_RO(rev_id); static ssize_t device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "%#x\n", dcr->device_id); } static DEVICE_ATTR_RO(device); static ssize_t format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "%#x\n", dcr->code); } static DEVICE_ATTR_RO(format); static ssize_t serial_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "%#x\n", dcr->serial_number); } static DEVICE_ATTR_RO(serial); static ssize_t flags_show(struct device *dev, struct device_attribute *attr, char *buf) { u16 flags = to_nfit_memdev(dev)->flags; return sprintf(buf, "%s%s%s%s%s\n", flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : ""); } static DEVICE_ATTR_RO(flags); static struct attribute *acpi_nfit_dimm_attributes[] = { &dev_attr_handle.attr, &dev_attr_phys_id.attr, &dev_attr_vendor.attr, &dev_attr_device.attr, &dev_attr_format.attr, &dev_attr_serial.attr, &dev_attr_rev_id.attr, &dev_attr_flags.attr, NULL, }; static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); if (to_nfit_dcr(dev)) return a->mode; else return 0; } static struct attribute_group acpi_nfit_dimm_attribute_group = { .name = "nfit", .attrs = acpi_nfit_dimm_attributes, .is_visible = acpi_nfit_dimm_attr_visible, }; static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { &nvdimm_attribute_group, &nd_device_attribute_group, &acpi_nfit_dimm_attribute_group, NULL, }; static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, u32 device_handle) { struct nfit_mem *nfit_mem; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) return nfit_mem->nvdimm; return NULL; } static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem, u32 device_handle) { struct acpi_device *adev, *adev_dimm; struct device *dev = acpi_desc->dev; const u8 *uuid = to_nfit_uuid(NFIT_DEV_DIMM); int i; nfit_mem->dsm_mask = acpi_desc->dimm_dsm_force_en; adev = to_acpi_dev(acpi_desc); if (!adev) return 0; adev_dimm = acpi_find_child_device(adev, device_handle, false); nfit_mem->adev = adev_dimm; if (!adev_dimm) { dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", device_handle); return force_enable_dimms ? 0 : -ENODEV; } for (i = ND_CMD_SMART; i <= ND_CMD_VENDOR; i++) if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i)) set_bit(i, &nfit_mem->dsm_mask); return 0; } static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) { struct nfit_mem *nfit_mem; int dimm_count = 0; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct nvdimm *nvdimm; unsigned long flags = 0; u32 device_handle; u16 mem_flags; int rc; device_handle = __to_nfit_memdev(nfit_mem)->device_handle; nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); if (nvdimm) { dimm_count++; continue; } if (nfit_mem->bdw && nfit_mem->memdev_pmem) flags |= NDD_ALIASING; mem_flags = __to_nfit_memdev(nfit_mem)->flags; if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) flags |= NDD_UNARMED; rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); if (rc) continue; nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, acpi_nfit_dimm_attribute_groups, flags, &nfit_mem->dsm_mask); if (!nvdimm) return -ENOMEM; nfit_mem->nvdimm = nvdimm; dimm_count++; if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) continue; dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n", nvdimm_name(nvdimm), mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : ""); } return nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); } static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS); struct acpi_device *adev; int i; nd_desc->dsm_mask = acpi_desc->bus_dsm_force_en; adev = to_acpi_dev(acpi_desc); if (!adev) return; for (i = ND_CMD_ARS_CAP; i <= ND_CMD_ARS_STATUS; i++) if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i)) set_bit(i, &nd_desc->dsm_mask); } static ssize_t range_index_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); return sprintf(buf, "%d\n", nfit_spa->spa->range_index); } static DEVICE_ATTR_RO(range_index); static struct attribute *acpi_nfit_region_attributes[] = { &dev_attr_range_index.attr, NULL, }; static struct attribute_group acpi_nfit_region_attribute_group = { .name = "nfit", .attrs = acpi_nfit_region_attributes, }; static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { &nd_region_attribute_group, &nd_mapping_attribute_group, &nd_device_attribute_group, &nd_numa_attribute_group, &acpi_nfit_region_attribute_group, NULL, }; /* enough info to uniquely specify an interleave set */ struct nfit_set_info { struct nfit_set_info_map { u64 region_offset; u32 serial_number; u32 pad; } mapping[0]; }; static size_t sizeof_nfit_set_info(int num_mappings) { return sizeof(struct nfit_set_info) + num_mappings * sizeof(struct nfit_set_info_map); } static int cmp_map(const void *m0, const void *m1) { const struct nfit_set_info_map *map0 = m0; const struct nfit_set_info_map *map1 = m1; return memcmp(&map0->region_offset, &map1->region_offset, sizeof(u64)); } /* Retrieve the nth entry referencing this spa */ static struct acpi_nfit_memory_map *memdev_from_spa( struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) { struct nfit_memdev *nfit_memdev; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) if (nfit_memdev->memdev->range_index == range_index) if (n-- == 0) return nfit_memdev->memdev; return NULL; } static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, struct nd_region_desc *ndr_desc, struct acpi_nfit_system_address *spa) { int i, spa_type = nfit_spa_type(spa); struct device *dev = acpi_desc->dev; struct nd_interleave_set *nd_set; u16 nr = ndr_desc->num_mappings; struct nfit_set_info *info; if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE) /* pass */; else return 0; nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); if (!nd_set) return -ENOMEM; info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); if (!info) return -ENOMEM; for (i = 0; i < nr; i++) { struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i]; struct nfit_set_info_map *map = &info->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, spa->range_index, i); if (!memdev || !nfit_mem->dcr) { dev_err(dev, "%s: failed to find DCR\n", __func__); return -ENODEV; } map->region_offset = memdev->region_offset; map->serial_number = nfit_mem->dcr->serial_number; } sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), cmp_map, NULL); nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); ndr_desc->nd_set = nd_set; devm_kfree(dev, info); return 0; } static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) { struct acpi_nfit_interleave *idt = mmio->idt; u32 sub_line_offset, line_index, line_offset; u64 line_no, table_skip_count, table_offset; line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); line_offset = idt->line_offset[line_index] * mmio->line_size; table_offset = table_skip_count * mmio->table_size; return mmio->base_offset + line_offset + table_offset + sub_line_offset; } static void wmb_blk(struct nfit_blk *nfit_blk) { if (nfit_blk->nvdimm_flush) { /* * The first wmb() is needed to 'sfence' all previous writes * such that they are architecturally visible for the platform * buffer flush. Note that we've already arranged for pmem * writes to avoid the cache via arch_memcpy_to_pmem(). The * final wmb() ensures ordering for the NVDIMM flush write. */ wmb(); writeq(1, nfit_blk->nvdimm_flush); wmb(); } else wmb_pmem(); } static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; u64 offset = nfit_blk->stat_offset + mmio->size * bw; if (mmio->num_lines) offset = to_interleave_offset(offset, mmio); return readl(mmio->addr.base + offset); } static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, resource_size_t dpa, unsigned int len, unsigned int write) { u64 cmd, offset; struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; enum { BCW_OFFSET_MASK = (1ULL << 48)-1, BCW_LEN_SHIFT = 48, BCW_LEN_MASK = (1ULL << 8) - 1, BCW_CMD_SHIFT = 56, }; cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; len = len >> L1_CACHE_SHIFT; cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; cmd |= ((u64) write) << BCW_CMD_SHIFT; offset = nfit_blk->cmd_offset + mmio->size * bw; if (mmio->num_lines) offset = to_interleave_offset(offset, mmio); writeq(cmd, mmio->addr.base + offset); wmb_blk(nfit_blk); if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) readq(mmio->addr.base + offset); } static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, resource_size_t dpa, void *iobuf, size_t len, int rw, unsigned int lane) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; unsigned int copied = 0; u64 base_offset; int rc; base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES + lane * mmio->size; write_blk_ctl(nfit_blk, lane, dpa, len, rw); while (len) { unsigned int c; u64 offset; if (mmio->num_lines) { u32 line_offset; offset = to_interleave_offset(base_offset + copied, mmio); div_u64_rem(offset, mmio->line_size, &line_offset); c = min_t(size_t, len, mmio->line_size - line_offset); } else { offset = base_offset + nfit_blk->bdw_offset; c = len; } if (rw) memcpy_to_pmem(mmio->addr.aperture + offset, iobuf + copied, c); else { if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) mmio_flush_range((void __force *) mmio->addr.aperture + offset, c); memcpy_from_pmem(iobuf + copied, mmio->addr.aperture + offset, c); } copied += c; len -= c; } if (rw) wmb_blk(nfit_blk); rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; return rc; } static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, resource_size_t dpa, void *iobuf, u64 len, int rw) { struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; struct nd_region *nd_region = nfit_blk->nd_region; unsigned int lane, copied = 0; int rc = 0; lane = nd_region_acquire_lane(nd_region); while (len) { u64 c = min(len, mmio->size); rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, iobuf + copied, c, rw, lane); if (rc) break; copied += c; len -= c; } nd_region_release_lane(nd_region, lane); return rc; } static void nfit_spa_mapping_release(struct kref *kref) { struct nfit_spa_mapping *spa_map = to_spa_map(kref); struct acpi_nfit_system_address *spa = spa_map->spa; struct acpi_nfit_desc *acpi_desc = spa_map->acpi_desc; WARN_ON(!mutex_is_locked(&acpi_desc->spa_map_mutex)); dev_dbg(acpi_desc->dev, "%s: SPA%d\n", __func__, spa->range_index); if (spa_map->type == SPA_MAP_APERTURE) memunmap((void __force *)spa_map->addr.aperture); else iounmap(spa_map->addr.base); release_mem_region(spa->address, spa->length); list_del(&spa_map->list); kfree(spa_map); } static struct nfit_spa_mapping *find_spa_mapping( struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa) { struct nfit_spa_mapping *spa_map; WARN_ON(!mutex_is_locked(&acpi_desc->spa_map_mutex)); list_for_each_entry(spa_map, &acpi_desc->spa_maps, list) if (spa_map->spa == spa) return spa_map; return NULL; } static void nfit_spa_unmap(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa) { struct nfit_spa_mapping *spa_map; mutex_lock(&acpi_desc->spa_map_mutex); spa_map = find_spa_mapping(acpi_desc, spa); if (spa_map) kref_put(&spa_map->kref, nfit_spa_mapping_release); mutex_unlock(&acpi_desc->spa_map_mutex); } static void __iomem *__nfit_spa_map(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa, enum spa_map_type type) { resource_size_t start = spa->address; resource_size_t n = spa->length; struct nfit_spa_mapping *spa_map; struct resource *res; WARN_ON(!mutex_is_locked(&acpi_desc->spa_map_mutex)); spa_map = find_spa_mapping(acpi_desc, spa); if (spa_map) { kref_get(&spa_map->kref); return spa_map->addr.base; } spa_map = kzalloc(sizeof(*spa_map), GFP_KERNEL); if (!spa_map) return NULL; INIT_LIST_HEAD(&spa_map->list); spa_map->spa = spa; kref_init(&spa_map->kref); spa_map->acpi_desc = acpi_desc; res = request_mem_region(start, n, dev_name(acpi_desc->dev)); if (!res) goto err_mem; spa_map->type = type; if (type == SPA_MAP_APERTURE) spa_map->addr.aperture = (void __pmem *)memremap(start, n, ARCH_MEMREMAP_PMEM); else spa_map->addr.base = ioremap_nocache(start, n); if (!spa_map->addr.base) goto err_map; list_add_tail(&spa_map->list, &acpi_desc->spa_maps); return spa_map->addr.base; err_map: release_mem_region(start, n); err_mem: kfree(spa_map); return NULL; } /** * nfit_spa_map - interleave-aware managed-mappings of acpi_nfit_system_address ranges * @nvdimm_bus: NFIT-bus that provided the spa table entry * @nfit_spa: spa table to map * @type: aperture or control region * * In the case where block-data-window apertures and * dimm-control-regions are interleaved they will end up sharing a * single request_mem_region() + ioremap() for the address range. In * the style of devm nfit_spa_map() mappings are automatically dropped * when all region devices referencing the same mapping are disabled / * unbound. */ static void __iomem *nfit_spa_map(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa, enum spa_map_type type) { void __iomem *iomem; mutex_lock(&acpi_desc->spa_map_mutex); iomem = __nfit_spa_map(acpi_desc, spa, type); mutex_unlock(&acpi_desc->spa_map_mutex); return iomem; } static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, struct acpi_nfit_interleave *idt, u16 interleave_ways) { if (idt) { mmio->num_lines = idt->line_count; mmio->line_size = idt->line_size; if (interleave_ways == 0) return -ENXIO; mmio->table_size = mmio->num_lines * interleave_ways * mmio->line_size; } return 0; } static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) { struct nd_cmd_dimm_flags flags; int rc; memset(&flags, 0, sizeof(flags)); rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, sizeof(flags), NULL); if (rc >= 0 && flags.status == 0) nfit_blk->dimm_flags = flags.flags; else if (rc == -ENOTTY) { /* fall back to a conservative default */ nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; rc = 0; } else rc = -ENXIO; return rc; } static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); struct nd_blk_region *ndbr = to_nd_blk_region(dev); struct nfit_flush *nfit_flush; struct nfit_blk_mmio *mmio; struct nfit_blk *nfit_blk; struct nfit_mem *nfit_mem; struct nvdimm *nvdimm; int rc; nvdimm = nd_blk_region_to_dimm(ndbr); nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { dev_dbg(dev, "%s: missing%s%s%s\n", __func__, nfit_mem ? "" : " nfit_mem", (nfit_mem && nfit_mem->dcr) ? "" : " dcr", (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); return -ENXIO; } nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); if (!nfit_blk) return -ENOMEM; nd_blk_region_set_provider_data(ndbr, nfit_blk); nfit_blk->nd_region = to_nd_region(dev); /* map block aperture memory */ nfit_blk->bdw_offset = nfit_mem->bdw->offset; mmio = &nfit_blk->mmio[BDW]; mmio->addr.base = nfit_spa_map(acpi_desc, nfit_mem->spa_bdw, SPA_MAP_APERTURE); if (!mmio->addr.base) { dev_dbg(dev, "%s: %s failed to map bdw\n", __func__, nvdimm_name(nvdimm)); return -ENOMEM; } mmio->size = nfit_mem->bdw->size; mmio->base_offset = nfit_mem->memdev_bdw->region_offset; mmio->idt = nfit_mem->idt_bdw; mmio->spa = nfit_mem->spa_bdw; rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, nfit_mem->memdev_bdw->interleave_ways); if (rc) { dev_dbg(dev, "%s: %s failed to init bdw interleave\n", __func__, nvdimm_name(nvdimm)); return rc; } /* map block control memory */ nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; nfit_blk->stat_offset = nfit_mem->dcr->status_offset; mmio = &nfit_blk->mmio[DCR]; mmio->addr.base = nfit_spa_map(acpi_desc, nfit_mem->spa_dcr, SPA_MAP_CONTROL); if (!mmio->addr.base) { dev_dbg(dev, "%s: %s failed to map dcr\n", __func__, nvdimm_name(nvdimm)); return -ENOMEM; } mmio->size = nfit_mem->dcr->window_size; mmio->base_offset = nfit_mem->memdev_dcr->region_offset; mmio->idt = nfit_mem->idt_dcr; mmio->spa = nfit_mem->spa_dcr; rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, nfit_mem->memdev_dcr->interleave_ways); if (rc) { dev_dbg(dev, "%s: %s failed to init dcr interleave\n", __func__, nvdimm_name(nvdimm)); return rc; } rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); if (rc < 0) { dev_dbg(dev, "%s: %s failed get DIMM flags\n", __func__, nvdimm_name(nvdimm)); return rc; } nfit_flush = nfit_mem->nfit_flush; if (nfit_flush && nfit_flush->flush->hint_count != 0) { nfit_blk->nvdimm_flush = devm_ioremap_nocache(dev, nfit_flush->flush->hint_address[0], 8); if (!nfit_blk->nvdimm_flush) return -ENOMEM; } if (!arch_has_wmb_pmem() && !nfit_blk->nvdimm_flush) dev_warn(dev, "unable to guarantee persistence of writes\n"); if (mmio->line_size == 0) return 0; if ((u32) nfit_blk->cmd_offset % mmio->line_size + 8 > mmio->line_size) { dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); return -ENXIO; } else if ((u32) nfit_blk->stat_offset % mmio->line_size + 8 > mmio->line_size) { dev_dbg(dev, "stat_offset crosses interleave boundary\n"); return -ENXIO; } return 0; } static void acpi_nfit_blk_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); struct nd_blk_region *ndbr = to_nd_blk_region(dev); struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); int i; if (!nfit_blk) return; /* never enabled */ /* auto-free BLK spa mappings */ for (i = 0; i < 2; i++) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[i]; if (mmio->addr.base) nfit_spa_unmap(acpi_desc, mmio->spa); } nd_blk_region_set_provider_data(ndbr, NULL); /* devm will free nfit_blk */ } static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, struct nd_cmd_ars_cap *cmd, u64 addr, u64 length) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; int cmd_rc, rc; cmd->address = addr; cmd->length = length; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, sizeof(*cmd), &cmd_rc); if (rc < 0) return rc; if (cmd_rc < 0) return cmd_rc; return 0; } static int ars_do_start(struct nvdimm_bus_descriptor *nd_desc, struct nd_cmd_ars_start *cmd, u64 addr, u64 length) { int cmd_rc; int rc; cmd->address = addr; cmd->length = length; cmd->type = ND_ARS_PERSISTENT; while (1) { rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, cmd, sizeof(*cmd), &cmd_rc); if (rc < 0) return rc; if (cmd_rc == -EBUSY) { /* ARS is in progress */ msleep(1000); continue; } if (cmd_rc < 0) return cmd_rc; return 0; } } static int ars_get_status(struct nvdimm_bus_descriptor *nd_desc, struct nd_cmd_ars_status *cmd, u32 size) { int rc, cmd_rc; while (1) { rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, cmd, size, &cmd_rc); if (rc < 0) return rc; /* FIXME make async and have a timeout */ if (cmd_rc == -EBUSY) { msleep(1000); continue; } if (cmd_rc == -EAGAIN || cmd_rc == 0) return 0; /* TODO: error list overflow support */ if (cmd_rc == -ENOSPC) return -ENXIO; return cmd_rc; } } static int ars_status_process_records(struct nvdimm_bus *nvdimm_bus, struct nd_cmd_ars_status *ars_status, u64 start) { int rc; u32 i; /* * The address field returned by ars_status should be either * less than or equal to the address we last started ARS for. * The (start, length) returned by ars_status should also have * non-zero overlap with the range we started ARS for. * If this is not the case, bail. */ if (ars_status->address > start || (ars_status->address + ars_status->length < start)) return -ENXIO; for (i = 0; i < ars_status->num_records; i++) { rc = nvdimm_bus_add_poison(nvdimm_bus, ars_status->records[i].err_address, ars_status->records[i].length); if (rc) return rc; } return 0; } static int acpi_nfit_find_poison(struct acpi_nfit_desc *acpi_desc, struct nd_region_desc *ndr_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; struct nd_cmd_ars_status *ars_status = NULL; struct nd_cmd_ars_start *ars_start = NULL; struct nd_cmd_ars_cap *ars_cap = NULL; u64 start, len, cur, remaining; u32 ars_status_size; int rc; ars_cap = kzalloc(sizeof(*ars_cap), GFP_KERNEL); if (!ars_cap) return -ENOMEM; start = ndr_desc->res->start; len = ndr_desc->res->end - ndr_desc->res->start + 1; rc = ars_get_cap(acpi_desc, ars_cap, start, len); if (rc == -ENOTTY) { rc = 0; goto out; } /* * Check if a full-range ARS has been run. If so, use those results * without having to start a new ARS. */ ars_status_size = ars_cap->max_ars_out; ars_status = kzalloc(ars_status_size, GFP_KERNEL); if (!ars_status) { rc = -ENOMEM; goto out; } rc = ars_get_status(nd_desc, ars_status, ars_status_size); if (rc) goto out; if (ars_status->address <= start && (ars_status->address + ars_status->length >= start + len)) { rc = ars_status_process_records(nvdimm_bus, ars_status, start); goto out; } /* * ARS_STATUS can overflow if the number of poison entries found is * greater than the maximum buffer size (ars_cap->max_ars_out) * To detect overflow, check if the length field of ars_status * is less than the length we supplied. If so, process the * error entries we got, adjust the start point, and start again */ ars_start = kzalloc(sizeof(*ars_start), GFP_KERNEL); if (!ars_start) return -ENOMEM; cur = start; remaining = len; do { u64 done, end; rc = ars_do_start(nd_desc, ars_start, cur, remaining); if (rc < 0) goto out; rc = ars_get_status(nd_desc, ars_status, ars_status_size); if (rc < 0) goto out; rc = ars_status_process_records(nvdimm_bus, ars_status, cur); if (rc < 0) goto out; end = min(cur + remaining, ars_status->address + ars_status->length); done = end - cur; cur += done; remaining -= done; } while (remaining); out: kfree(ars_cap); kfree(ars_start); kfree(ars_status); return rc; } static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, struct nd_mapping *nd_mapping, struct nd_region_desc *ndr_desc, struct acpi_nfit_memory_map *memdev, struct acpi_nfit_system_address *spa) { struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, memdev->device_handle); struct nd_blk_region_desc *ndbr_desc; struct nfit_mem *nfit_mem; int blk_valid = 0; if (!nvdimm) { dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", spa->range_index, memdev->device_handle); return -ENODEV; } nd_mapping->nvdimm = nvdimm; switch (nfit_spa_type(spa)) { case NFIT_SPA_PM: case NFIT_SPA_VOLATILE: nd_mapping->start = memdev->address; nd_mapping->size = memdev->region_size; break; case NFIT_SPA_DCR: nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !nfit_mem->bdw) { dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", spa->range_index, nvdimm_name(nvdimm)); } else { nd_mapping->size = nfit_mem->bdw->capacity; nd_mapping->start = nfit_mem->bdw->start_address; ndr_desc->num_lanes = nfit_mem->bdw->windows; blk_valid = 1; } ndr_desc->nd_mapping = nd_mapping; ndr_desc->num_mappings = blk_valid; ndbr_desc = to_blk_region_desc(ndr_desc); ndbr_desc->enable = acpi_nfit_blk_region_enable; ndbr_desc->disable = acpi_nfit_blk_region_disable; ndbr_desc->do_io = acpi_desc->blk_do_io; if (!nvdimm_blk_region_create(acpi_desc->nvdimm_bus, ndr_desc)) return -ENOMEM; break; } return 0; } static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { static struct nd_mapping nd_mappings[ND_MAX_MAPPINGS]; struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nd_blk_region_desc ndbr_desc; struct nd_region_desc *ndr_desc; struct nfit_memdev *nfit_memdev; struct nvdimm_bus *nvdimm_bus; struct resource res; int count = 0, rc; if (nfit_spa->is_registered) return 0; if (spa->range_index == 0) { dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n", __func__); return 0; } memset(&res, 0, sizeof(res)); memset(&nd_mappings, 0, sizeof(nd_mappings)); memset(&ndbr_desc, 0, sizeof(ndbr_desc)); res.start = spa->address; res.end = res.start + spa->length - 1; ndr_desc = &ndbr_desc.ndr_desc; ndr_desc->res = &res; ndr_desc->provider_data = nfit_spa; ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) ndr_desc->numa_node = acpi_map_pxm_to_online_node( spa->proximity_domain); else ndr_desc->numa_node = NUMA_NO_NODE; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; struct nd_mapping *nd_mapping; if (memdev->range_index != spa->range_index) continue; if (count >= ND_MAX_MAPPINGS) { dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", spa->range_index, ND_MAX_MAPPINGS); return -ENXIO; } nd_mapping = &nd_mappings[count++]; rc = acpi_nfit_init_mapping(acpi_desc, nd_mapping, ndr_desc, memdev, spa); if (rc) return rc; } ndr_desc->nd_mapping = nd_mappings; ndr_desc->num_mappings = count; rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); if (rc) return rc; nvdimm_bus = acpi_desc->nvdimm_bus; if (nfit_spa_type(spa) == NFIT_SPA_PM) { rc = acpi_nfit_find_poison(acpi_desc, ndr_desc); if (rc) { dev_err(acpi_desc->dev, "error while performing ARS to find poison: %d\n", rc); return rc; } if (!nvdimm_pmem_region_create(nvdimm_bus, ndr_desc)) return -ENOMEM; } else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) { if (!nvdimm_volatile_region_create(nvdimm_bus, ndr_desc)) return -ENOMEM; } nfit_spa->is_registered = 1; return 0; } static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { int rc = acpi_nfit_register_region(acpi_desc, nfit_spa); if (rc) return rc; } return 0; } static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev) { struct device *dev = acpi_desc->dev; if (!list_empty(&prev->spas) || !list_empty(&prev->memdevs) || !list_empty(&prev->dcrs) || !list_empty(&prev->bdws) || !list_empty(&prev->idts) || !list_empty(&prev->flushes)) { dev_err(dev, "new nfit deletes entries (unsupported)\n"); return -ENXIO; } return 0; } int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, acpi_size sz) { struct device *dev = acpi_desc->dev; struct nfit_table_prev prev; const void *end; u8 *data; int rc; mutex_lock(&acpi_desc->init_mutex); INIT_LIST_HEAD(&prev.spas); INIT_LIST_HEAD(&prev.memdevs); INIT_LIST_HEAD(&prev.dcrs); INIT_LIST_HEAD(&prev.bdws); INIT_LIST_HEAD(&prev.idts); INIT_LIST_HEAD(&prev.flushes); list_cut_position(&prev.spas, &acpi_desc->spas, acpi_desc->spas.prev); list_cut_position(&prev.memdevs, &acpi_desc->memdevs, acpi_desc->memdevs.prev); list_cut_position(&prev.dcrs, &acpi_desc->dcrs, acpi_desc->dcrs.prev); list_cut_position(&prev.bdws, &acpi_desc->bdws, acpi_desc->bdws.prev); list_cut_position(&prev.idts, &acpi_desc->idts, acpi_desc->idts.prev); list_cut_position(&prev.flushes, &acpi_desc->flushes, acpi_desc->flushes.prev); data = (u8 *) acpi_desc->nfit; end = data + sz; while (!IS_ERR_OR_NULL(data)) data = add_table(acpi_desc, &prev, data, end); if (IS_ERR(data)) { dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__, PTR_ERR(data)); rc = PTR_ERR(data); goto out_unlock; } rc = acpi_nfit_check_deletions(acpi_desc, &prev); if (rc) goto out_unlock; if (nfit_mem_init(acpi_desc) != 0) { rc = -ENOMEM; goto out_unlock; } acpi_nfit_init_dsms(acpi_desc); rc = acpi_nfit_register_dimms(acpi_desc); if (rc) goto out_unlock; rc = acpi_nfit_register_regions(acpi_desc); out_unlock: mutex_unlock(&acpi_desc->init_mutex); return rc; } EXPORT_SYMBOL_GPL(acpi_nfit_init); struct acpi_nfit_flush_work { struct work_struct work; struct completion cmp; }; static void flush_probe(struct work_struct *work) { struct acpi_nfit_flush_work *flush; flush = container_of(work, typeof(*flush), work); complete(&flush->cmp); } static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); struct device *dev = acpi_desc->dev; struct acpi_nfit_flush_work flush; /* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ device_lock(dev); device_unlock(dev); /* * Scrub work could take 10s of seconds, userspace may give up so we * need to be interruptible while waiting. */ INIT_WORK_ONSTACK(&flush.work, flush_probe); COMPLETION_INITIALIZER_ONSTACK(flush.cmp); queue_work(nfit_wq, &flush.work); return wait_for_completion_interruptible(&flush.cmp); } void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc; dev_set_drvdata(dev, acpi_desc); acpi_desc->dev = dev; acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; nd_desc = &acpi_desc->nd_desc; nd_desc->provider_name = "ACPI.NFIT"; nd_desc->ndctl = acpi_nfit_ctl; nd_desc->flush_probe = acpi_nfit_flush_probe; nd_desc->attr_groups = acpi_nfit_attribute_groups; INIT_LIST_HEAD(&acpi_desc->spa_maps); INIT_LIST_HEAD(&acpi_desc->spas); INIT_LIST_HEAD(&acpi_desc->dcrs); INIT_LIST_HEAD(&acpi_desc->bdws); INIT_LIST_HEAD(&acpi_desc->idts); INIT_LIST_HEAD(&acpi_desc->flushes); INIT_LIST_HEAD(&acpi_desc->memdevs); INIT_LIST_HEAD(&acpi_desc->dimms); mutex_init(&acpi_desc->spa_map_mutex); mutex_init(&acpi_desc->init_mutex); } EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); static int acpi_nfit_add(struct acpi_device *adev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_nfit_desc *acpi_desc; struct device *dev = &adev->dev; struct acpi_table_header *tbl; acpi_status status = AE_OK; acpi_size sz; int rc; status = acpi_get_table_with_size("NFIT", 0, &tbl, &sz); if (ACPI_FAILURE(status)) { /* This is ok, we could have an nvdimm hotplugged later */ dev_dbg(dev, "failed to find NFIT at startup\n"); return 0; } acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) return -ENOMEM; acpi_nfit_desc_init(acpi_desc, &adev->dev); acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, &acpi_desc->nd_desc); if (!acpi_desc->nvdimm_bus) return -ENOMEM; /* * Save the acpi header for later and then skip it, * making nfit point to the first nfit table header. */ acpi_desc->acpi_header = *tbl; acpi_desc->nfit = (void *) tbl + sizeof(struct acpi_table_nfit); sz -= sizeof(struct acpi_table_nfit); /* Evaluate _FIT and override with that if present */ status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); if (ACPI_SUCCESS(status) && buf.length > 0) { union acpi_object *obj; /* * Adjust for the acpi_object header of the _FIT */ obj = buf.pointer; if (obj->type == ACPI_TYPE_BUFFER) { acpi_desc->nfit = (struct acpi_nfit_header *)obj->buffer.pointer; sz = obj->buffer.length; } else dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n", __func__, (int) obj->type); } rc = acpi_nfit_init(acpi_desc, sz); if (rc) { nvdimm_bus_unregister(acpi_desc->nvdimm_bus); return rc; } return 0; } static int acpi_nfit_remove(struct acpi_device *adev) { struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(&adev->dev); acpi_desc->cancel = 1; flush_workqueue(nfit_wq); nvdimm_bus_unregister(acpi_desc->nvdimm_bus); return 0; } static void acpi_nfit_notify(struct acpi_device *adev, u32 event) { struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(&adev->dev); struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_nfit_header *nfit_saved; union acpi_object *obj; struct device *dev = &adev->dev; acpi_status status; int ret; dev_dbg(dev, "%s: event: %d\n", __func__, event); device_lock(dev); if (!dev->driver) { /* dev->driver may be null if we're being removed */ dev_dbg(dev, "%s: no driver found for dev\n", __func__); goto out_unlock; } if (!acpi_desc) { acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) goto out_unlock; acpi_nfit_desc_init(acpi_desc, &adev->dev); acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, &acpi_desc->nd_desc); if (!acpi_desc->nvdimm_bus) goto out_unlock; } else { /* * Finish previous registration before considering new * regions. */ flush_workqueue(nfit_wq); } /* Evaluate _FIT */ status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); if (ACPI_FAILURE(status)) { dev_err(dev, "failed to evaluate _FIT\n"); goto out_unlock; } nfit_saved = acpi_desc->nfit; obj = buf.pointer; if (obj->type == ACPI_TYPE_BUFFER) { acpi_desc->nfit = (struct acpi_nfit_header *)obj->buffer.pointer; ret = acpi_nfit_init(acpi_desc, obj->buffer.length); if (ret) { /* Merge failed, restore old nfit, and exit */ acpi_desc->nfit = nfit_saved; dev_err(dev, "failed to merge updated NFIT\n"); } } else { /* Bad _FIT, restore old nfit */ dev_err(dev, "Invalid _FIT\n"); } kfree(buf.pointer); out_unlock: device_unlock(dev); } static const struct acpi_device_id acpi_nfit_ids[] = { { "ACPI0012", 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); static struct acpi_driver acpi_nfit_driver = { .name = KBUILD_MODNAME, .ids = acpi_nfit_ids, .ops = { .add = acpi_nfit_add, .remove = acpi_nfit_remove, .notify = acpi_nfit_notify, }, }; static __init int nfit_init(void) { BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]); acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]); acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]); acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]); acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]); acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]); acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]); acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]); acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]); acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]); nfit_wq = create_singlethread_workqueue("nfit"); if (!nfit_wq) return -ENOMEM; return acpi_bus_register_driver(&acpi_nfit_driver); } static __exit void nfit_exit(void) { acpi_bus_unregister_driver(&acpi_nfit_driver); destroy_workqueue(nfit_wq); } module_init(nfit_init); module_exit(nfit_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation");