menu "CPU Frequency scaling" config CPU_FREQ bool "CPU Frequency scaling" help CPU Frequency scaling allows you to change the clock speed of CPUs on the fly. This is a nice method to save power, because the lower the CPU clock speed, the less power the CPU consumes. Note that this driver doesn't automatically change the CPU clock speed, you need to either enable a dynamic cpufreq governor (see below) after boot, or use a userspace tool. For details, take a look at . If in doubt, say N. if CPU_FREQ config CPU_FREQ_GOV_COMMON bool config CPU_FREQ_STAT tristate "CPU frequency translation statistics" default y help This driver exports CPU frequency statistics information through sysfs file system. To compile this driver as a module, choose M here: the module will be called cpufreq_stats. If in doubt, say N. config CPU_FREQ_STAT_DETAILS bool "CPU frequency translation statistics details" depends on CPU_FREQ_STAT help This will show detail CPU frequency translation table in sysfs file system. If in doubt, say N. choice prompt "Default CPUFreq governor" default CPU_FREQ_DEFAULT_GOV_USERSPACE if ARM_SA1100_CPUFREQ || ARM_SA1110_CPUFREQ default CPU_FREQ_DEFAULT_GOV_PERFORMANCE help This option sets which CPUFreq governor shall be loaded at startup. If in doubt, select 'performance'. config CPU_FREQ_DEFAULT_GOV_PERFORMANCE bool "performance" select CPU_FREQ_GOV_PERFORMANCE help Use the CPUFreq governor 'performance' as default. This sets the frequency statically to the highest frequency supported by the CPU. config CPU_FREQ_DEFAULT_GOV_POWERSAVE bool "powersave" depends on EXPERT select CPU_FREQ_GOV_POWERSAVE help Use the CPUFreq governor 'powersave' as default. This sets the frequency statically to the lowest frequency supported by the CPU. config CPU_FREQ_DEFAULT_GOV_USERSPACE bool "userspace" select CPU_FREQ_GOV_USERSPACE help Use the CPUFreq governor 'userspace' as default. This allows you to set the CPU frequency manually or when a userspace program shall be able to set the CPU dynamically without having to enable the userspace governor manually. config CPU_FREQ_DEFAULT_GOV_ONDEMAND bool "ondemand" select CPU_FREQ_GOV_ONDEMAND select CPU_FREQ_GOV_PERFORMANCE help Use the CPUFreq governor 'ondemand' as default. This allows you to get a full dynamic frequency capable system by simply loading your cpufreq low-level hardware driver. Be aware that not all cpufreq drivers support the ondemand governor. If unsure have a look at the help section of the driver. Fallback governor will be the performance governor. config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE bool "conservative" select CPU_FREQ_GOV_CONSERVATIVE select CPU_FREQ_GOV_PERFORMANCE help Use the CPUFreq governor 'conservative' as default. This allows you to get a full dynamic frequency capable system by simply loading your cpufreq low-level hardware driver. Be aware that not all cpufreq drivers support the conservative governor. If unsure have a look at the help section of the driver. Fallback governor will be the performance governor. endchoice config CPU_FREQ_GOV_PERFORMANCE tristate "'performance' governor" help This cpufreq governor sets the frequency statically to the highest available CPU frequency. To compile this driver as a module, choose M here: the module will be called cpufreq_performance. If in doubt, say Y. config CPU_FREQ_GOV_POWERSAVE tristate "'powersave' governor" help This cpufreq governor sets the frequency statically to the lowest available CPU frequency. To compile this driver as a module, choose M here: the module will be called cpufreq_powersave. If in doubt, say Y. config CPU_FREQ_GOV_USERSPACE tristate "'userspace' governor for userspace frequency scaling" help Enable this cpufreq governor when you either want to set the CPU frequency manually or when a userspace program shall be able to set the CPU dynamically, like on LART . To compile this driver as a module, choose M here: the module will be called cpufreq_userspace. For details, take a look at . If in doubt, say Y. config CPU_FREQ_GOV_ONDEMAND tristate "'ondemand' cpufreq policy governor" select CPU_FREQ_GOV_COMMON help 'ondemand' - This driver adds a dynamic cpufreq policy governor. The governor does a periodic polling and changes frequency based on the CPU utilization. The support for this governor depends on CPU capability to do fast frequency switching (i.e, very low latency frequency transitions). To compile this driver as a module, choose M here: the module will be called cpufreq_ondemand. For details, take a look at linux/Documentation/cpu-freq. If in doubt, say N. config CPU_FREQ_GOV_CONSERVATIVE tristate "'conservative' cpufreq governor" depends on CPU_FREQ select CPU_FREQ_GOV_COMMON help 'conservative' - this driver is rather similar to the 'ondemand' governor both in its source code and its purpose, the difference is its optimisation for better suitability in a battery powered environment. The frequency is gracefully increased and decreased rather than jumping to 100% when speed is required. If you have a desktop machine then you should really be considering the 'ondemand' governor instead, however if you are using a laptop, PDA or even an AMD64 based computer (due to the unacceptable step-by-step latency issues between the minimum and maximum frequency transitions in the CPU) you will probably want to use this governor. To compile this driver as a module, choose M here: the module will be called cpufreq_conservative. For details, take a look at linux/Documentation/cpu-freq. If in doubt, say N. config GENERIC_CPUFREQ_CPU0 tristate "Generic CPU0 cpufreq driver" depends on HAVE_CLK && REGULATOR && PM_OPP && OF && THERMAL && CPU_THERMAL help This adds a generic cpufreq driver for CPU0 frequency management. It supports both uniprocessor (UP) and symmetric multiprocessor (SMP) systems which share clock and voltage across all CPUs. If in doubt, say N. menu "x86 CPU frequency scaling drivers" depends on X86 source "drivers/cpufreq/Kconfig.x86" endmenu menu "ARM CPU frequency scaling drivers" depends on ARM source "drivers/cpufreq/Kconfig.arm" endmenu menu "AVR32 CPU frequency scaling drivers" depends on AVR32 config AVR32_AT32AP_CPUFREQ bool "CPU frequency driver for AT32AP" depends on PLATFORM_AT32AP default n help This enables the CPU frequency driver for AT32AP processors. If in doubt, say N. endmenu menu "CPUFreq processor drivers" depends on IA64 config IA64_ACPI_CPUFREQ tristate "ACPI Processor P-States driver" depends on ACPI_PROCESSOR help This driver adds a CPUFreq driver which utilizes the ACPI Processor Performance States. For details, take a look at . If in doubt, say N. endmenu menu "MIPS CPUFreq processor drivers" depends on MIPS config LOONGSON2_CPUFREQ tristate "Loongson2 CPUFreq Driver" help This option adds a CPUFreq driver for loongson processors which support software configurable cpu frequency. Loongson2F and it's successors support this feature. For details, take a look at . If in doubt, say N. endmenu menu "PowerPC CPU frequency scaling drivers" depends on PPC32 || PPC64 source "drivers/cpufreq/Kconfig.powerpc" endmenu menu "SPARC CPU frequency scaling drivers" depends on SPARC64 config SPARC_US3_CPUFREQ tristate "UltraSPARC-III CPU Frequency driver" help This adds the CPUFreq driver for UltraSPARC-III processors. For details, take a look at . If in doubt, say N. config SPARC_US2E_CPUFREQ tristate "UltraSPARC-IIe CPU Frequency driver" help This adds the CPUFreq driver for UltraSPARC-IIe processors. For details, take a look at . If in doubt, say N. endmenu menu "SH CPU Frequency scaling" depends on SUPERH config SH_CPU_FREQ tristate "SuperH CPU Frequency driver" help This adds the cpufreq driver for SuperH. Any CPU that supports clock rate rounding through the clock framework can use this driver. While it will make the kernel slightly larger, this is harmless for CPUs that don't support rate rounding. The driver will also generate a notice in the boot log before disabling itself if the CPU in question is not capable of rate rounding. For details, take a look at . If unsure, say N. endmenu endif endmenu