/* -*- c-basic-offset: 8 -*- * * fw-card.c - card level functions * * Copyright (C) 2005-2006 Kristian Hoegsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include "fw-transaction.h" #include "fw-topology.h" #include "fw-device.h" /* The lib/crc16.c implementation uses the standard (0x8005) * polynomial, but we need the ITU-T (or CCITT) polynomial (0x1021). * The implementation below works on an array of host-endian u32 * words, assuming they'll be transmited msb first. */ static u16 crc16_itu_t(const u32 *buffer, size_t length) { int shift, i; u32 data; u16 sum, crc = 0; for (i = 0; i < length; i++) { data = *buffer++; for (shift = 28; shift >= 0; shift -= 4 ) { sum = ((crc >> 12) ^ (data >> shift)) & 0xf; crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum); } crc &= 0xffff; } return crc; } static LIST_HEAD(card_list); static LIST_HEAD(descriptor_list); static int descriptor_count; #define bib_crc(v) ((v) << 0) #define bib_crc_length(v) ((v) << 16) #define bib_info_length(v) ((v) << 24) #define bib_link_speed(v) ((v) << 0) #define bib_generation(v) ((v) << 4) #define bib_max_rom(v) ((v) << 8) #define bib_max_receive(v) ((v) << 12) #define bib_cyc_clk_acc(v) ((v) << 16) #define bib_pmc ((1) << 27) #define bib_bmc ((1) << 28) #define bib_isc ((1) << 29) #define bib_cmc ((1) << 30) #define bib_imc ((1) << 31) static u32 * generate_config_rom (struct fw_card *card, size_t *config_rom_length) { struct fw_descriptor *desc; static u32 config_rom[256]; int i, j, length; /* Initialize contents of config rom buffer. On the OHCI * controller, block reads to the config rom accesses the host * memory, but quadlet read access the hardware bus info block * registers. That's just crack, but it means we should make * sure the contents of bus info block in host memory mathces * the version stored in the OHCI registers. */ memset(config_rom, 0, sizeof config_rom); config_rom[0] = bib_crc_length(4) | bib_info_length(4) | bib_crc(0); config_rom[1] = 0x31333934; config_rom[2] = bib_link_speed(card->link_speed) | bib_generation(card->config_rom_generation++ % 14 + 2) | bib_max_rom(2) | bib_max_receive(card->max_receive) | bib_bmc | bib_isc | bib_cmc | bib_imc; config_rom[3] = card->guid >> 32; config_rom[4] = card->guid; /* Generate root directory. */ i = 5; config_rom[i++] = 0; config_rom[i++] = 0x0c0083c0; /* node capabilities */ config_rom[i++] = 0x03d00d1e; /* vendor id */ j = i + descriptor_count; /* Generate root directory entries for descriptors. */ list_for_each_entry (desc, &descriptor_list, link) { config_rom[i] = desc->key | (j - i); i++; j += desc->length; } /* Update root directory length. */ config_rom[5] = (i - 5 - 1) << 16; /* End of root directory, now copy in descriptors. */ list_for_each_entry (desc, &descriptor_list, link) { memcpy(&config_rom[i], desc->data, desc->length * 4); i += desc->length; } /* Calculate CRCs for all blocks in the config rom. This * assumes that CRC length and info length are identical for * the bus info block, which is always the case for this * implementation. */ for (i = 0; i < j; i += length + 1) { length = (config_rom[i] >> 16) & 0xff; config_rom[i] |= crc16_itu_t(&config_rom[i + 1], length); } *config_rom_length = j; return config_rom; } static void update_config_roms (void) { struct fw_card *card; u32 *config_rom; size_t length; list_for_each_entry (card, &card_list, link) { config_rom = generate_config_rom(card, &length); card->driver->set_config_rom(card, config_rom, length); } } int fw_core_add_descriptor (struct fw_descriptor *desc) { size_t i; /* Check descriptor is valid; the length of all blocks in the * descriptor has to add up to exactly the length of the * block. */ i = 0; while (i < desc->length) i += (desc->data[i] >> 16) + 1; if (i != desc->length) return -1; down_write(&fw_bus_type.subsys.rwsem); list_add_tail (&desc->link, &descriptor_list); descriptor_count++; update_config_roms(); up_write(&fw_bus_type.subsys.rwsem); return 0; } EXPORT_SYMBOL(fw_core_add_descriptor); void fw_core_remove_descriptor (struct fw_descriptor *desc) { down_write(&fw_bus_type.subsys.rwsem); list_del(&desc->link); descriptor_count--; update_config_roms(); up_write(&fw_bus_type.subsys.rwsem); } EXPORT_SYMBOL(fw_core_remove_descriptor); static const char gap_count_table[] = { 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 }; struct bm_data { struct fw_transaction t; struct { __be32 arg; __be32 data; } lock; u32 old; int rcode; struct completion done; }; static void complete_bm_lock(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct bm_data *bmd = data; if (rcode == RCODE_COMPLETE) bmd->old = be32_to_cpu(*(__be32 *) payload); bmd->rcode = rcode; complete(&bmd->done); } static void fw_card_bm_work(struct work_struct *work) { struct fw_card *card = container_of(work, struct fw_card, work.work); struct fw_device *root; struct bm_data bmd; unsigned long flags; int root_id, new_root_id, irm_id, gap_count, generation, grace; int do_reset = 0; spin_lock_irqsave(&card->lock, flags); generation = card->generation; root = card->root_node->data; root_id = card->root_node->node_id; grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10)); if (card->bm_generation + 1 == generation || (card->bm_generation != generation && grace)) { /* This first step is to figure out who is IRM and * then try to become bus manager. If the IRM is not * well defined (e.g. does not have an active link * layer or does not responds to our lock request, we * will have to do a little vigilante bus management. * In that case, we do a goto into the gap count logic * so that when we do the reset, we still optimize the * gap count. That could well save a reset in the * next generation. */ irm_id = card->irm_node->node_id; if (!card->irm_node->link_on) { new_root_id = card->local_node->node_id; fw_notify("IRM has link off, making local node (%02x) root.\n", new_root_id); goto pick_me; } bmd.lock.arg = cpu_to_be32(0x3f); bmd.lock.data = cpu_to_be32(card->local_node->node_id); spin_unlock_irqrestore(&card->lock, flags); init_completion(&bmd.done); fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP, irm_id, generation, SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, &bmd.lock, sizeof bmd.lock, complete_bm_lock, &bmd); wait_for_completion(&bmd.done); if (bmd.rcode == RCODE_GENERATION) { /* Another bus reset happened. Just return, * the BM work has been rescheduled. */ return; } if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f) /* Somebody else is BM, let them do the work. */ return; spin_lock_irqsave(&card->lock, flags); if (bmd.rcode != RCODE_COMPLETE) { /* The lock request failed, maybe the IRM * isn't really IRM capable after all. Let's * do a bus reset and pick the local node as * root, and thus, IRM. */ new_root_id = card->local_node->node_id; fw_notify("BM lock failed, making local node (%02x) root.\n", new_root_id); goto pick_me; } } else if (card->bm_generation != generation) { /* OK, we weren't BM in the last generation, and it's * less than 100ms since last bus reset. Reschedule * this task 100ms from now. */ spin_unlock_irqrestore(&card->lock, flags); schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10)); return; } /* We're bus manager for this generation, so next step is to * make sure we have an active cycle master and do gap count * optimization. */ card->bm_generation = generation; if (root == NULL) { /* Either link_on is false, or we failed to read the * config rom. In either case, pick another root. */ new_root_id = card->local_node->node_id; } else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) { /* If we haven't probed this device yet, bail out now * and let's try again once that's done. */ spin_unlock_irqrestore(&card->lock, flags); return; } else if (root->config_rom[2] & bib_cmc) { /* FIXME: I suppose we should set the cmstr bit in the * STATE_CLEAR register of this node, as described in * 1394-1995, 8.4.2.6. Also, send out a force root * packet for this node. */ new_root_id = root_id; } else { /* Current root has an active link layer and we * successfully read the config rom, but it's not * cycle master capable. */ new_root_id = card->local_node->node_id; } pick_me: /* Now figure out what gap count to set. */ if (card->topology_type == FW_TOPOLOGY_A && card->root_node->max_hops < ARRAY_SIZE(gap_count_table)) gap_count = gap_count_table[card->root_node->max_hops]; else gap_count = 63; /* Finally, figure out if we should do a reset or not. If we've * done less that 5 resets with the same physical topology and we * have either a new root or a new gap count setting, let's do it. */ if (card->bm_retries++ < 5 && (card->gap_count != gap_count || new_root_id != root_id)) do_reset = 1; spin_unlock_irqrestore(&card->lock, flags); if (do_reset) { fw_notify("phy config: card %d, new root=%x, gap_count=%d\n", card->index, new_root_id, gap_count); fw_send_phy_config(card, new_root_id, generation, gap_count); fw_core_initiate_bus_reset(card, 1); } } static void release_card(struct device *device) { struct fw_card *card = container_of(device, struct fw_card, card_device); kfree(card); } static void flush_timer_callback(unsigned long data) { struct fw_card *card = (struct fw_card *)data; fw_flush_transactions(card); } void fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver, struct device *device) { static int index; card->index = index++; card->driver = driver; card->device = device; card->current_tlabel = 0; card->tlabel_mask = 0; card->color = 0; INIT_LIST_HEAD(&card->transaction_list); spin_lock_init(&card->lock); setup_timer(&card->flush_timer, flush_timer_callback, (unsigned long)card); card->local_node = NULL; INIT_DELAYED_WORK(&card->work, fw_card_bm_work); card->card_device.bus = &fw_bus_type; card->card_device.release = release_card; card->card_device.parent = card->device; snprintf(card->card_device.bus_id, sizeof card->card_device.bus_id, "fwcard%d", card->index); device_initialize(&card->card_device); } EXPORT_SYMBOL(fw_card_initialize); int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid) { int retval; u32 *config_rom; size_t length; card->max_receive = max_receive; card->link_speed = link_speed; card->guid = guid; /* FIXME: add #define's for phy registers. */ /* Activate link_on bit and contender bit in our self ID packets.*/ if (card->driver->update_phy_reg(card, 4, 0, 0x80 | 0x40) < 0) return -EIO; retval = device_add(&card->card_device); if (retval < 0) { fw_error("Failed to register card device."); return retval; } /* The subsystem grabs a reference when the card is added and * drops it when the driver calls fw_core_remove_card. */ fw_card_get(card); down_write(&fw_bus_type.subsys.rwsem); config_rom = generate_config_rom (card, &length); list_add_tail(&card->link, &card_list); up_write(&fw_bus_type.subsys.rwsem); return card->driver->enable(card, config_rom, length); } EXPORT_SYMBOL(fw_card_add); /* The next few functions implements a dummy driver that use once a * card driver shuts down an fw_card. This allows the driver to * cleanly unload, as all IO to the card will be handled by the dummy * driver instead of calling into the (possibly) unloaded module. The * dummy driver just fails all IO. */ static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length) { BUG(); return -1; } static int dummy_update_phy_reg(struct fw_card *card, int address, int clear_bits, int set_bits) { return -ENODEV; } static int dummy_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length) { /* We take the card out of card_list before setting the dummy * driver, so this should never get called. */ BUG(); return -1; } static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) { packet->callback(packet, card, -ENODEV); } static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) { packet->callback(packet, card, -ENODEV); } static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) { return -ENOENT; } static int dummy_enable_phys_dma(struct fw_card *card, int node_id, int generation) { return -ENODEV; } static struct fw_card_driver dummy_driver = { .name = "dummy", .enable = dummy_enable, .update_phy_reg = dummy_update_phy_reg, .set_config_rom = dummy_set_config_rom, .send_request = dummy_send_request, .cancel_packet = dummy_cancel_packet, .send_response = dummy_send_response, .enable_phys_dma = dummy_enable_phys_dma, }; void fw_core_remove_card(struct fw_card *card) { card->driver->update_phy_reg(card, 4, 0x80 | 0x40, 0); fw_core_initiate_bus_reset(card, 1); down_write(&fw_bus_type.subsys.rwsem); list_del(&card->link); up_write(&fw_bus_type.subsys.rwsem); /* Set up the dummy driver. */ card->driver = &dummy_driver; fw_flush_transactions(card); fw_destroy_nodes(card); /* This also drops the subsystem reference. */ device_unregister(&card->card_device); } EXPORT_SYMBOL(fw_core_remove_card); struct fw_card * fw_card_get(struct fw_card *card) { get_device(&card->card_device); return card; } EXPORT_SYMBOL(fw_card_get); /* An assumption for fw_card_put() is that the card driver allocates * the fw_card struct with kalloc and that it has been shut down * before the last ref is dropped. */ void fw_card_put(struct fw_card *card) { put_device(&card->card_device); } EXPORT_SYMBOL(fw_card_put); int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset) { return card->driver->update_phy_reg(card, short_reset ? 5 : 1, 0, 0x40); } EXPORT_SYMBOL(fw_core_initiate_bus_reset);