/* * Copyright © 2010 Daniel Vetter * Copyright © 2011-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include #include "i915_drv.h" #include "i915_vgpu.h" #include "i915_trace.h" #include "intel_drv.h" /** * DOC: Global GTT views * * Background and previous state * * Historically objects could exists (be bound) in global GTT space only as * singular instances with a view representing all of the object's backing pages * in a linear fashion. This view will be called a normal view. * * To support multiple views of the same object, where the number of mapped * pages is not equal to the backing store, or where the layout of the pages * is not linear, concept of a GGTT view was added. * * One example of an alternative view is a stereo display driven by a single * image. In this case we would have a framebuffer looking like this * (2x2 pages): * * 12 * 34 * * Above would represent a normal GGTT view as normally mapped for GPU or CPU * rendering. In contrast, fed to the display engine would be an alternative * view which could look something like this: * * 1212 * 3434 * * In this example both the size and layout of pages in the alternative view is * different from the normal view. * * Implementation and usage * * GGTT views are implemented using VMAs and are distinguished via enum * i915_ggtt_view_type and struct i915_ggtt_view. * * A new flavour of core GEM functions which work with GGTT bound objects were * added with the _ggtt_ infix, and sometimes with _view postfix to avoid * renaming in large amounts of code. They take the struct i915_ggtt_view * parameter encapsulating all metadata required to implement a view. * * As a helper for callers which are only interested in the normal view, * globally const i915_ggtt_view_normal singleton instance exists. All old core * GEM API functions, the ones not taking the view parameter, are operating on, * or with the normal GGTT view. * * Code wanting to add or use a new GGTT view needs to: * * 1. Add a new enum with a suitable name. * 2. Extend the metadata in the i915_ggtt_view structure if required. * 3. Add support to i915_get_vma_pages(). * * New views are required to build a scatter-gather table from within the * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and * exists for the lifetime of an VMA. * * Core API is designed to have copy semantics which means that passed in * struct i915_ggtt_view does not need to be persistent (left around after * calling the core API functions). * */ const struct i915_ggtt_view i915_ggtt_view_normal; const struct i915_ggtt_view i915_ggtt_view_rotated = { .type = I915_GGTT_VIEW_ROTATED }; static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv); static void chv_setup_private_ppat(struct drm_i915_private *dev_priv); static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt) { bool has_aliasing_ppgtt; bool has_full_ppgtt; has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6; has_full_ppgtt = INTEL_INFO(dev)->gen >= 7; if (intel_vgpu_active(dev)) has_full_ppgtt = false; /* emulation is too hard */ /* * We don't allow disabling PPGTT for gen9+ as it's a requirement for * execlists, the sole mechanism available to submit work. */ if (INTEL_INFO(dev)->gen < 9 && (enable_ppgtt == 0 || !has_aliasing_ppgtt)) return 0; if (enable_ppgtt == 1) return 1; if (enable_ppgtt == 2 && has_full_ppgtt) return 2; #ifdef CONFIG_INTEL_IOMMU /* Disable ppgtt on SNB if VT-d is on. */ if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) { DRM_INFO("Disabling PPGTT because VT-d is on\n"); return 0; } #endif /* Early VLV doesn't have this */ if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && dev->pdev->revision < 0xb) { DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); return 0; } if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists) return 2; else return has_aliasing_ppgtt ? 1 : 0; } static void ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); static void ppgtt_unbind_vma(struct i915_vma *vma); static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; pte |= addr; switch (level) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED_INDEX; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC_INDEX; break; default: pte |= PPAT_CACHED_INDEX; break; } return pte; } static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev, dma_addr_t addr, enum i915_cache_level level) { gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; pde |= addr; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE_INDEX; else pde |= PPAT_UNCACHED_INDEX; return pde; } static gen6_pte_t snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static gen6_pte_t ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static gen6_pte_t byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 flags) { gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static gen6_pte_t hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= HSW_PTE_ADDR_ENCODE(addr); if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static gen6_pte_t iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= HSW_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } #define i915_dma_unmap_single(px, dev) \ __i915_dma_unmap_single((px)->daddr, dev) static inline void __i915_dma_unmap_single(dma_addr_t daddr, struct drm_device *dev) { struct device *device = &dev->pdev->dev; dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL); } /** * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc. * @px: Page table/dir/etc to get a DMA map for * @dev: drm device * * Page table allocations are unified across all gens. They always require a * single 4k allocation, as well as a DMA mapping. If we keep the structs * symmetric here, the simple macro covers us for every page table type. * * Return: 0 if success. */ #define i915_dma_map_single(px, dev) \ i915_dma_map_page_single((px)->page, (dev), &(px)->daddr) static inline int i915_dma_map_page_single(struct page *page, struct drm_device *dev, dma_addr_t *daddr) { struct device *device = &dev->pdev->dev; *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(device, *daddr)) return -ENOMEM; return 0; } static void unmap_and_free_pt(struct i915_page_table *pt, struct drm_device *dev) { if (WARN_ON(!pt->page)) return; i915_dma_unmap_single(pt, dev); __free_page(pt->page); kfree(pt->used_ptes); kfree(pt); } static void gen8_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { gen8_pte_t *pt_vaddr, scratch_pte; int i; pt_vaddr = kmap_atomic(pt->page); scratch_pte = gen8_pte_encode(vm->scratch.addr, I915_CACHE_LLC, true); for (i = 0; i < GEN8_PTES; i++) pt_vaddr[i] = scratch_pte; if (!HAS_LLC(vm->dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); } static struct i915_page_table *alloc_pt_single(struct drm_device *dev) { struct i915_page_table *pt; const size_t count = INTEL_INFO(dev)->gen >= 8 ? GEN8_PTES : GEN6_PTES; int ret = -ENOMEM; pt = kzalloc(sizeof(*pt), GFP_KERNEL); if (!pt) return ERR_PTR(-ENOMEM); pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes), GFP_KERNEL); if (!pt->used_ptes) goto fail_bitmap; pt->page = alloc_page(GFP_KERNEL); if (!pt->page) goto fail_page; ret = i915_dma_map_single(pt, dev); if (ret) goto fail_dma; return pt; fail_dma: __free_page(pt->page); fail_page: kfree(pt->used_ptes); fail_bitmap: kfree(pt); return ERR_PTR(ret); } /** * alloc_pt_range() - Allocate a multiple page tables * @pd: The page directory which will have at least @count entries * available to point to the allocated page tables. * @pde: First page directory entry for which we are allocating. * @count: Number of pages to allocate. * @dev: DRM device. * * Allocates multiple page table pages and sets the appropriate entries in the * page table structure within the page directory. Function cleans up after * itself on any failures. * * Return: 0 if allocation succeeded. */ static int alloc_pt_range(struct i915_page_directory *pd, uint16_t pde, size_t count, struct drm_device *dev) { int i, ret; /* 512 is the max page tables per page_directory on any platform. */ if (WARN_ON(pde + count > I915_PDES)) return -EINVAL; for (i = pde; i < pde + count; i++) { struct i915_page_table *pt = alloc_pt_single(dev); if (IS_ERR(pt)) { ret = PTR_ERR(pt); goto err_out; } WARN(pd->page_table[i], "Leaking page directory entry %d (%p)\n", i, pd->page_table[i]); pd->page_table[i] = pt; } return 0; err_out: while (i-- > pde) unmap_and_free_pt(pd->page_table[i], dev); return ret; } static void unmap_and_free_pd(struct i915_page_directory *pd, struct drm_device *dev) { if (pd->page) { i915_dma_unmap_single(pd, dev); __free_page(pd->page); kfree(pd->used_pdes); kfree(pd); } } static struct i915_page_directory *alloc_pd_single(struct drm_device *dev) { struct i915_page_directory *pd; int ret = -ENOMEM; pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) return ERR_PTR(-ENOMEM); pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES), sizeof(*pd->used_pdes), GFP_KERNEL); if (!pd->used_pdes) goto free_pd; pd->page = alloc_page(GFP_KERNEL); if (!pd->page) goto free_bitmap; ret = i915_dma_map_single(pd, dev); if (ret) goto free_page; return pd; free_page: __free_page(pd->page); free_bitmap: kfree(pd->used_pdes); free_pd: kfree(pd); return ERR_PTR(ret); } /* Broadwell Page Directory Pointer Descriptors */ static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry, dma_addr_t addr) { int ret; BUG_ON(entry >= 4); ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); intel_ring_emit(ring, upper_32_bits(addr)); intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); intel_ring_emit(ring, lower_32_bits(addr)); intel_ring_advance(ring); return 0; } static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring) { int i, ret; for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { struct i915_page_directory *pd = ppgtt->pdp.page_directory[i]; dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr; /* The page directory might be NULL, but we need to clear out * whatever the previous context might have used. */ ret = gen8_write_pdp(ring, i, pd_daddr); if (ret) return ret; } return 0; } static void gen8_ppgtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen8_pte_t *pt_vaddr, scratch_pte; unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; unsigned num_entries = length >> PAGE_SHIFT; unsigned last_pte, i; scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr, I915_CACHE_LLC, use_scratch); while (num_entries) { struct i915_page_directory *pd; struct i915_page_table *pt; struct page *page_table; if (WARN_ON(!ppgtt->pdp.page_directory[pdpe])) continue; pd = ppgtt->pdp.page_directory[pdpe]; if (WARN_ON(!pd->page_table[pde])) continue; pt = pd->page_table[pde]; if (WARN_ON(!pt->page)) continue; page_table = pt->page; last_pte = pte + num_entries; if (last_pte > GEN8_PTES) last_pte = GEN8_PTES; pt_vaddr = kmap_atomic(page_table); for (i = pte; i < last_pte; i++) { pt_vaddr[i] = scratch_pte; num_entries--; } if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); pte = 0; if (++pde == I915_PDES) { pdpe++; pde = 0; } } } static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 unused) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen8_pte_t *pt_vaddr; unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; struct sg_page_iter sg_iter; pt_vaddr = NULL; for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES)) break; if (pt_vaddr == NULL) { struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe]; struct i915_page_table *pt = pd->page_table[pde]; struct page *page_table = pt->page; pt_vaddr = kmap_atomic(page_table); } pt_vaddr[pte] = gen8_pte_encode(sg_page_iter_dma_address(&sg_iter), cache_level, true); if (++pte == GEN8_PTES) { if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); pt_vaddr = NULL; if (++pde == I915_PDES) { pdpe++; pde = 0; } pte = 0; } } if (pt_vaddr) { if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); } } static void __gen8_do_map_pt(gen8_pde_t * const pde, struct i915_page_table *pt, struct drm_device *dev) { gen8_pde_t entry = gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC); *pde = entry; } static void gen8_initialize_pd(struct i915_address_space *vm, struct i915_page_directory *pd) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen8_pde_t *page_directory; struct i915_page_table *pt; int i; page_directory = kmap_atomic(pd->page); pt = ppgtt->scratch_pt; for (i = 0; i < I915_PDES; i++) /* Map the PDE to the page table */ __gen8_do_map_pt(page_directory + i, pt, vm->dev); if (!HAS_LLC(vm->dev)) drm_clflush_virt_range(page_directory, PAGE_SIZE); kunmap_atomic(page_directory); } static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev) { int i; if (!pd->page) return; for_each_set_bit(i, pd->used_pdes, I915_PDES) { if (WARN_ON(!pd->page_table[i])) continue; unmap_and_free_pt(pd->page_table[i], dev); pd->page_table[i] = NULL; } } static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt) { int i; for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) { if (WARN_ON(!ppgtt->pdp.page_directory[i])) continue; gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev); unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev); } unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev); unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen8_ppgtt_free(ppgtt); } /** * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range. * @ppgtt: Master ppgtt structure. * @pd: Page directory for this address range. * @start: Starting virtual address to begin allocations. * @length Size of the allocations. * @new_pts: Bitmap set by function with new allocations. Likely used by the * caller to free on error. * * Allocate the required number of page tables. Extremely similar to * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by * the page directory boundary (instead of the page directory pointer). That * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is * possible, and likely that the caller will need to use multiple calls of this * function to achieve the appropriate allocation. * * Return: 0 if success; negative error code otherwise. */ static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt, struct i915_page_directory *pd, uint64_t start, uint64_t length, unsigned long *new_pts) { struct drm_device *dev = ppgtt->base.dev; struct i915_page_table *pt; uint64_t temp; uint32_t pde; gen8_for_each_pde(pt, pd, start, length, temp, pde) { /* Don't reallocate page tables */ if (pt) { /* Scratch is never allocated this way */ WARN_ON(pt == ppgtt->scratch_pt); continue; } pt = alloc_pt_single(dev); if (IS_ERR(pt)) goto unwind_out; gen8_initialize_pt(&ppgtt->base, pt); pd->page_table[pde] = pt; set_bit(pde, new_pts); } return 0; unwind_out: for_each_set_bit(pde, new_pts, I915_PDES) unmap_and_free_pt(pd->page_table[pde], dev); return -ENOMEM; } /** * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range. * @ppgtt: Master ppgtt structure. * @pdp: Page directory pointer for this address range. * @start: Starting virtual address to begin allocations. * @length Size of the allocations. * @new_pds Bitmap set by function with new allocations. Likely used by the * caller to free on error. * * Allocate the required number of page directories starting at the pde index of * @start, and ending at the pde index @start + @length. This function will skip * over already allocated page directories within the range, and only allocate * new ones, setting the appropriate pointer within the pdp as well as the * correct position in the bitmap @new_pds. * * The function will only allocate the pages within the range for a give page * directory pointer. In other words, if @start + @length straddles a virtually * addressed PDP boundary (512GB for 4k pages), there will be more allocations * required by the caller, This is not currently possible, and the BUG in the * code will prevent it. * * Return: 0 if success; negative error code otherwise. */ static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt, struct i915_page_directory_pointer *pdp, uint64_t start, uint64_t length, unsigned long *new_pds) { struct drm_device *dev = ppgtt->base.dev; struct i915_page_directory *pd; uint64_t temp; uint32_t pdpe; WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES)); /* FIXME: PPGTT container_of won't work for 64b */ WARN_ON((start + length) > 0x800000000ULL); gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) { if (pd) continue; pd = alloc_pd_single(dev); if (IS_ERR(pd)) goto unwind_out; gen8_initialize_pd(&ppgtt->base, pd); pdp->page_directory[pdpe] = pd; set_bit(pdpe, new_pds); } return 0; unwind_out: for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES) unmap_and_free_pd(pdp->page_directory[pdpe], dev); return -ENOMEM; } static void free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts) { int i; for (i = 0; i < GEN8_LEGACY_PDPES; i++) kfree(new_pts[i]); kfree(new_pts); kfree(new_pds); } /* Fills in the page directory bitmap, and the array of page tables bitmap. Both * of these are based on the number of PDPEs in the system. */ static int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds, unsigned long ***new_pts) { int i; unsigned long *pds; unsigned long **pts; pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL); if (!pds) return -ENOMEM; pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL); if (!pts) { kfree(pds); return -ENOMEM; } for (i = 0; i < GEN8_LEGACY_PDPES; i++) { pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES), sizeof(unsigned long), GFP_KERNEL); if (!pts[i]) goto err_out; } *new_pds = pds; *new_pts = pts; return 0; err_out: free_gen8_temp_bitmaps(pds, pts); return -ENOMEM; } static int gen8_alloc_va_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); unsigned long *new_page_dirs, **new_page_tables; struct i915_page_directory *pd; const uint64_t orig_start = start; const uint64_t orig_length = length; uint64_t temp; uint32_t pdpe; int ret; #ifndef CONFIG_64BIT /* Disallow 64b address on 32b platforms. Nothing is wrong with doing * this in hardware, but a lot of the drm code is not prepared to handle * 64b offset on 32b platforms. * This will be addressed when 48b PPGTT is added */ if (start + length > 0x100000000ULL) return -E2BIG; #endif /* Wrap is never okay since we can only represent 48b, and we don't * actually use the other side of the canonical address space. */ if (WARN_ON(start + length < start)) return -ERANGE; ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables); if (ret) return ret; /* Do the allocations first so we can easily bail out */ ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length, new_page_dirs); if (ret) { free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); return ret; } /* For every page directory referenced, allocate page tables */ gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) { ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length, new_page_tables[pdpe]); if (ret) goto err_out; } start = orig_start; length = orig_length; /* Allocations have completed successfully, so set the bitmaps, and do * the mappings. */ gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) { gen8_pde_t *const page_directory = kmap_atomic(pd->page); struct i915_page_table *pt; uint64_t pd_len = gen8_clamp_pd(start, length); uint64_t pd_start = start; uint32_t pde; /* Every pd should be allocated, we just did that above. */ WARN_ON(!pd); gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) { /* Same reasoning as pd */ WARN_ON(!pt); WARN_ON(!pd_len); WARN_ON(!gen8_pte_count(pd_start, pd_len)); /* Set our used ptes within the page table */ bitmap_set(pt->used_ptes, gen8_pte_index(pd_start), gen8_pte_count(pd_start, pd_len)); /* Our pde is now pointing to the pagetable, pt */ set_bit(pde, pd->used_pdes); /* Map the PDE to the page table */ __gen8_do_map_pt(page_directory + pde, pt, vm->dev); /* NB: We haven't yet mapped ptes to pages. At this * point we're still relying on insert_entries() */ } if (!HAS_LLC(vm->dev)) drm_clflush_virt_range(page_directory, PAGE_SIZE); kunmap_atomic(page_directory); set_bit(pdpe, ppgtt->pdp.used_pdpes); } free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); return 0; err_out: while (pdpe--) { for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES) unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev); } for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES) unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev); free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); return ret; } /* * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * */ static int gen8_ppgtt_init_common(struct i915_hw_ppgtt *ppgtt, uint64_t size) { ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev); if (IS_ERR(ppgtt->scratch_pt)) return PTR_ERR(ppgtt->scratch_pt); ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev); if (IS_ERR(ppgtt->scratch_pd)) return PTR_ERR(ppgtt->scratch_pd); gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt); gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd); ppgtt->base.start = 0; ppgtt->base.total = size; ppgtt->base.cleanup = gen8_ppgtt_cleanup; ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; ppgtt->base.clear_range = gen8_ppgtt_clear_range; ppgtt->base.unbind_vma = ppgtt_unbind_vma; ppgtt->base.bind_vma = ppgtt_bind_vma; ppgtt->switch_mm = gen8_mm_switch; return 0; } static int gen8_aliasing_ppgtt_init(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint64_t start = 0, size = dev_priv->gtt.base.total; int ret; ret = gen8_ppgtt_init_common(ppgtt, dev_priv->gtt.base.total); if (ret) return ret; /* Aliasing PPGTT has to always work and be mapped because of the way we * use RESTORE_INHIBIT in the context switch. This will be fixed * eventually. */ ret = gen8_alloc_va_range(&ppgtt->base, start, size); if (ret) { unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev); unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); return ret; } ppgtt->base.allocate_va_range = NULL; ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true); return 0; } static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) { int ret; ret = gen8_ppgtt_init_common(ppgtt, (1ULL << 32)); if (ret) return ret; ppgtt->base.allocate_va_range = gen8_alloc_va_range; return 0; } static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) { struct i915_address_space *vm = &ppgtt->base; struct i915_page_table *unused; gen6_pte_t scratch_pte; uint32_t pd_entry; uint32_t pte, pde, temp; uint32_t start = ppgtt->base.start, length = ppgtt->base.total; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) { u32 expected; gen6_pte_t *pt_vaddr; dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr; pd_entry = readl(ppgtt->pd_addr + pde); expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); if (pd_entry != expected) seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", pde, pd_entry, expected); seq_printf(m, "\tPDE: %x\n", pd_entry); pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page); for (pte = 0; pte < GEN6_PTES; pte+=4) { unsigned long va = (pde * PAGE_SIZE * GEN6_PTES) + (pte * PAGE_SIZE); int i; bool found = false; for (i = 0; i < 4; i++) if (pt_vaddr[pte + i] != scratch_pte) found = true; if (!found) continue; seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); for (i = 0; i < 4; i++) { if (pt_vaddr[pte + i] != scratch_pte) seq_printf(m, " %08x", pt_vaddr[pte + i]); else seq_puts(m, " SCRATCH "); } seq_puts(m, "\n"); } kunmap_atomic(pt_vaddr); } } /* Write pde (index) from the page directory @pd to the page table @pt */ static void gen6_write_pde(struct i915_page_directory *pd, const int pde, struct i915_page_table *pt) { /* Caller needs to make sure the write completes if necessary */ struct i915_hw_ppgtt *ppgtt = container_of(pd, struct i915_hw_ppgtt, pd); u32 pd_entry; pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr); pd_entry |= GEN6_PDE_VALID; writel(pd_entry, ppgtt->pd_addr + pde); } /* Write all the page tables found in the ppgtt structure to incrementing page * directories. */ static void gen6_write_page_range(struct drm_i915_private *dev_priv, struct i915_page_directory *pd, uint32_t start, uint32_t length) { struct i915_page_table *pt; uint32_t pde, temp; gen6_for_each_pde(pt, pd, start, length, temp, pde) gen6_write_pde(pd, pde, pt); /* Make sure write is complete before other code can use this page * table. Also require for WC mapped PTEs */ readl(dev_priv->gtt.gsm); } static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) { BUG_ON(ppgtt->pd.pd_offset & 0x3f); return (ppgtt->pd.pd_offset / 64) << 16; } static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring) { int ret; /* NB: TLBs must be flushed and invalidated before a switch */ ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); intel_ring_emit(ring, PP_DIR_DCLV_2G); intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); intel_ring_emit(ring, get_pd_offset(ppgtt)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring) { struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev); I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); return 0; } static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring) { int ret; /* NB: TLBs must be flushed and invalidated before a switch */ ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); intel_ring_emit(ring, PP_DIR_DCLV_2G); intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); intel_ring_emit(ring, get_pd_offset(ppgtt)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); /* XXX: RCS is the only one to auto invalidate the TLBs? */ if (ring->id != RCS) { ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; } return 0; } static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); POSTING_READ(RING_PP_DIR_DCLV(ring)); return 0; } static void gen8_ppgtt_enable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; int j; for_each_ring(ring, dev_priv, j) { I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } } static void gen7_ppgtt_enable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; uint32_t ecochk, ecobits; int i; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); ecochk = I915_READ(GAM_ECOCHK); if (IS_HASWELL(dev)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } I915_WRITE(GAM_ECOCHK, ecochk); for_each_ring(ring, dev_priv, i) { /* GFX_MODE is per-ring on gen7+ */ I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } } static void gen6_ppgtt_enable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ecochk, gab_ctl, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen6_pte_t *pt_vaddr, scratch_pte; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; unsigned act_pt = first_entry / GEN6_PTES; unsigned first_pte = first_entry % GEN6_PTES; unsigned last_pte, i; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); while (num_entries) { last_pte = first_pte + num_entries; if (last_pte > GEN6_PTES) last_pte = GEN6_PTES; pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page); for (i = first_pte; i < last_pte; i++) pt_vaddr[i] = scratch_pte; kunmap_atomic(pt_vaddr); num_entries -= last_pte - first_pte; first_pte = 0; act_pt++; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 flags) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen6_pte_t *pt_vaddr; unsigned first_entry = start >> PAGE_SHIFT; unsigned act_pt = first_entry / GEN6_PTES; unsigned act_pte = first_entry % GEN6_PTES; struct sg_page_iter sg_iter; pt_vaddr = NULL; for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { if (pt_vaddr == NULL) pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page); pt_vaddr[act_pte] = vm->pte_encode(sg_page_iter_dma_address(&sg_iter), cache_level, true, flags); if (++act_pte == GEN6_PTES) { kunmap_atomic(pt_vaddr); pt_vaddr = NULL; act_pt++; act_pte = 0; } } if (pt_vaddr) kunmap_atomic(pt_vaddr); } /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we * are switching between contexts with the same LRCA, we also must do a force * restore. */ static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) { /* If current vm != vm, */ ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask; } static void gen6_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { gen6_pte_t *pt_vaddr, scratch_pte; int i; WARN_ON(vm->scratch.addr == 0); scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); pt_vaddr = kmap_atomic(pt->page); for (i = 0; i < GEN6_PTES; i++) pt_vaddr[i] = scratch_pte; kunmap_atomic(pt_vaddr); } static int gen6_alloc_va_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { DECLARE_BITMAP(new_page_tables, I915_PDES); struct drm_device *dev = vm->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); struct i915_page_table *pt; const uint32_t start_save = start, length_save = length; uint32_t pde, temp; int ret; WARN_ON(upper_32_bits(start)); bitmap_zero(new_page_tables, I915_PDES); /* The allocation is done in two stages so that we can bail out with * minimal amount of pain. The first stage finds new page tables that * need allocation. The second stage marks use ptes within the page * tables. */ gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) { if (pt != ppgtt->scratch_pt) { WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES)); continue; } /* We've already allocated a page table */ WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES)); pt = alloc_pt_single(dev); if (IS_ERR(pt)) { ret = PTR_ERR(pt); goto unwind_out; } gen6_initialize_pt(vm, pt); ppgtt->pd.page_table[pde] = pt; set_bit(pde, new_page_tables); trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT); } start = start_save; length = length_save; gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) { DECLARE_BITMAP(tmp_bitmap, GEN6_PTES); bitmap_zero(tmp_bitmap, GEN6_PTES); bitmap_set(tmp_bitmap, gen6_pte_index(start), gen6_pte_count(start, length)); if (test_and_clear_bit(pde, new_page_tables)) gen6_write_pde(&ppgtt->pd, pde, pt); trace_i915_page_table_entry_map(vm, pde, pt, gen6_pte_index(start), gen6_pte_count(start, length), GEN6_PTES); bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes, GEN6_PTES); } WARN_ON(!bitmap_empty(new_page_tables, I915_PDES)); /* Make sure write is complete before other code can use this page * table. Also require for WC mapped PTEs */ readl(dev_priv->gtt.gsm); mark_tlbs_dirty(ppgtt); return 0; unwind_out: for_each_set_bit(pde, new_page_tables, I915_PDES) { struct i915_page_table *pt = ppgtt->pd.page_table[pde]; ppgtt->pd.page_table[pde] = ppgtt->scratch_pt; unmap_and_free_pt(pt, vm->dev); } mark_tlbs_dirty(ppgtt); return ret; } static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt) { struct i915_page_table *pt; uint32_t pde; gen6_for_all_pdes(pt, ppgtt, pde) { if (pt != ppgtt->scratch_pt) unmap_and_free_pt(pt, ppgtt->base.dev); } unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev); } static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); drm_mm_remove_node(&ppgtt->node); gen6_ppgtt_free(ppgtt); } static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool retried = false; int ret; /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The * allocator works in address space sizes, so it's multiplied by page * size. We allocate at the top of the GTT to avoid fragmentation. */ BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm)); ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev); if (IS_ERR(ppgtt->scratch_pt)) return PTR_ERR(ppgtt->scratch_pt); gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt); alloc: ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm, &ppgtt->node, GEN6_PD_SIZE, GEN6_PD_ALIGN, 0, 0, dev_priv->gtt.base.total, DRM_MM_TOPDOWN); if (ret == -ENOSPC && !retried) { ret = i915_gem_evict_something(dev, &dev_priv->gtt.base, GEN6_PD_SIZE, GEN6_PD_ALIGN, I915_CACHE_NONE, 0, dev_priv->gtt.base.total, 0); if (ret) goto err_out; retried = true; goto alloc; } if (ret) goto err_out; if (ppgtt->node.start < dev_priv->gtt.mappable_end) DRM_DEBUG("Forced to use aperture for PDEs\n"); return 0; err_out: unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); return ret; } static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) { return gen6_ppgtt_allocate_page_directories(ppgtt); } static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, uint64_t start, uint64_t length) { struct i915_page_table *unused; uint32_t pde, temp; gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) ppgtt->pd.page_table[pde] = ppgtt->scratch_pt; } static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; if (IS_GEN6(dev)) { ppgtt->switch_mm = gen6_mm_switch; } else if (IS_HASWELL(dev)) { ppgtt->switch_mm = hsw_mm_switch; } else if (IS_GEN7(dev)) { ppgtt->switch_mm = gen7_mm_switch; } else BUG(); if (intel_vgpu_active(dev)) ppgtt->switch_mm = vgpu_mm_switch; ret = gen6_ppgtt_alloc(ppgtt); if (ret) return ret; if (aliasing) { /* preallocate all pts */ ret = alloc_pt_range(&ppgtt->pd, 0, I915_PDES, ppgtt->base.dev); if (ret) { gen6_ppgtt_cleanup(&ppgtt->base); return ret; } } ppgtt->base.allocate_va_range = aliasing ? NULL : gen6_alloc_va_range; ppgtt->base.clear_range = gen6_ppgtt_clear_range; ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.unbind_vma = ppgtt_unbind_vma; ppgtt->base.bind_vma = ppgtt_bind_vma; ppgtt->base.cleanup = gen6_ppgtt_cleanup; ppgtt->base.start = 0; ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; ppgtt->debug_dump = gen6_dump_ppgtt; ppgtt->pd.pd_offset = ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm + ppgtt->pd.pd_offset / sizeof(gen6_pte_t); if (aliasing) ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true); else gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", ppgtt->node.size >> 20, ppgtt->node.start / PAGE_SIZE); DRM_DEBUG("Adding PPGTT at offset %x\n", ppgtt->pd.pd_offset << 10); return 0; } static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt, bool aliasing) { struct drm_i915_private *dev_priv = dev->dev_private; ppgtt->base.dev = dev; ppgtt->base.scratch = dev_priv->gtt.base.scratch; if (INTEL_INFO(dev)->gen < 8) return gen6_ppgtt_init(ppgtt, aliasing); else if (aliasing) return gen8_aliasing_ppgtt_init(ppgtt); else return gen8_ppgtt_init(ppgtt); } int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; ret = __hw_ppgtt_init(dev, ppgtt, false); if (ret == 0) { kref_init(&ppgtt->ref); drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, ppgtt->base.total); i915_init_vm(dev_priv, &ppgtt->base); } return ret; } int i915_ppgtt_init_hw(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; int i, ret = 0; /* In the case of execlists, PPGTT is enabled by the context descriptor * and the PDPs are contained within the context itself. We don't * need to do anything here. */ if (i915.enable_execlists) return 0; if (!USES_PPGTT(dev)) return 0; if (IS_GEN6(dev)) gen6_ppgtt_enable(dev); else if (IS_GEN7(dev)) gen7_ppgtt_enable(dev); else if (INTEL_INFO(dev)->gen >= 8) gen8_ppgtt_enable(dev); else MISSING_CASE(INTEL_INFO(dev)->gen); if (ppgtt) { for_each_ring(ring, dev_priv, i) { ret = ppgtt->switch_mm(ppgtt, ring); if (ret != 0) return ret; } } return ret; } struct i915_hw_ppgtt * i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv) { struct i915_hw_ppgtt *ppgtt; int ret; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); ret = i915_ppgtt_init(dev, ppgtt); if (ret) { kfree(ppgtt); return ERR_PTR(ret); } ppgtt->file_priv = fpriv; trace_i915_ppgtt_create(&ppgtt->base); return ppgtt; } void i915_ppgtt_release(struct kref *kref) { struct i915_hw_ppgtt *ppgtt = container_of(kref, struct i915_hw_ppgtt, ref); trace_i915_ppgtt_release(&ppgtt->base); /* vmas should already be unbound */ WARN_ON(!list_empty(&ppgtt->base.active_list)); WARN_ON(!list_empty(&ppgtt->base.inactive_list)); list_del(&ppgtt->base.global_link); drm_mm_takedown(&ppgtt->base.mm); ppgtt->base.cleanup(&ppgtt->base); kfree(ppgtt); } static void ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { /* Currently applicable only to VLV */ if (vma->obj->gt_ro) flags |= PTE_READ_ONLY; vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start, cache_level, flags); } static void ppgtt_unbind_vma(struct i915_vma *vma) { vma->vm->clear_range(vma->vm, vma->node.start, vma->obj->base.size, true); } extern int intel_iommu_gfx_mapped; /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static inline bool needs_idle_maps(struct drm_device *dev) { #ifdef CONFIG_INTEL_IOMMU /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) return true; #endif return false; } static bool do_idling(struct drm_i915_private *dev_priv) { bool ret = dev_priv->mm.interruptible; if (unlikely(dev_priv->gtt.do_idle_maps)) { dev_priv->mm.interruptible = false; if (i915_gpu_idle(dev_priv->dev)) { DRM_ERROR("Couldn't idle GPU\n"); /* Wait a bit, in hopes it avoids the hang */ udelay(10); } } return ret; } static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) { if (unlikely(dev_priv->gtt.do_idle_maps)) dev_priv->mm.interruptible = interruptible; } void i915_check_and_clear_faults(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; int i; if (INTEL_INFO(dev)->gen < 6) return; for_each_ring(ring, dev_priv, i) { u32 fault_reg; fault_reg = I915_READ(RING_FAULT_REG(ring)); if (fault_reg & RING_FAULT_VALID) { DRM_DEBUG_DRIVER("Unexpected fault\n" "\tAddr: 0x%08lx\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault_reg & PAGE_MASK, fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault_reg), RING_FAULT_FAULT_TYPE(fault_reg)); I915_WRITE(RING_FAULT_REG(ring), fault_reg & ~RING_FAULT_VALID); } } POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); } static void i915_ggtt_flush(struct drm_i915_private *dev_priv) { if (INTEL_INFO(dev_priv->dev)->gen < 6) { intel_gtt_chipset_flush(); } else { I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } } void i915_gem_suspend_gtt_mappings(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_INFO(dev)->gen < 6) return; i915_check_and_clear_faults(dev); dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, dev_priv->gtt.base.start, dev_priv->gtt.base.total, true); i915_ggtt_flush(dev_priv); } void i915_gem_restore_gtt_mappings(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct i915_address_space *vm; i915_check_and_clear_faults(dev); /* First fill our portion of the GTT with scratch pages */ dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, dev_priv->gtt.base.start, dev_priv->gtt.base.total, true); list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { struct i915_vma *vma = i915_gem_obj_to_vma(obj, &dev_priv->gtt.base); if (!vma) continue; i915_gem_clflush_object(obj, obj->pin_display); /* The bind_vma code tries to be smart about tracking mappings. * Unfortunately above, we've just wiped out the mappings * without telling our object about it. So we need to fake it. * * Bind is not expected to fail since this is only called on * resume and assumption is all requirements exist already. */ vma->bound &= ~GLOBAL_BIND; WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND)); } if (INTEL_INFO(dev)->gen >= 8) { if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) chv_setup_private_ppat(dev_priv); else bdw_setup_private_ppat(dev_priv); return; } if (USES_PPGTT(dev)) { list_for_each_entry(vm, &dev_priv->vm_list, global_link) { /* TODO: Perhaps it shouldn't be gen6 specific */ struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); if (i915_is_ggtt(vm)) ppgtt = dev_priv->mm.aliasing_ppgtt; gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); } } i915_ggtt_flush(dev_priv); } int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) { if (obj->has_dma_mapping) return 0; if (!dma_map_sg(&obj->base.dev->pdev->dev, obj->pages->sgl, obj->pages->nents, PCI_DMA_BIDIRECTIONAL)) return -ENOSPC; return 0; } static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { #ifdef writeq writeq(pte, addr); #else iowrite32((u32)pte, addr); iowrite32(pte >> 32, addr + 4); #endif } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 unused) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; gen8_pte_t __iomem *gtt_entries = (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; int i = 0; struct sg_page_iter sg_iter; dma_addr_t addr = 0; /* shut up gcc */ for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { addr = sg_dma_address(sg_iter.sg) + (sg_iter.sg_pgoffset << PAGE_SHIFT); gen8_set_pte(>t_entries[i], gen8_pte_encode(addr, level, true)); i++; } /* * XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) WARN_ON(readq(>t_entries[i-1]) != gen8_pte_encode(addr, level, true)); /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } /* * Binds an object into the global gtt with the specified cache level. The object * will be accessible to the GPU via commands whose operands reference offsets * within the global GTT as well as accessible by the GPU through the GMADR * mapped BAR (dev_priv->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 flags) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; gen6_pte_t __iomem *gtt_entries = (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; int i = 0; struct sg_page_iter sg_iter; dma_addr_t addr = 0; for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { addr = sg_page_iter_dma_address(&sg_iter); iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]); i++; } /* XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) { unsigned long gtt = readl(>t_entries[i-1]); WARN_ON(gtt != vm->pte_encode(addr, level, true, flags)); } /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } static void gen8_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen8_pte_t scratch_pte, __iomem *gtt_base = (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = gen8_pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch); for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); readl(gtt_base); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0); for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); readl(gtt_base); } static void i915_ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { const unsigned long entry = vma->node.start >> PAGE_SHIFT; unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; BUG_ON(!i915_is_ggtt(vma->vm)); intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags); vma->bound = GLOBAL_BIND; } static void i915_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool unused) { unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; intel_gtt_clear_range(first_entry, num_entries); } static void i915_ggtt_unbind_vma(struct i915_vma *vma) { const unsigned int first = vma->node.start >> PAGE_SHIFT; const unsigned int size = vma->obj->base.size >> PAGE_SHIFT; BUG_ON(!i915_is_ggtt(vma->vm)); vma->bound = 0; intel_gtt_clear_range(first, size); } static void ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_device *dev = vma->vm->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = vma->obj; struct sg_table *pages = obj->pages; /* Currently applicable only to VLV */ if (obj->gt_ro) flags |= PTE_READ_ONLY; if (i915_is_ggtt(vma->vm)) pages = vma->ggtt_view.pages; /* If there is no aliasing PPGTT, or the caller needs a global mapping, * or we have a global mapping already but the cacheability flags have * changed, set the global PTEs. * * If there is an aliasing PPGTT it is anecdotally faster, so use that * instead if none of the above hold true. * * NB: A global mapping should only be needed for special regions like * "gtt mappable", SNB errata, or if specified via special execbuf * flags. At all other times, the GPU will use the aliasing PPGTT. */ if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) { if (!(vma->bound & GLOBAL_BIND) || (cache_level != obj->cache_level)) { vma->vm->insert_entries(vma->vm, pages, vma->node.start, cache_level, flags); vma->bound |= GLOBAL_BIND; } } if (dev_priv->mm.aliasing_ppgtt && (!(vma->bound & LOCAL_BIND) || (cache_level != obj->cache_level))) { struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; appgtt->base.insert_entries(&appgtt->base, pages, vma->node.start, cache_level, flags); vma->bound |= LOCAL_BIND; } } static void ggtt_unbind_vma(struct i915_vma *vma) { struct drm_device *dev = vma->vm->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = vma->obj; if (vma->bound & GLOBAL_BIND) { vma->vm->clear_range(vma->vm, vma->node.start, obj->base.size, true); vma->bound &= ~GLOBAL_BIND; } if (vma->bound & LOCAL_BIND) { struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; appgtt->base.clear_range(&appgtt->base, vma->node.start, obj->base.size, true); vma->bound &= ~LOCAL_BIND; } } void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool interruptible; interruptible = do_idling(dev_priv); if (!obj->has_dma_mapping) dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents, PCI_DMA_BIDIRECTIONAL); undo_idling(dev_priv, interruptible); } static void i915_gtt_color_adjust(struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (node->color != color) *start += 4096; if (!list_empty(&node->node_list)) { node = list_entry(node->node_list.next, struct drm_mm_node, node_list); if (node->allocated && node->color != color) *end -= 4096; } } static int i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start, unsigned long mappable_end, unsigned long end) { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ struct drm_i915_private *dev_priv = dev->dev_private; struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; struct drm_mm_node *entry; struct drm_i915_gem_object *obj; unsigned long hole_start, hole_end; int ret; BUG_ON(mappable_end > end); /* Subtract the guard page ... */ drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); dev_priv->gtt.base.start = start; dev_priv->gtt.base.total = end - start; if (intel_vgpu_active(dev)) { ret = intel_vgt_balloon(dev); if (ret) return ret; } if (!HAS_LLC(dev)) dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; /* Mark any preallocated objects as occupied */ list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", i915_gem_obj_ggtt_offset(obj), obj->base.size); WARN_ON(i915_gem_obj_ggtt_bound(obj)); ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); if (ret) { DRM_DEBUG_KMS("Reservation failed: %i\n", ret); return ret; } vma->bound |= GLOBAL_BIND; } /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt_vm->clear_range(ggtt_vm, hole_start, hole_end - hole_start, true); } /* And finally clear the reserved guard page */ ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true); if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) { struct i915_hw_ppgtt *ppgtt; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return -ENOMEM; ret = __hw_ppgtt_init(dev, ppgtt, true); if (ret) { kfree(ppgtt); return ret; } dev_priv->mm.aliasing_ppgtt = ppgtt; } return 0; } void i915_gem_init_global_gtt(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long gtt_size, mappable_size; gtt_size = dev_priv->gtt.base.total; mappable_size = dev_priv->gtt.mappable_end; i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); } void i915_global_gtt_cleanup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_address_space *vm = &dev_priv->gtt.base; if (dev_priv->mm.aliasing_ppgtt) { struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; ppgtt->base.cleanup(&ppgtt->base); } if (drm_mm_initialized(&vm->mm)) { if (intel_vgpu_active(dev)) intel_vgt_deballoon(); drm_mm_takedown(&vm->mm); list_del(&vm->global_link); } vm->cleanup(vm); } static int setup_scratch_page(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct page *page; dma_addr_t dma_addr; page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); if (page == NULL) return -ENOMEM; set_pages_uc(page, 1); #ifdef CONFIG_INTEL_IOMMU dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev->pdev, dma_addr)) return -EINVAL; #else dma_addr = page_to_phys(page); #endif dev_priv->gtt.base.scratch.page = page; dev_priv->gtt.base.scratch.addr = dma_addr; return 0; } static void teardown_scratch_page(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct page *page = dev_priv->gtt.base.scratch.page; set_pages_wb(page, 1); pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); __free_page(page); } static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GMS_MASK; return snb_gmch_ctl << 25; /* 32 MB units */ } static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; return bdw_gmch_ctl << 25; /* 32 MB units */ } static size_t chv_get_stolen_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; gmch_ctrl &= SNB_GMCH_GMS_MASK; /* * 0x0 to 0x10: 32MB increments starting at 0MB * 0x11 to 0x16: 4MB increments starting at 8MB * 0x17 to 0x1d: 4MB increments start at 36MB */ if (gmch_ctrl < 0x11) return gmch_ctrl << 25; else if (gmch_ctrl < 0x17) return (gmch_ctrl - 0x11 + 2) << 22; else return (gmch_ctrl - 0x17 + 9) << 22; } static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) { gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; if (gen9_gmch_ctl < 0xf0) return gen9_gmch_ctl << 25; /* 32 MB units */ else /* 4MB increments starting at 0xf0 for 4MB */ return (gen9_gmch_ctl - 0xf0 + 1) << 22; } static int ggtt_probe_common(struct drm_device *dev, size_t gtt_size) { struct drm_i915_private *dev_priv = dev->dev_private; phys_addr_t gtt_phys_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ gtt_phys_addr = pci_resource_start(dev->pdev, 0) + (pci_resource_len(dev->pdev, 0) / 2); /* * On BXT writes larger than 64 bit to the GTT pagetable range will be * dropped. For WC mappings in general we have 64 byte burst writes * when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (IS_BROXTON(dev)) dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size); else dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size); if (!dev_priv->gtt.gsm) { DRM_ERROR("Failed to map the gtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(dev); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(dev_priv->gtt.gsm); } return ret; } /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) { uint64_t pat; pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); if (!USES_PPGTT(dev_priv->dev)) /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * So let's disable cache for GGTT to avoid screen corruptions. * MOCS still can be used though. * - System agent ggtt writes (i.e. cpu gtt mmaps) already work * before this patch, i.e. the same uncached + snooping access * like on gen6/7 seems to be in effect. * - So this just fixes blitter/render access. Again it looks * like it's not just uncached access, but uncached + snooping. * So we can still hold onto all our assumptions wrt cpu * clflushing on LLC machines. */ pat = GEN8_PPAT(0, GEN8_PPAT_UC); /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b * write would work. */ I915_WRITE(GEN8_PRIVATE_PAT, pat); I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); } static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) { uint64_t pat; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * The hardware will never snoop for certain types of accesses: * - CPU GTT (GMADR->GGTT->no snoop->memory) * - PPGTT page tables * - some other special cycles * * As with BDW, we also need to consider the following for GT accesses: * "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * Which means we must set the snoop bit in PAT entry 0 * in order to keep the global status page working. */ pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | GEN8_PPAT(1, 0) | GEN8_PPAT(2, 0) | GEN8_PPAT(3, 0) | GEN8_PPAT(4, CHV_PPAT_SNOOP) | GEN8_PPAT(5, CHV_PPAT_SNOOP) | GEN8_PPAT(6, CHV_PPAT_SNOOP) | GEN8_PPAT(7, CHV_PPAT_SNOOP); I915_WRITE(GEN8_PRIVATE_PAT, pat); I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); } static int gen8_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned int gtt_size; u16 snb_gmch_ctl; int ret; /* TODO: We're not aware of mappable constraints on gen8 yet */ *mappable_base = pci_resource_start(dev->pdev, 2); *mappable_end = pci_resource_len(dev->pdev, 2); if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (INTEL_INFO(dev)->gen >= 9) { *stolen = gen9_get_stolen_size(snb_gmch_ctl); gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); } else if (IS_CHERRYVIEW(dev)) { *stolen = chv_get_stolen_size(snb_gmch_ctl); gtt_size = chv_get_total_gtt_size(snb_gmch_ctl); } else { *stolen = gen8_get_stolen_size(snb_gmch_ctl); gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); } *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT; if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) chv_setup_private_ppat(dev_priv); else bdw_setup_private_ppat(dev_priv); ret = ggtt_probe_common(dev, gtt_size); dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; dev_priv->gtt.base.bind_vma = ggtt_bind_vma; dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; return ret; } static int gen6_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned int gtt_size; u16 snb_gmch_ctl; int ret; *mappable_base = pci_resource_start(dev->pdev, 2); *mappable_end = pci_resource_len(dev->pdev, 2); /* 64/512MB is the current min/max we actually know of, but this is just * a coarse sanity check. */ if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { DRM_ERROR("Unknown GMADR size (%lx)\n", dev_priv->gtt.mappable_end); return -ENXIO; } if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); *stolen = gen6_get_stolen_size(snb_gmch_ctl); gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT; ret = ggtt_probe_common(dev, gtt_size); dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; dev_priv->gtt.base.bind_vma = ggtt_bind_vma; dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; return ret; } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); iounmap(gtt->gsm); teardown_scratch_page(vm->dev); } static int i915_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; dev_priv->gtt.base.bind_vma = i915_ggtt_bind_vma; dev_priv->gtt.base.unbind_vma = i915_ggtt_unbind_vma; if (unlikely(dev_priv->gtt.do_idle_maps)) DRM_INFO("applying Ironlake quirks for intel_iommu\n"); return 0; } static void i915_gmch_remove(struct i915_address_space *vm) { intel_gmch_remove(); } int i915_gem_gtt_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_gtt *gtt = &dev_priv->gtt; int ret; if (INTEL_INFO(dev)->gen <= 5) { gtt->gtt_probe = i915_gmch_probe; gtt->base.cleanup = i915_gmch_remove; } else if (INTEL_INFO(dev)->gen < 8) { gtt->gtt_probe = gen6_gmch_probe; gtt->base.cleanup = gen6_gmch_remove; if (IS_HASWELL(dev) && dev_priv->ellc_size) gtt->base.pte_encode = iris_pte_encode; else if (IS_HASWELL(dev)) gtt->base.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(dev)) gtt->base.pte_encode = byt_pte_encode; else if (INTEL_INFO(dev)->gen >= 7) gtt->base.pte_encode = ivb_pte_encode; else gtt->base.pte_encode = snb_pte_encode; } else { dev_priv->gtt.gtt_probe = gen8_gmch_probe; dev_priv->gtt.base.cleanup = gen6_gmch_remove; } ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, >t->mappable_base, >t->mappable_end); if (ret) return ret; gtt->base.dev = dev; /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_INFO("Memory usable by graphics device = %zdM\n", gtt->base.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); #ifdef CONFIG_INTEL_IOMMU if (intel_iommu_gfx_mapped) DRM_INFO("VT-d active for gfx access\n"); #endif /* * i915.enable_ppgtt is read-only, so do an early pass to validate the * user's requested state against the hardware/driver capabilities. We * do this now so that we can print out any log messages once rather * than every time we check intel_enable_ppgtt(). */ i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt); DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt); return 0; } static struct i915_vma * __i915_gem_vma_create(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *ggtt_view) { struct i915_vma *vma; if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view)) return ERR_PTR(-EINVAL); vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL); if (vma == NULL) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&vma->vma_link); INIT_LIST_HEAD(&vma->mm_list); INIT_LIST_HEAD(&vma->exec_list); vma->vm = vm; vma->obj = obj; if (i915_is_ggtt(vm)) vma->ggtt_view = *ggtt_view; list_add_tail(&vma->vma_link, &obj->vma_list); if (!i915_is_ggtt(vm)) i915_ppgtt_get(i915_vm_to_ppgtt(vm)); return vma; } struct i915_vma * i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, struct i915_address_space *vm) { struct i915_vma *vma; vma = i915_gem_obj_to_vma(obj, vm); if (!vma) vma = __i915_gem_vma_create(obj, vm, i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL); return vma; } struct i915_vma * i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view) { struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); struct i915_vma *vma; if (WARN_ON(!view)) return ERR_PTR(-EINVAL); vma = i915_gem_obj_to_ggtt_view(obj, view); if (IS_ERR(vma)) return vma; if (!vma) vma = __i915_gem_vma_create(obj, ggtt, view); return vma; } static void rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height, struct sg_table *st) { unsigned int column, row; unsigned int src_idx; struct scatterlist *sg = st->sgl; st->nents = 0; for (column = 0; column < width; column++) { src_idx = width * (height - 1) + column; for (row = 0; row < height; row++) { st->nents++; /* We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ sg_set_page(sg, NULL, PAGE_SIZE, 0); sg_dma_address(sg) = in[src_idx]; sg_dma_len(sg) = PAGE_SIZE; sg = sg_next(sg); src_idx -= width; } } } static struct sg_table * intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view, struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct intel_rotation_info *rot_info = &ggtt_view->rotation_info; unsigned long size, pages, rot_pages; struct sg_page_iter sg_iter; unsigned long i; dma_addr_t *page_addr_list; struct sg_table *st; unsigned int tile_pitch, tile_height; unsigned int width_pages, height_pages; int ret = -ENOMEM; pages = obj->base.size / PAGE_SIZE; /* Calculate tiling geometry. */ tile_height = intel_tile_height(dev, rot_info->pixel_format, rot_info->fb_modifier); tile_pitch = PAGE_SIZE / tile_height; width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch); height_pages = DIV_ROUND_UP(rot_info->height, tile_height); rot_pages = width_pages * height_pages; size = rot_pages * PAGE_SIZE; /* Allocate a temporary list of source pages for random access. */ page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t)); if (!page_addr_list) return ERR_PTR(ret); /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, rot_pages, GFP_KERNEL); if (ret) goto err_sg_alloc; /* Populate source page list from the object. */ i = 0; for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { page_addr_list[i] = sg_page_iter_dma_address(&sg_iter); i++; } /* Rotate the pages. */ rotate_pages(page_addr_list, width_pages, height_pages, st); DRM_DEBUG_KMS( "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n", size, rot_info->pitch, rot_info->height, rot_info->pixel_format, width_pages, height_pages, rot_pages); drm_free_large(page_addr_list); return st; err_sg_alloc: kfree(st); err_st_alloc: drm_free_large(page_addr_list); DRM_DEBUG_KMS( "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n", size, ret, rot_info->pitch, rot_info->height, rot_info->pixel_format, width_pages, height_pages, rot_pages); return ERR_PTR(ret); } static inline int i915_get_ggtt_vma_pages(struct i915_vma *vma) { int ret = 0; if (vma->ggtt_view.pages) return 0; if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) vma->ggtt_view.pages = vma->obj->pages; else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) vma->ggtt_view.pages = intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj); else WARN_ONCE(1, "GGTT view %u not implemented!\n", vma->ggtt_view.type); if (!vma->ggtt_view.pages) { DRM_ERROR("Failed to get pages for GGTT view type %u!\n", vma->ggtt_view.type); ret = -EINVAL; } else if (IS_ERR(vma->ggtt_view.pages)) { ret = PTR_ERR(vma->ggtt_view.pages); vma->ggtt_view.pages = NULL; DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", vma->ggtt_view.type, ret); } return ret; } /** * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. * @vma: VMA to map * @cache_level: mapping cache level * @flags: flags like global or local mapping * * DMA addresses are taken from the scatter-gather table of this object (or of * this VMA in case of non-default GGTT views) and PTE entries set up. * Note that DMA addresses are also the only part of the SG table we care about. */ int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { int ret; if (vma->vm->allocate_va_range) { trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size, VM_TO_TRACE_NAME(vma->vm)); ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->node.size); if (ret) return ret; } if (i915_is_ggtt(vma->vm)) { ret = i915_get_ggtt_vma_pages(vma); if (ret) return ret; } vma->vm->bind_vma(vma, cache_level, flags); return 0; }