/* * Copyright (C) 2008 Maarten Maathuis. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "drm_mode.h" #include "drm_crtc_helper.h" #define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) #include "nouveau_reg.h" #include "nouveau_drv.h" #include "nouveau_hw.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_fb.h" #include "nouveau_connector.h" #include "nv50_display.h" static void nv50_crtc_lut_load(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); int i; NV_DEBUG_KMS(crtc->dev, "\n"); for (i = 0; i < 256; i++) { writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0); writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2); writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4); } if (nv_crtc->lut.depth == 30) { writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0); writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2); writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4); } } int nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked) { struct drm_device *dev = nv_crtc->base.dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_channel *evo = nv50_display(dev)->master; int index = nv_crtc->index, ret; NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked"); if (blanked) { nv_crtc->cursor.hide(nv_crtc, false); ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5); if (ret) { NV_ERROR(dev, "no space while blanking crtc\n"); return ret; } BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2); OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK); OUT_RING(evo, 0); if (dev_priv->chipset != 0x50) { BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1); OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE); } BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1); OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE); } else { if (nv_crtc->cursor.visible) nv_crtc->cursor.show(nv_crtc, false); else nv_crtc->cursor.hide(nv_crtc, false); ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8); if (ret) { NV_ERROR(dev, "no space while unblanking crtc\n"); return ret; } BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2); OUT_RING(evo, nv_crtc->lut.depth == 8 ? NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON); OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8); if (dev_priv->chipset != 0x50) { BEGIN_NV04(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1); OUT_RING(evo, NvEvoVRAM); } BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2); OUT_RING(evo, nv_crtc->fb.offset >> 8); OUT_RING(evo, 0); BEGIN_NV04(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1); if (dev_priv->chipset != 0x50) if (nv_crtc->fb.tile_flags == 0x7a00 || nv_crtc->fb.tile_flags == 0xfe00) OUT_RING(evo, NvEvoFB32); else if (nv_crtc->fb.tile_flags == 0x7000) OUT_RING(evo, NvEvoFB16); else OUT_RING(evo, NvEvoVRAM_LP); else OUT_RING(evo, NvEvoVRAM_LP); } nv_crtc->fb.blanked = blanked; return 0; } static int nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update) { struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master; struct nouveau_connector *nv_connector; struct drm_connector *connector; int head = nv_crtc->index, ret; u32 mode = 0x00; nv_connector = nouveau_crtc_connector_get(nv_crtc); connector = &nv_connector->base; if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) { if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = nv_connector->dithering_mode; } if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) { if (connector->display_info.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= nv_connector->dithering_depth; } ret = RING_SPACE(evo, 2 + (update ? 2 : 0)); if (ret == 0) { BEGIN_NV04(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1); OUT_RING (evo, mode); if (update) { BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1); OUT_RING (evo, 0); FIRE_RING (evo); } } return ret; } static int nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update) { struct drm_device *dev = nv_crtc->base.dev; struct nouveau_channel *evo = nv50_display(dev)->master; int ret; int adj; u32 hue, vib; NV_DEBUG_KMS(dev, "vibrance = %i, hue = %i\n", nv_crtc->color_vibrance, nv_crtc->vibrant_hue); ret = RING_SPACE(evo, 2 + (update ? 2 : 0)); if (ret) { NV_ERROR(dev, "no space while setting color vibrance\n"); return ret; } adj = (nv_crtc->color_vibrance > 0) ? 50 : 0; vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff; hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff; BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1); OUT_RING (evo, (hue << 20) | (vib << 8)); if (update) { BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1); OUT_RING (evo, 0); FIRE_RING (evo); } return 0; } struct nouveau_connector * nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc) { struct drm_device *dev = nv_crtc->base.dev; struct drm_connector *connector; struct drm_crtc *crtc = to_drm_crtc(nv_crtc); /* The safest approach is to find an encoder with the right crtc, that * is also linked to a connector. */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (connector->encoder) if (connector->encoder->crtc == crtc) return nouveau_connector(connector); } return NULL; } static int nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update) { struct nouveau_connector *nv_connector; struct drm_crtc *crtc = &nv_crtc->base; struct drm_device *dev = crtc->dev; struct nouveau_channel *evo = nv50_display(dev)->master; struct drm_display_mode *umode = &crtc->mode; struct drm_display_mode *omode; int scaling_mode, ret; u32 ctrl = 0, oX, oY; NV_DEBUG_KMS(dev, "\n"); nv_connector = nouveau_crtc_connector_get(nv_crtc); if (!nv_connector || !nv_connector->native_mode) { NV_ERROR(dev, "no native mode, forcing panel scaling\n"); scaling_mode = DRM_MODE_SCALE_NONE; } else { scaling_mode = nv_connector->scaling_mode; } /* start off at the resolution we programmed the crtc for, this * effectively handles NONE/FULL scaling */ if (scaling_mode != DRM_MODE_SCALE_NONE) omode = nv_connector->native_mode; else omode = umode; oX = omode->hdisplay; oY = omode->vdisplay; if (omode->flags & DRM_MODE_FLAG_DBLSCAN) oY *= 2; /* add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON || (nv_connector->underscan == UNDERSCAN_AUTO && nv_connector->edid && drm_detect_hdmi_monitor(nv_connector->edid)))) { u32 bX = nv_connector->underscan_hborder; u32 bY = nv_connector->underscan_vborder; u32 aspect = (oY << 19) / oX; if (bX) { oX -= (bX * 2); if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } else { oX -= (oX >> 4) + 32; if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } } /* handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation */ switch (scaling_mode) { case DRM_MODE_SCALE_CENTER: oX = min((u32)umode->hdisplay, oX); oY = min((u32)umode->vdisplay, oY); /* fall-through */ case DRM_MODE_SCALE_ASPECT: if (oY < oX) { u32 aspect = (umode->hdisplay << 19) / umode->vdisplay; oX = ((oY * aspect) + (aspect / 2)) >> 19; } else { u32 aspect = (umode->vdisplay << 19) / umode->hdisplay; oY = ((oX * aspect) + (aspect / 2)) >> 19; } break; default: break; } if (umode->hdisplay != oX || umode->vdisplay != oY || umode->flags & DRM_MODE_FLAG_INTERLACE || umode->flags & DRM_MODE_FLAG_DBLSCAN) ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE; ret = RING_SPACE(evo, 5); if (ret) return ret; BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1); OUT_RING (evo, ctrl); BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2); OUT_RING (evo, oY << 16 | oX); OUT_RING (evo, oY << 16 | oX); if (update) { nv50_display_flip_stop(crtc); nv50_display_sync(dev); nv50_display_flip_next(crtc, crtc->fb, NULL); } return 0; } int nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct pll_lims pll; uint32_t reg1, reg2; int ret, N1, M1, N2, M2, P; ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll); if (ret) return ret; if (pll.vco2.maxfreq) { ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P); if (ret <= 0) return 0; NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n", pclk, ret, N1, M1, N2, M2, P); reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00; reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00; nv_wr32(dev, pll.reg + 0, 0x10000611); nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1); nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2); } else if (dev_priv->chipset < NV_C0) { ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P); if (ret <= 0) return 0; NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n", pclk, ret, N1, N2, M1, P); reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000; nv_wr32(dev, pll.reg + 0, 0x50000610); nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1); nv_wr32(dev, pll.reg + 8, N2); } else { ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P); if (ret <= 0) return 0; NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n", pclk, ret, N1, N2, M1, P); nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100); nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1); nv_wr32(dev, pll.reg + 0x10, N2 << 16); } return 0; } static void nv50_crtc_destroy(struct drm_crtc *crtc) { struct drm_device *dev; struct nouveau_crtc *nv_crtc; if (!crtc) return; dev = crtc->dev; nv_crtc = nouveau_crtc(crtc); NV_DEBUG_KMS(dev, "\n"); drm_crtc_cleanup(&nv_crtc->base); nouveau_bo_unmap(nv_crtc->lut.nvbo); nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); nouveau_bo_unmap(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); kfree(nv_crtc); } int nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t buffer_handle, uint32_t width, uint32_t height) { struct drm_device *dev = crtc->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_bo *cursor = NULL; struct drm_gem_object *gem; int ret = 0, i; if (!buffer_handle) { nv_crtc->cursor.hide(nv_crtc, true); return 0; } if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(dev, file_priv, buffer_handle); if (!gem) return -ENOENT; cursor = nouveau_gem_object(gem); ret = nouveau_bo_map(cursor); if (ret) goto out; /* The simple will do for now. */ for (i = 0; i < 64 * 64; i++) nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i)); nouveau_bo_unmap(cursor); nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset); nv_crtc->cursor.show(nv_crtc, true); out: drm_gem_object_unreference_unlocked(gem); return ret; } int nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv_crtc->cursor.set_pos(nv_crtc, x, y); return 0; } static void nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start, uint32_t size) { int end = (start + size > 256) ? 256 : start + size, i; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); for (i = start; i < end; i++) { nv_crtc->lut.r[i] = r[i]; nv_crtc->lut.g[i] = g[i]; nv_crtc->lut.b[i] = b[i]; } /* We need to know the depth before we upload, but it's possible to * get called before a framebuffer is bound. If this is the case, * mark the lut values as dirty by setting depth==0, and it'll be * uploaded on the first mode_set_base() */ if (!nv_crtc->base.fb) { nv_crtc->lut.depth = 0; return; } nv50_crtc_lut_load(crtc); } static void nv50_crtc_save(struct drm_crtc *crtc) { NV_ERROR(crtc->dev, "!!\n"); } static void nv50_crtc_restore(struct drm_crtc *crtc) { NV_ERROR(crtc->dev, "!!\n"); } static const struct drm_crtc_funcs nv50_crtc_funcs = { .save = nv50_crtc_save, .restore = nv50_crtc_restore, .cursor_set = nv50_crtc_cursor_set, .cursor_move = nv50_crtc_cursor_move, .gamma_set = nv50_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .page_flip = nouveau_crtc_page_flip, .destroy = nv50_crtc_destroy, }; static void nv50_crtc_dpms(struct drm_crtc *crtc, int mode) { } static void nv50_crtc_prepare(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); nv50_display_flip_stop(crtc); drm_vblank_pre_modeset(dev, nv_crtc->index); nv50_crtc_blank(nv_crtc, true); } static void nv50_crtc_commit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); nv50_crtc_blank(nv_crtc, false); drm_vblank_post_modeset(dev, nv_crtc->index); nv50_display_sync(dev); nv50_display_flip_next(crtc, crtc->fb, NULL); } static bool nv50_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int nv50_crtc_do_mode_set_base(struct drm_crtc *crtc, struct drm_framebuffer *passed_fb, int x, int y, bool atomic) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = nv_crtc->base.dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_channel *evo = nv50_display(dev)->master; struct drm_framebuffer *drm_fb; struct nouveau_framebuffer *fb; int ret; NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index); /* no fb bound */ if (!atomic && !crtc->fb) { NV_DEBUG_KMS(dev, "No FB bound\n"); return 0; } /* If atomic, we want to switch to the fb we were passed, so * now we update pointers to do that. (We don't pin; just * assume we're already pinned and update the base address.) */ if (atomic) { drm_fb = passed_fb; fb = nouveau_framebuffer(passed_fb); } else { drm_fb = crtc->fb; fb = nouveau_framebuffer(crtc->fb); /* If not atomic, we can go ahead and pin, and unpin the * old fb we were passed. */ ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM); if (ret) return ret; if (passed_fb) { struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb); nouveau_bo_unpin(ofb->nvbo); } } nv_crtc->fb.offset = fb->nvbo->bo.offset; nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo); nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8; if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) { ret = RING_SPACE(evo, 2); if (ret) return ret; BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1); OUT_RING (evo, fb->r_dma); } ret = RING_SPACE(evo, 12); if (ret) return ret; BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5); OUT_RING (evo, nv_crtc->fb.offset >> 8); OUT_RING (evo, 0); OUT_RING (evo, (drm_fb->height << 16) | drm_fb->width); OUT_RING (evo, fb->r_pitch); OUT_RING (evo, fb->r_format); BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1); OUT_RING (evo, fb->base.depth == 8 ? NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON); BEGIN_NV04(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1); OUT_RING (evo, (y << 16) | x); if (nv_crtc->lut.depth != fb->base.depth) { nv_crtc->lut.depth = fb->base.depth; nv50_crtc_lut_load(crtc); } return 0; } static int nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct nouveau_channel *evo = nv50_display(dev)->master; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 head = nv_crtc->index * 0x400; u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1; u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1; u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks; u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks; u32 vblan2e = 0, vblan2s = 1; int ret; /* hw timing description looks like this: * * <---------display---------> * ______ * |____________|---------------------------|____________| * * ^ synce ^ blanke ^ blanks ^ active * * interlaced modes also have 2 additional values pointing at the end * and start of the next field's blanking period. */ hactive = mode->htotal; hsynce = mode->hsync_end - mode->hsync_start - 1; hbackp = mode->htotal - mode->hsync_end; hblanke = hsynce + hbackp; hfrontp = mode->hsync_start - mode->hdisplay; hblanks = mode->htotal - hfrontp - 1; vactive = mode->vtotal * vscan / ilace; vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1; vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace; vblanke = vsynce + vbackp; vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace; vblanks = vactive - vfrontp - 1; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vblan2e = vactive + vsynce + vbackp; vblan2s = vblan2e + (mode->vdisplay * vscan / ilace); vactive = (vactive * 2) + 1; } ret = RING_SPACE(evo, 18); if (ret == 0) { BEGIN_NV04(evo, 0, 0x0804 + head, 2); OUT_RING (evo, 0x00800000 | mode->clock); OUT_RING (evo, (ilace == 2) ? 2 : 0); BEGIN_NV04(evo, 0, 0x0810 + head, 6); OUT_RING (evo, 0x00000000); /* border colour */ OUT_RING (evo, (vactive << 16) | hactive); OUT_RING (evo, ( vsynce << 16) | hsynce); OUT_RING (evo, (vblanke << 16) | hblanke); OUT_RING (evo, (vblanks << 16) | hblanks); OUT_RING (evo, (vblan2e << 16) | vblan2s); BEGIN_NV04(evo, 0, 0x082c + head, 1); OUT_RING (evo, 0x00000000); BEGIN_NV04(evo, 0, 0x0900 + head, 1); OUT_RING (evo, 0x00000311); /* makes sync channel work */ BEGIN_NV04(evo, 0, 0x08c8 + head, 1); OUT_RING (evo, (umode->vdisplay << 16) | umode->hdisplay); BEGIN_NV04(evo, 0, 0x08d4 + head, 1); OUT_RING (evo, 0x00000000); /* screen position */ } nv_crtc->set_dither(nv_crtc, false); nv_crtc->set_scale(nv_crtc, false); nv_crtc->set_color_vibrance(nv_crtc, false); return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false); } static int nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { int ret; nv50_display_flip_stop(crtc); ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false); if (ret) return ret; ret = nv50_display_sync(crtc->dev); if (ret) return ret; return nv50_display_flip_next(crtc, crtc->fb, NULL); } static int nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { int ret; nv50_display_flip_stop(crtc); ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true); if (ret) return ret; return nv50_display_sync(crtc->dev); } static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = { .dpms = nv50_crtc_dpms, .prepare = nv50_crtc_prepare, .commit = nv50_crtc_commit, .mode_fixup = nv50_crtc_mode_fixup, .mode_set = nv50_crtc_mode_set, .mode_set_base = nv50_crtc_mode_set_base, .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic, .load_lut = nv50_crtc_lut_load, }; int nv50_crtc_create(struct drm_device *dev, int index) { struct nouveau_crtc *nv_crtc = NULL; int ret, i; NV_DEBUG_KMS(dev, "\n"); nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL); if (!nv_crtc) return -ENOMEM; nv_crtc->color_vibrance = 50; nv_crtc->vibrant_hue = 0; /* Default CLUT parameters, will be activated on the hw upon * first mode set. */ for (i = 0; i < 256; i++) { nv_crtc->lut.r[i] = i << 8; nv_crtc->lut.g[i] = i << 8; nv_crtc->lut.b[i] = i << 8; } nv_crtc->lut.depth = 0; ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &nv_crtc->lut.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(nv_crtc->lut.nvbo); if (ret) nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); } if (ret) { kfree(nv_crtc); return ret; } nv_crtc->index = index; /* set function pointers */ nv_crtc->set_dither = nv50_crtc_set_dither; nv_crtc->set_scale = nv50_crtc_set_scale; nv_crtc->set_color_vibrance = nv50_crtc_set_color_vibrance; drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs); drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256); ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &nv_crtc->cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(nv_crtc->cursor.nvbo); if (ret) nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); } nv50_cursor_init(nv_crtc); return 0; }