/* Copyright (C) 2004 - 2008 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00usb Abstract: rt2x00 generic usb device routines. */ #include #include #include #include #include "rt2x00.h" #include "rt2x00usb.h" /* * Interfacing with the HW. */ int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev, const u8 request, const u8 requesttype, const u16 offset, const u16 value, void *buffer, const u16 buffer_length, const int timeout) { struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev); int status; unsigned int i; unsigned int pipe = (requesttype == USB_VENDOR_REQUEST_IN) ? usb_rcvctrlpipe(usb_dev, 0) : usb_sndctrlpipe(usb_dev, 0); for (i = 0; i < REGISTER_BUSY_COUNT; i++) { status = usb_control_msg(usb_dev, pipe, request, requesttype, value, offset, buffer, buffer_length, timeout); if (status >= 0) return 0; /* * Check for errors * -ENODEV: Device has disappeared, no point continuing. * All other errors: Try again. */ else if (status == -ENODEV) break; } ERROR(rt2x00dev, "Vendor Request 0x%02x failed for offset 0x%04x with error %d.\n", request, offset, status); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request); int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev, const u8 request, const u8 requesttype, const u16 offset, void *buffer, const u16 buffer_length, const int timeout) { int status; BUG_ON(!mutex_is_locked(&rt2x00dev->usb_cache_mutex)); /* * Check for Cache availability. */ if (unlikely(!rt2x00dev->csr.cache || buffer_length > CSR_CACHE_SIZE)) { ERROR(rt2x00dev, "CSR cache not available.\n"); return -ENOMEM; } if (requesttype == USB_VENDOR_REQUEST_OUT) memcpy(rt2x00dev->csr.cache, buffer, buffer_length); status = rt2x00usb_vendor_request(rt2x00dev, request, requesttype, offset, 0, rt2x00dev->csr.cache, buffer_length, timeout); if (!status && requesttype == USB_VENDOR_REQUEST_IN) memcpy(buffer, rt2x00dev->csr.cache, buffer_length); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_vendor_req_buff_lock); int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev, const u8 request, const u8 requesttype, const u16 offset, void *buffer, const u16 buffer_length, const int timeout) { int status; mutex_lock(&rt2x00dev->usb_cache_mutex); status = rt2x00usb_vendor_req_buff_lock(rt2x00dev, request, requesttype, offset, buffer, buffer_length, timeout); mutex_unlock(&rt2x00dev->usb_cache_mutex); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request_buff); /* * TX data handlers. */ static void rt2x00usb_interrupt_txdone(struct urb *urb) { struct queue_entry *entry = (struct queue_entry *)urb->context; struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct txdone_entry_desc txdesc; enum data_queue_qid qid = skb_get_queue_mapping(entry->skb); if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || !__test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) return; /* * Remove the descriptor data from the buffer. */ skb_pull(entry->skb, entry->queue->desc_size); /* * Obtain the status about this packet. * Note that when the status is 0 it does not mean the * frame was send out correctly. It only means the frame * was succesfully pushed to the hardware, we have no * way to determine the transmission status right now. * (Only indirectly by looking at the failed TX counters * in the register). */ if (!urb->status) __set_bit(TXDONE_UNKNOWN, &txdesc.flags); else __set_bit(TXDONE_FAILURE, &txdesc.flags); txdesc.retry = 0; rt2x00lib_txdone(entry, &txdesc); /* * Make this entry available for reuse. */ entry->flags = 0; rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE); /* * If the data queue was full before the txdone handler * we must make sure the packet queue in the mac80211 stack * is reenabled when the txdone handler has finished. */ if (!rt2x00queue_full(entry->queue)) ieee80211_wake_queue(rt2x00dev->hw, qid); } int rt2x00usb_write_tx_data(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev); struct queue_entry_priv_usb *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc; u32 length; /* * Add the descriptor in front of the skb. */ skb_push(entry->skb, entry->queue->desc_size); memset(entry->skb->data, 0, entry->queue->desc_size); /* * Fill in skb descriptor */ skbdesc = get_skb_frame_desc(entry->skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->data = entry->skb->data + entry->queue->desc_size; skbdesc->data_len = entry->skb->len - entry->queue->desc_size; skbdesc->desc = entry->skb->data; skbdesc->desc_len = entry->queue->desc_size; skbdesc->entry = entry; /* * USB devices cannot blindly pass the skb->len as the * length of the data to usb_fill_bulk_urb. Pass the skb * to the driver to determine what the length should be. */ length = rt2x00dev->ops->lib->get_tx_data_len(rt2x00dev, entry->skb); usb_fill_bulk_urb(entry_priv->urb, usb_dev, usb_sndbulkpipe(usb_dev, 1), entry->skb->data, length, rt2x00usb_interrupt_txdone, entry); return 0; } EXPORT_SYMBOL_GPL(rt2x00usb_write_tx_data); static inline void rt2x00usb_kick_tx_entry(struct queue_entry *entry) { struct queue_entry_priv_usb *entry_priv = entry->priv_data; if (__test_and_clear_bit(ENTRY_DATA_PENDING, &entry->flags)) usb_submit_urb(entry_priv->urb, GFP_ATOMIC); } void rt2x00usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid qid) { struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, qid); unsigned long irqflags; unsigned int index; unsigned int index_done; unsigned int i; /* * Only protect the range we are going to loop over, * if during our loop a extra entry is set to pending * it should not be kicked during this run, since it * is part of another TX operation. */ spin_lock_irqsave(&queue->lock, irqflags); index = queue->index[Q_INDEX]; index_done = queue->index[Q_INDEX_DONE]; spin_unlock_irqrestore(&queue->lock, irqflags); /* * Start from the TX done pointer, this guarentees that we will * send out all frames in the correct order. */ if (index_done < index) { for (i = index_done; i < index; i++) rt2x00usb_kick_tx_entry(&queue->entries[i]); } else { for (i = index_done; i < queue->limit; i++) rt2x00usb_kick_tx_entry(&queue->entries[i]); for (i = 0; i < index; i++) rt2x00usb_kick_tx_entry(&queue->entries[i]); } } EXPORT_SYMBOL_GPL(rt2x00usb_kick_tx_queue); /* * RX data handlers. */ static struct sk_buff* rt2x00usb_alloc_rxskb(struct data_queue *queue) { struct sk_buff *skb; unsigned int frame_size; unsigned int reserved_size; /* * The frame size includes descriptor size, because the * hardware directly receive the frame into the skbuffer. */ frame_size = queue->data_size + queue->desc_size; /* * For the allocation we should keep a few things in mind: * 1) 4byte alignment of 802.11 payload * * For (1) we need at most 4 bytes to guarentee the correct * alignment. We are going to optimize the fact that the chance * that the 802.11 header_size % 4 == 2 is much bigger then * anything else. However since we need to move the frame up * to 3 bytes to the front, which means we need to preallocate * 6 bytes. */ reserved_size = 6; /* * Allocate skbuffer. */ skb = dev_alloc_skb(frame_size + reserved_size); if (!skb) return NULL; skb_reserve(skb, reserved_size); skb_put(skb, frame_size); return skb; } static void rt2x00usb_interrupt_rxdone(struct urb *urb) { struct queue_entry *entry = (struct queue_entry *)urb->context; struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct sk_buff *skb; struct skb_frame_desc *skbdesc; struct rxdone_entry_desc rxdesc; unsigned int header_size; unsigned int align; if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || !test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) return; /* * Check if the received data is simply too small * to be actually valid, or if the urb is signaling * a problem. */ if (urb->actual_length < entry->queue->desc_size || urb->status) goto skip_entry; /* * Fill in skb descriptor */ skbdesc = get_skb_frame_desc(entry->skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->entry = entry; memset(&rxdesc, 0, sizeof(rxdesc)); rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); header_size = ieee80211_get_hdrlen_from_skb(entry->skb); /* * The data behind the ieee80211 header must be * aligned on a 4 byte boundary. We already reserved * 2 bytes for header_size % 4 == 2 optimization. * To determine the number of bytes which the data * should be moved to the left, we must add these * 2 bytes to the header_size. */ align = (header_size + 2) % 4; if (align) { skb_push(entry->skb, align); /* Move entire frame in 1 command */ memmove(entry->skb->data, entry->skb->data + align, rxdesc.size); } /* Update data pointers, trim buffer to correct size */ skbdesc->data = entry->skb->data; skb_trim(entry->skb, rxdesc.size); /* * Allocate a new sk buffer to replace the current one. * If allocation fails, we should drop the current frame * so we can recycle the existing sk buffer for the new frame. */ skb = rt2x00usb_alloc_rxskb(entry->queue); if (!skb) goto skip_entry; /* * Send the frame to rt2x00lib for further processing. */ rt2x00lib_rxdone(entry, &rxdesc); /* * Replace current entry's skb with the newly allocated one, * and reinitialize the urb. */ entry->skb = skb; urb->transfer_buffer = entry->skb->data; urb->transfer_buffer_length = entry->skb->len; skip_entry: if (test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) { __set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); usb_submit_urb(urb, GFP_ATOMIC); } rt2x00queue_index_inc(entry->queue, Q_INDEX); } /* * Radio handlers */ void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_usb *entry_priv; struct queue_entry_priv_usb_bcn *bcn_priv; unsigned int i; rt2x00usb_vendor_request_sw(rt2x00dev, USB_RX_CONTROL, 0, 0, REGISTER_TIMEOUT); /* * Cancel all queues. */ for (i = 0; i < rt2x00dev->rx->limit; i++) { entry_priv = rt2x00dev->rx->entries[i].priv_data; usb_kill_urb(entry_priv->urb); } /* * Kill guardian urb. */ for (i = 0; i < rt2x00dev->bcn->limit; i++) { bcn_priv = rt2x00dev->bcn->entries[i].priv_data; if (bcn_priv->guardian_urb) usb_kill_urb(bcn_priv->guardian_urb); } } EXPORT_SYMBOL_GPL(rt2x00usb_disable_radio); /* * Device initialization handlers. */ void rt2x00usb_init_rxentry(struct rt2x00_dev *rt2x00dev, struct queue_entry *entry) { struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev); struct queue_entry_priv_usb *entry_priv = entry->priv_data; usb_fill_bulk_urb(entry_priv->urb, usb_dev, usb_rcvbulkpipe(usb_dev, 1), entry->skb->data, entry->skb->len, rt2x00usb_interrupt_rxdone, entry); __set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); usb_submit_urb(entry_priv->urb, GFP_ATOMIC); } EXPORT_SYMBOL_GPL(rt2x00usb_init_rxentry); void rt2x00usb_init_txentry(struct rt2x00_dev *rt2x00dev, struct queue_entry *entry) { entry->flags = 0; } EXPORT_SYMBOL_GPL(rt2x00usb_init_txentry); static int rt2x00usb_alloc_urb(struct rt2x00_dev *rt2x00dev, struct data_queue *queue) { struct queue_entry_priv_usb *entry_priv; struct queue_entry_priv_usb_bcn *bcn_priv; unsigned int i; for (i = 0; i < queue->limit; i++) { entry_priv = queue->entries[i].priv_data; entry_priv->urb = usb_alloc_urb(0, GFP_KERNEL); if (!entry_priv->urb) return -ENOMEM; } /* * If this is not the beacon queue or * no guardian byte was required for the beacon, * then we are done. */ if (rt2x00dev->bcn != queue || !test_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags)) return 0; for (i = 0; i < queue->limit; i++) { bcn_priv = queue->entries[i].priv_data; bcn_priv->guardian_urb = usb_alloc_urb(0, GFP_KERNEL); if (!bcn_priv->guardian_urb) return -ENOMEM; } return 0; } static void rt2x00usb_free_urb(struct rt2x00_dev *rt2x00dev, struct data_queue *queue) { struct queue_entry_priv_usb *entry_priv; struct queue_entry_priv_usb_bcn *bcn_priv; unsigned int i; if (!queue->entries) return; for (i = 0; i < queue->limit; i++) { entry_priv = queue->entries[i].priv_data; usb_kill_urb(entry_priv->urb); usb_free_urb(entry_priv->urb); if (queue->entries[i].skb) kfree_skb(queue->entries[i].skb); } /* * If this is not the beacon queue or * no guardian byte was required for the beacon, * then we are done. */ if (rt2x00dev->bcn != queue || !test_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags)) return; for (i = 0; i < queue->limit; i++) { bcn_priv = queue->entries[i].priv_data; usb_kill_urb(bcn_priv->guardian_urb); usb_free_urb(bcn_priv->guardian_urb); } } int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; struct sk_buff *skb; unsigned int entry_size; unsigned int i; int uninitialized_var(status); /* * Allocate DMA */ queue_for_each(rt2x00dev, queue) { status = rt2x00usb_alloc_urb(rt2x00dev, queue); if (status) goto exit; } /* * For the RX queue, skb's should be allocated. */ entry_size = rt2x00dev->rx->data_size + rt2x00dev->rx->desc_size; for (i = 0; i < rt2x00dev->rx->limit; i++) { skb = rt2x00usb_alloc_rxskb(rt2x00dev->rx); if (!skb) goto exit; rt2x00dev->rx->entries[i].skb = skb; } return 0; exit: rt2x00usb_uninitialize(rt2x00dev); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_initialize); void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; queue_for_each(rt2x00dev, queue) rt2x00usb_free_urb(rt2x00dev, queue); } EXPORT_SYMBOL_GPL(rt2x00usb_uninitialize); /* * USB driver handlers. */ static void rt2x00usb_free_reg(struct rt2x00_dev *rt2x00dev) { kfree(rt2x00dev->rf); rt2x00dev->rf = NULL; kfree(rt2x00dev->eeprom); rt2x00dev->eeprom = NULL; kfree(rt2x00dev->csr.cache); rt2x00dev->csr.cache = NULL; } static int rt2x00usb_alloc_reg(struct rt2x00_dev *rt2x00dev) { rt2x00dev->csr.cache = kzalloc(CSR_CACHE_SIZE, GFP_KERNEL); if (!rt2x00dev->csr.cache) goto exit; rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL); if (!rt2x00dev->eeprom) goto exit; rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL); if (!rt2x00dev->rf) goto exit; return 0; exit: ERROR_PROBE("Failed to allocate registers.\n"); rt2x00usb_free_reg(rt2x00dev); return -ENOMEM; } int rt2x00usb_probe(struct usb_interface *usb_intf, const struct usb_device_id *id) { struct usb_device *usb_dev = interface_to_usbdev(usb_intf); struct rt2x00_ops *ops = (struct rt2x00_ops *)id->driver_info; struct ieee80211_hw *hw; struct rt2x00_dev *rt2x00dev; int retval; usb_dev = usb_get_dev(usb_dev); hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw); if (!hw) { ERROR_PROBE("Failed to allocate hardware.\n"); retval = -ENOMEM; goto exit_put_device; } usb_set_intfdata(usb_intf, hw); rt2x00dev = hw->priv; rt2x00dev->dev = usb_intf; rt2x00dev->ops = ops; rt2x00dev->hw = hw; mutex_init(&rt2x00dev->usb_cache_mutex); rt2x00dev->usb_maxpacket = usb_maxpacket(usb_dev, usb_sndbulkpipe(usb_dev, 1), 1); if (!rt2x00dev->usb_maxpacket) rt2x00dev->usb_maxpacket = 1; retval = rt2x00usb_alloc_reg(rt2x00dev); if (retval) goto exit_free_device; retval = rt2x00lib_probe_dev(rt2x00dev); if (retval) goto exit_free_reg; return 0; exit_free_reg: rt2x00usb_free_reg(rt2x00dev); exit_free_device: ieee80211_free_hw(hw); exit_put_device: usb_put_dev(usb_dev); usb_set_intfdata(usb_intf, NULL); return retval; } EXPORT_SYMBOL_GPL(rt2x00usb_probe); void rt2x00usb_disconnect(struct usb_interface *usb_intf) { struct ieee80211_hw *hw = usb_get_intfdata(usb_intf); struct rt2x00_dev *rt2x00dev = hw->priv; /* * Free all allocated data. */ rt2x00lib_remove_dev(rt2x00dev); rt2x00usb_free_reg(rt2x00dev); ieee80211_free_hw(hw); /* * Free the USB device data. */ usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); } EXPORT_SYMBOL_GPL(rt2x00usb_disconnect); #ifdef CONFIG_PM int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state) { struct ieee80211_hw *hw = usb_get_intfdata(usb_intf); struct rt2x00_dev *rt2x00dev = hw->priv; int retval; retval = rt2x00lib_suspend(rt2x00dev, state); if (retval) return retval; rt2x00usb_free_reg(rt2x00dev); /* * Decrease usbdev refcount. */ usb_put_dev(interface_to_usbdev(usb_intf)); return 0; } EXPORT_SYMBOL_GPL(rt2x00usb_suspend); int rt2x00usb_resume(struct usb_interface *usb_intf) { struct ieee80211_hw *hw = usb_get_intfdata(usb_intf); struct rt2x00_dev *rt2x00dev = hw->priv; int retval; usb_get_dev(interface_to_usbdev(usb_intf)); retval = rt2x00usb_alloc_reg(rt2x00dev); if (retval) return retval; retval = rt2x00lib_resume(rt2x00dev); if (retval) goto exit_free_reg; return 0; exit_free_reg: rt2x00usb_free_reg(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00usb_resume); #endif /* CONFIG_PM */ /* * rt2x00usb module information. */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2x00 usb library"); MODULE_LICENSE("GPL");