/* * fs/ext4/extents_status.c * * Written by Yongqiang Yang * Modified by * Allison Henderson * Hugh Dickins * Zheng Liu * * Ext4 extents status tree core functions. */ #include #include "ext4.h" #include "extents_status.h" #include "ext4_extents.h" #include /* * According to previous discussion in Ext4 Developer Workshop, we * will introduce a new structure called io tree to track all extent * status in order to solve some problems that we have met * (e.g. Reservation space warning), and provide extent-level locking. * Delay extent tree is the first step to achieve this goal. It is * original built by Yongqiang Yang. At that time it is called delay * extent tree, whose goal is only track delayed extents in memory to * simplify the implementation of fiemap and bigalloc, and introduce * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called * delay extent tree at the first commit. But for better understand * what it does, it has been rename to extent status tree. * * Step1: * Currently the first step has been done. All delayed extents are * tracked in the tree. It maintains the delayed extent when a delayed * allocation is issued, and the delayed extent is written out or * invalidated. Therefore the implementation of fiemap and bigalloc * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. * * The following comment describes the implemenmtation of extent * status tree and future works. * * Step2: * In this step all extent status are tracked by extent status tree. * Thus, we can first try to lookup a block mapping in this tree before * finding it in extent tree. Hence, single extent cache can be removed * because extent status tree can do a better job. Extents in status * tree are loaded on-demand. Therefore, the extent status tree may not * contain all of the extents in a file. Meanwhile we define a shrinker * to reclaim memory from extent status tree because fragmented extent * tree will make status tree cost too much memory. written/unwritten/- * hole extents in the tree will be reclaimed by this shrinker when we * are under high memory pressure. Delayed extents will not be * reclimed because fiemap, bigalloc, and seek_data/hole need it. */ /* * Extent status tree implementation for ext4. * * * ========================================================================== * Extent status tree tracks all extent status. * * 1. Why we need to implement extent status tree? * * Without extent status tree, ext4 identifies a delayed extent by looking * up page cache, this has several deficiencies - complicated, buggy, * and inefficient code. * * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a * block or a range of blocks are belonged to a delayed extent. * * Let us have a look at how they do without extent status tree. * -- FIEMAP * FIEMAP looks up page cache to identify delayed allocations from holes. * * -- SEEK_HOLE/DATA * SEEK_HOLE/DATA has the same problem as FIEMAP. * * -- bigalloc * bigalloc looks up page cache to figure out if a block is * already under delayed allocation or not to determine whether * quota reserving is needed for the cluster. * * -- writeout * Writeout looks up whole page cache to see if a buffer is * mapped, If there are not very many delayed buffers, then it is * time comsuming. * * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, * bigalloc and writeout can figure out if a block or a range of * blocks is under delayed allocation(belonged to a delayed extent) or * not by searching the extent tree. * * * ========================================================================== * 2. Ext4 extent status tree impelmentation * * -- extent * A extent is a range of blocks which are contiguous logically and * physically. Unlike extent in extent tree, this extent in ext4 is * a in-memory struct, there is no corresponding on-disk data. There * is no limit on length of extent, so an extent can contain as many * blocks as they are contiguous logically and physically. * * -- extent status tree * Every inode has an extent status tree and all allocation blocks * are added to the tree with different status. The extent in the * tree are ordered by logical block no. * * -- operations on a extent status tree * There are three important operations on a delayed extent tree: find * next extent, adding a extent(a range of blocks) and removing a extent. * * -- race on a extent status tree * Extent status tree is protected by inode->i_es_lock. * * -- memory consumption * Fragmented extent tree will make extent status tree cost too much * memory. Hence, we will reclaim written/unwritten/hole extents from * the tree under a heavy memory pressure. * * * ========================================================================== * 3. Performance analysis * * -- overhead * 1. There is a cache extent for write access, so if writes are * not very random, adding space operaions are in O(1) time. * * -- gain * 2. Code is much simpler, more readable, more maintainable and * more efficient. * * * ========================================================================== * 4. TODO list * * -- Refactor delayed space reservation * * -- Extent-level locking */ static struct kmem_cache *ext4_es_cachep; static int __es_insert_extent(struct inode *inode, struct extent_status *newes); static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end); static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, int nr_to_scan); static int ext4_es_reclaim_extents_count(struct super_block *sb); int __init ext4_init_es(void) { ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT); if (ext4_es_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_es(void) { if (ext4_es_cachep) kmem_cache_destroy(ext4_es_cachep); } void ext4_es_init_tree(struct ext4_es_tree *tree) { tree->root = RB_ROOT; tree->cache_es = NULL; } #ifdef ES_DEBUG__ static void ext4_es_print_tree(struct inode *inode) { struct ext4_es_tree *tree; struct rb_node *node; printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_es_tree; node = rb_first(&tree->root); while (node) { struct extent_status *es; es = rb_entry(node, struct extent_status, rb_node); printk(KERN_DEBUG " [%u/%u) %llu %llx", es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_es_print_tree(inode) #endif static inline ext4_lblk_t ext4_es_end(struct extent_status *es) { BUG_ON(es->es_lblk + es->es_len < es->es_lblk); return es->es_lblk + es->es_len - 1; } /* * search through the tree for an delayed extent with a given offset. If * it can't be found, try to find next extent. */ static struct extent_status *__es_tree_search(struct rb_root *root, ext4_lblk_t lblk) { struct rb_node *node = root->rb_node; struct extent_status *es = NULL; while (node) { es = rb_entry(node, struct extent_status, rb_node); if (lblk < es->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es)) node = node->rb_right; else return es; } if (es && lblk < es->es_lblk) return es; if (es && lblk > ext4_es_end(es)) { node = rb_next(&es->rb_node); return node ? rb_entry(node, struct extent_status, rb_node) : NULL; } return NULL; } /* * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk * if it exists, otherwise, the next extent after @es->lblk. * * @inode: the inode which owns delayed extents * @lblk: the offset where we start to search * @es: delayed extent that we found */ void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk, struct extent_status *es) { struct ext4_es_tree *tree = NULL; struct extent_status *es1 = NULL; struct rb_node *node; BUG_ON(es == NULL); trace_ext4_es_find_delayed_extent_enter(inode, lblk); read_lock(&EXT4_I(inode)->i_es_lock); tree = &EXT4_I(inode)->i_es_tree; /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; if (tree->cache_es) { es1 = tree->cache_es; if (in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u) %llu %llx\n", lblk, es1->es_lblk, es1->es_len, ext4_es_pblock(es1), ext4_es_status(es1)); goto out; } } es1 = __es_tree_search(&tree->root, lblk); out: if (es1 && !ext4_es_is_delayed(es1)) { while ((node = rb_next(&es1->rb_node)) != NULL) { es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_is_delayed(es1)) break; } } if (es1 && ext4_es_is_delayed(es1)) { tree->cache_es = es1; es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; } read_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_lru_add(inode); trace_ext4_es_find_delayed_extent_exit(inode, es); } static struct extent_status * ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) { struct extent_status *es; es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); if (es == NULL) return NULL; es->es_lblk = lblk; es->es_len = len; es->es_pblk = pblk; /* * We don't count delayed extent because we never try to reclaim them */ if (!ext4_es_is_delayed(es)) EXT4_I(inode)->i_es_lru_nr++; return es; } static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) { /* Decrease the lru counter when this es is not delayed */ if (!ext4_es_is_delayed(es)) { BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0); EXT4_I(inode)->i_es_lru_nr--; } kmem_cache_free(ext4_es_cachep, es); } /* * Check whether or not two extents can be merged * Condition: * - logical block number is contiguous * - physical block number is contiguous * - status is equal */ static int ext4_es_can_be_merged(struct extent_status *es1, struct extent_status *es2) { if (es1->es_lblk + es1->es_len != es2->es_lblk) return 0; if (ext4_es_status(es1) != ext4_es_status(es2)) return 0; if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && (ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2))) return 0; return 1; } static struct extent_status * ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_prev(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es1, es)) { es1->es_len += es->es_len; rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); es = es1; } return es; } static struct extent_status * ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_next(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es, es1)) { es->es_len += es1->es_len; rb_erase(node, &tree->root); ext4_es_free_extent(inode, es1); } return es; } static int __es_insert_extent(struct inode *inode, struct extent_status *newes) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct extent_status *es; while (*p) { parent = *p; es = rb_entry(parent, struct extent_status, rb_node); if (newes->es_lblk < es->es_lblk) { if (ext4_es_can_be_merged(newes, es)) { /* * Here we can modify es_lblk directly * because it isn't overlapped. */ es->es_lblk = newes->es_lblk; es->es_len += newes->es_len; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) ext4_es_store_pblock(es, newes->es_pblk); es = ext4_es_try_to_merge_left(inode, es); goto out; } p = &(*p)->rb_left; } else if (newes->es_lblk > ext4_es_end(es)) { if (ext4_es_can_be_merged(es, newes)) { es->es_len += newes->es_len; es = ext4_es_try_to_merge_right(inode, es); goto out; } p = &(*p)->rb_right; } else { BUG_ON(1); return -EINVAL; } } es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, newes->es_pblk); if (!es) return -ENOMEM; rb_link_node(&es->rb_node, parent, p); rb_insert_color(&es->rb_node, &tree->root); out: tree->cache_es = es; return 0; } /* * ext4_es_insert_extent() adds a space to a extent status tree. * * ext4_es_insert_extent is called by ext4_da_write_begin and * ext4_es_remove_extent. * * Return 0 on success, error code on failure. */ int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned long long status) { struct extent_status newes; ext4_lblk_t end = lblk + len - 1; int err = 0; es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n", lblk, len, pblk, status, inode->i_ino); BUG_ON(end < lblk); newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock(&newes, pblk); ext4_es_store_status(&newes, status); trace_ext4_es_insert_extent(inode, &newes); write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end); if (err != 0) goto error; err = __es_insert_extent(inode, &newes); error: write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_lru_add(inode); ext4_es_print_tree(inode); return err; } /* * ext4_es_lookup_extent() looks up an extent in extent status tree. * * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. * * Return: 1 on found, 0 on not */ int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, struct extent_status *es) { struct ext4_es_tree *tree; struct extent_status *es1 = NULL; struct rb_node *node; int found = 0; trace_ext4_es_lookup_extent_enter(inode, lblk); es_debug("lookup extent in block %u\n", lblk); tree = &EXT4_I(inode)->i_es_tree; read_lock(&EXT4_I(inode)->i_es_lock); /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; if (tree->cache_es) { es1 = tree->cache_es; if (in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u)\n", lblk, es1->es_lblk, es1->es_len); found = 1; goto out; } } node = tree->root.rb_node; while (node) { es1 = rb_entry(node, struct extent_status, rb_node); if (lblk < es1->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es1)) node = node->rb_right; else { found = 1; break; } } out: if (found) { BUG_ON(!es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; } read_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_lru_add(inode); trace_ext4_es_lookup_extent_exit(inode, es, found); return found; } static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node *node; struct extent_status *es; struct extent_status orig_es; ext4_lblk_t len1, len2; ext4_fsblk_t block; int err = 0; es = __es_tree_search(&tree->root, lblk); if (!es) goto out; if (es->es_lblk > end) goto out; /* Simply invalidate cache_es. */ tree->cache_es = NULL; orig_es.es_lblk = es->es_lblk; orig_es.es_len = es->es_len; orig_es.es_pblk = es->es_pblk; len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; if (len1 > 0) es->es_len = len1; if (len2 > 0) { if (len1 > 0) { struct extent_status newes; newes.es_lblk = end + 1; newes.es_len = len2; if (ext4_es_is_written(&orig_es) || ext4_es_is_unwritten(&orig_es)) { block = ext4_es_pblock(&orig_es) + orig_es.es_len - len2; ext4_es_store_pblock(&newes, block); } ext4_es_store_status(&newes, ext4_es_status(&orig_es)); err = __es_insert_extent(inode, &newes); if (err) { es->es_lblk = orig_es.es_lblk; es->es_len = orig_es.es_len; goto out; } } else { es->es_lblk = end + 1; es->es_len = len2; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = orig_es.es_pblk + orig_es.es_len - len2; ext4_es_store_pblock(es, block); } } goto out; } if (len1 > 0) { node = rb_next(&es->rb_node); if (node) es = rb_entry(node, struct extent_status, rb_node); else es = NULL; } while (es && ext4_es_end(es) <= end) { node = rb_next(&es->rb_node); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); if (!node) { es = NULL; break; } es = rb_entry(node, struct extent_status, rb_node); } if (es && es->es_lblk < end + 1) { ext4_lblk_t orig_len = es->es_len; len1 = ext4_es_end(es) - end; es->es_lblk = end + 1; es->es_len = len1; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = es->es_pblk + orig_len - len1; ext4_es_store_pblock(es, block); } } out: return err; } /* * ext4_es_remove_extent() removes a space from a extent status tree. * * Return 0 on success, error code on failure. */ int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { ext4_lblk_t end; int err = 0; trace_ext4_es_remove_extent(inode, lblk, len); es_debug("remove [%u/%u) from extent status tree of inode %lu\n", lblk, len, inode->i_ino); end = lblk + len - 1; BUG_ON(end < lblk); write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end); write_unlock(&EXT4_I(inode)->i_es_lock); ext4_es_print_tree(inode); return err; } static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc) { struct ext4_sb_info *sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); struct ext4_inode_info *ei; struct list_head *cur, *tmp, scanned; int nr_to_scan = sc->nr_to_scan; int ret, nr_shrunk = 0; trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan); if (!nr_to_scan) return ext4_es_reclaim_extents_count(sbi->s_sb); INIT_LIST_HEAD(&scanned); spin_lock(&sbi->s_es_lru_lock); list_for_each_safe(cur, tmp, &sbi->s_es_lru) { list_move_tail(cur, &scanned); ei = list_entry(cur, struct ext4_inode_info, i_es_lru); read_lock(&ei->i_es_lock); if (ei->i_es_lru_nr == 0) { read_unlock(&ei->i_es_lock); continue; } read_unlock(&ei->i_es_lock); write_lock(&ei->i_es_lock); ret = __es_try_to_reclaim_extents(ei, nr_to_scan); write_unlock(&ei->i_es_lock); nr_shrunk += ret; nr_to_scan -= ret; if (nr_to_scan == 0) break; } list_splice_tail(&scanned, &sbi->s_es_lru); spin_unlock(&sbi->s_es_lru_lock); trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk); return ext4_es_reclaim_extents_count(sbi->s_sb); } void ext4_es_register_shrinker(struct super_block *sb) { struct ext4_sb_info *sbi; sbi = EXT4_SB(sb); INIT_LIST_HEAD(&sbi->s_es_lru); spin_lock_init(&sbi->s_es_lru_lock); sbi->s_es_shrinker.shrink = ext4_es_shrink; sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; register_shrinker(&sbi->s_es_shrinker); } void ext4_es_unregister_shrinker(struct super_block *sb) { unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker); } void ext4_es_lru_add(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); spin_lock(&sbi->s_es_lru_lock); if (list_empty(&ei->i_es_lru)) list_add_tail(&ei->i_es_lru, &sbi->s_es_lru); else list_move_tail(&ei->i_es_lru, &sbi->s_es_lru); spin_unlock(&sbi->s_es_lru_lock); } void ext4_es_lru_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); spin_lock(&sbi->s_es_lru_lock); if (!list_empty(&ei->i_es_lru)) list_del_init(&ei->i_es_lru); spin_unlock(&sbi->s_es_lru_lock); } static int ext4_es_reclaim_extents_count(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *ei; struct list_head *cur; int nr_cached = 0; spin_lock(&sbi->s_es_lru_lock); list_for_each(cur, &sbi->s_es_lru) { ei = list_entry(cur, struct ext4_inode_info, i_es_lru); read_lock(&ei->i_es_lock); nr_cached += ei->i_es_lru_nr; read_unlock(&ei->i_es_lock); } spin_unlock(&sbi->s_es_lru_lock); trace_ext4_es_reclaim_extents_count(sb, nr_cached); return nr_cached; } static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei, int nr_to_scan) { struct inode *inode = &ei->vfs_inode; struct ext4_es_tree *tree = &ei->i_es_tree; struct rb_node *node; struct extent_status *es; int nr_shrunk = 0; if (ei->i_es_lru_nr == 0) return 0; node = rb_first(&tree->root); while (node != NULL) { es = rb_entry(node, struct extent_status, rb_node); node = rb_next(&es->rb_node); /* * We can't reclaim delayed extent from status tree because * fiemap, bigallic, and seek_data/hole need to use it. */ if (!ext4_es_is_delayed(es)) { rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); nr_shrunk++; if (--nr_to_scan == 0) break; } } tree->cache_es = NULL; return nr_shrunk; }