/* * x86 FPU boot time init code */ #include #include /* * Boot time CPU/FPU FDIV bug detection code: */ static double __initdata x = 4195835.0; static double __initdata y = 3145727.0; /* * This used to check for exceptions.. * However, it turns out that to support that, * the XMM trap handlers basically had to * be buggy. So let's have a correct XMM trap * handler, and forget about printing out * some status at boot. * * We should really only care about bugs here * anyway. Not features. */ static void __init check_fpu(void) { s32 fdiv_bug; kernel_fpu_begin(); /* * trap_init() enabled FXSR and company _before_ testing for FP * problems here. * * Test for the divl bug: http://en.wikipedia.org/wiki/Fdiv_bug */ __asm__("fninit\n\t" "fldl %1\n\t" "fdivl %2\n\t" "fmull %2\n\t" "fldl %1\n\t" "fsubp %%st,%%st(1)\n\t" "fistpl %0\n\t" "fwait\n\t" "fninit" : "=m" (*&fdiv_bug) : "m" (*&x), "m" (*&y)); kernel_fpu_end(); if (fdiv_bug) { set_cpu_bug(&boot_cpu_data, X86_BUG_FDIV); pr_warn("Hmm, FPU with FDIV bug\n"); } } void fpu__init_check_bugs(void) { /* * kernel_fpu_begin/end() in check_fpu() relies on the patched * alternative instructions. */ if (cpu_has_fpu) check_fpu(); } /* * Boot time FPU feature detection code: */ unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; unsigned int xstate_size; EXPORT_SYMBOL_GPL(xstate_size); static void fpu__init_system_mxcsr(void) { unsigned int mask = 0; if (cpu_has_fxsr) { struct i387_fxsave_struct fx_tmp __aligned(32) = { }; asm volatile("fxsave %0" : "+m" (fx_tmp)); mask = fx_tmp.mxcsr_mask; /* * If zero then use the default features mask, * which has all features set, except the * denormals-are-zero feature bit: */ if (mask == 0) mask = 0x0000ffbf; } mxcsr_feature_mask &= mask; } /* * Once per bootup FPU initialization sequences that will run on most x86 CPUs: */ static void fpu__init_system_generic(void) { /* * Set up the legacy init FPU context. (xstate init might overwrite this * with a more modern format, if the CPU supports it.) */ fx_finit(&init_xstate_ctx.i387); fpu__init_system_mxcsr(); } static void fpstate_xstate_init_size(void) { static bool on_boot_cpu = 1; if (!on_boot_cpu) return; on_boot_cpu = 0; /* * Note that xstate_size might be overwriten later during * fpu__init_system_xstate(). */ if (!cpu_has_fpu) { /* * Disable xsave as we do not support it if i387 * emulation is enabled. */ setup_clear_cpu_cap(X86_FEATURE_XSAVE); setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); xstate_size = sizeof(struct i387_soft_struct); } else { if (cpu_has_fxsr) xstate_size = sizeof(struct i387_fxsave_struct); else xstate_size = sizeof(struct i387_fsave_struct); } } /* * Initialize the TS bit in CR0 according to the style of context-switches * we are using: */ static void fpu__init_cpu_ctx_switch(void) { if (!cpu_has_eager_fpu) stts(); else clts(); } /* * Initialize the registers found in all CPUs, CR0 and CR4: */ static void fpu__init_cpu_generic(void) { unsigned long cr0; unsigned long cr4_mask = 0; #ifndef CONFIG_MATH_EMULATION if (!cpu_has_fpu) { pr_emerg("No FPU found and no math emulation present\n"); pr_emerg("Giving up\n"); for (;;) asm volatile("hlt"); } #endif if (cpu_has_fxsr) cr4_mask |= X86_CR4_OSFXSR; if (cpu_has_xmm) cr4_mask |= X86_CR4_OSXMMEXCPT; if (cr4_mask) cr4_set_bits(cr4_mask); cr0 = read_cr0(); cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ if (!cpu_has_fpu) cr0 |= X86_CR0_EM; write_cr0(cr0); } /* * Enable all supported FPU features. Called when a CPU is brought online. */ void fpu__init_cpu(void) { fpu__init_cpu_generic(); fpu__init_cpu_xstate(); fpu__init_cpu_ctx_switch(); } static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO; static int __init eager_fpu_setup(char *s) { if (!strcmp(s, "on")) eagerfpu = ENABLE; else if (!strcmp(s, "off")) eagerfpu = DISABLE; else if (!strcmp(s, "auto")) eagerfpu = AUTO; return 1; } __setup("eagerfpu=", eager_fpu_setup); /* * setup_init_fpu_buf() is __init and it is OK to call it here because * init_xstate_ctx will be unset only once during boot. */ static void fpu__init_system_ctx_switch(void) { WARN_ON(current->thread.fpu.fpstate_active); current_thread_info()->status = 0; /* Auto enable eagerfpu for xsaveopt */ if (cpu_has_xsaveopt && eagerfpu != DISABLE) eagerfpu = ENABLE; if (xfeatures_mask & XSTATE_EAGER) { if (eagerfpu == DISABLE) { pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n", xfeatures_mask & XSTATE_EAGER); xfeatures_mask &= ~XSTATE_EAGER; } else { eagerfpu = ENABLE; } } if (eagerfpu == ENABLE) setup_force_cpu_cap(X86_FEATURE_EAGER_FPU); printk_once(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy"); } /* * Called on the boot CPU once per system bootup, to set up the initial FPU state that * is later cloned into all processes. */ void fpu__init_system(void) { /* The FPU has to be operational for some of the later FPU init activities: */ fpu__init_cpu(); /* * But don't leave CR0::TS set yet, as some of the FPU setup methods depend * on being able to execute FPU instructions that will fault on a set TS, * such as the FXSAVE in fpu__init_system_mxcsr(). */ clts(); fpu__init_system_generic(); fpstate_xstate_init_size(); fpu__init_system_xstate(); fpu__init_system_ctx_switch(); } static int __init no_387(char *s) { setup_clear_cpu_cap(X86_FEATURE_FPU); return 1; } __setup("no387", no_387); /* * Set the X86_FEATURE_FPU CPU-capability bit based on * trying to execute an actual sequence of FPU instructions: */ void fpu__detect(struct cpuinfo_x86 *c) { unsigned long cr0; u16 fsw, fcw; fsw = fcw = 0xffff; cr0 = read_cr0(); cr0 &= ~(X86_CR0_TS | X86_CR0_EM); write_cr0(cr0); asm volatile("fninit ; fnstsw %0 ; fnstcw %1" : "+m" (fsw), "+m" (fcw)); if (fsw == 0 && (fcw & 0x103f) == 0x003f) set_cpu_cap(c, X86_FEATURE_FPU); else clear_cpu_cap(c, X86_FEATURE_FPU); fpu__init_system(); /* The final cr0 value is set later, in fpu_init() */ }