/* linux/drivers/usb/gadget/s3c-hsotg.c * * Copyright 2008 Openmoko, Inc. * Copyright 2008 Simtec Electronics * Ben Dooks * http://armlinux.simtec.co.uk/ * * S3C USB2.0 High-speed / OtG driver * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DMA_ADDR_INVALID (~((dma_addr_t)0)) /* EP0_MPS_LIMIT * * Unfortunately there seems to be a limit of the amount of data that can * be transfered by IN transactions on EP0. This is either 127 bytes or 3 * packets (which practially means 1 packet and 63 bytes of data) when the * MPS is set to 64. * * This means if we are wanting to move >127 bytes of data, we need to * split the transactions up, but just doing one packet at a time does * not work (this may be an implicit DATA0 PID on first packet of the * transaction) and doing 2 packets is outside the controller's limits. * * If we try to lower the MPS size for EP0, then no transfers work properly * for EP0, and the system will fail basic enumeration. As no cause for this * has currently been found, we cannot support any large IN transfers for * EP0. */ #define EP0_MPS_LIMIT 64 struct s3c_hsotg; struct s3c_hsotg_req; /** * struct s3c_hsotg_ep - driver endpoint definition. * @ep: The gadget layer representation of the endpoint. * @name: The driver generated name for the endpoint. * @queue: Queue of requests for this endpoint. * @parent: Reference back to the parent device structure. * @req: The current request that the endpoint is processing. This is * used to indicate an request has been loaded onto the endpoint * and has yet to be completed (maybe due to data move, or simply * awaiting an ack from the core all the data has been completed). * @debugfs: File entry for debugfs file for this endpoint. * @lock: State lock to protect contents of endpoint. * @dir_in: Set to true if this endpoint is of the IN direction, which * means that it is sending data to the Host. * @index: The index for the endpoint registers. * @name: The name array passed to the USB core. * @halted: Set if the endpoint has been halted. * @periodic: Set if this is a periodic ep, such as Interrupt * @sent_zlp: Set if we've sent a zero-length packet. * @total_data: The total number of data bytes done. * @fifo_size: The size of the FIFO (for periodic IN endpoints) * @fifo_load: The amount of data loaded into the FIFO (periodic IN) * @last_load: The offset of data for the last start of request. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN * * This is the driver's state for each registered enpoint, allowing it * to keep track of transactions that need doing. Each endpoint has a * lock to protect the state, to try and avoid using an overall lock * for the host controller as much as possible. * * For periodic IN endpoints, we have fifo_size and fifo_load to try * and keep track of the amount of data in the periodic FIFO for each * of these as we don't have a status register that tells us how much * is in each of them. (note, this may actually be useless information * as in shared-fifo mode periodic in acts like a single-frame packet * buffer than a fifo) */ struct s3c_hsotg_ep { struct usb_ep ep; struct list_head queue; struct s3c_hsotg *parent; struct s3c_hsotg_req *req; struct dentry *debugfs; spinlock_t lock; unsigned long total_data; unsigned int size_loaded; unsigned int last_load; unsigned int fifo_load; unsigned short fifo_size; unsigned char dir_in; unsigned char index; unsigned int halted:1; unsigned int periodic:1; unsigned int sent_zlp:1; char name[10]; }; #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */ /** * struct s3c_hsotg - driver state. * @dev: The parent device supplied to the probe function * @driver: USB gadget driver * @plat: The platform specific configuration data. * @regs: The memory area mapped for accessing registers. * @regs_res: The resource that was allocated when claiming register space. * @irq: The IRQ number we are using * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos. * @debug_root: root directrory for debugfs. * @debug_file: main status file for debugfs. * @debug_fifo: FIFO status file for debugfs. * @ep0_reply: Request used for ep0 reply. * @ep0_buff: Buffer for EP0 reply data, if needed. * @ctrl_buff: Buffer for EP0 control requests. * @ctrl_req: Request for EP0 control packets. * @eps: The endpoints being supplied to the gadget framework */ struct s3c_hsotg { struct device *dev; struct usb_gadget_driver *driver; struct s3c_hsotg_plat *plat; void __iomem *regs; struct resource *regs_res; int irq; unsigned int dedicated_fifos:1; struct dentry *debug_root; struct dentry *debug_file; struct dentry *debug_fifo; struct usb_request *ep0_reply; struct usb_request *ctrl_req; u8 ep0_buff[8]; u8 ctrl_buff[8]; struct usb_gadget gadget; struct s3c_hsotg_ep eps[]; }; /** * struct s3c_hsotg_req - data transfer request * @req: The USB gadget request * @queue: The list of requests for the endpoint this is queued for. * @in_progress: Has already had size/packets written to core * @mapped: DMA buffer for this request has been mapped via dma_map_single(). */ struct s3c_hsotg_req { struct usb_request req; struct list_head queue; unsigned char in_progress; unsigned char mapped; }; /* conversion functions */ static inline struct s3c_hsotg_req *our_req(struct usb_request *req) { return container_of(req, struct s3c_hsotg_req, req); } static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep) { return container_of(ep, struct s3c_hsotg_ep, ep); } static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget) { return container_of(gadget, struct s3c_hsotg, gadget); } static inline void __orr32(void __iomem *ptr, u32 val) { writel(readl(ptr) | val, ptr); } static inline void __bic32(void __iomem *ptr, u32 val) { writel(readl(ptr) & ~val, ptr); } /* forward decleration of functions */ static void s3c_hsotg_dump(struct s3c_hsotg *hsotg); /** * using_dma - return the DMA status of the driver. * @hsotg: The driver state. * * Return true if we're using DMA. * * Currently, we have the DMA support code worked into everywhere * that needs it, but the AMBA DMA implementation in the hardware can * only DMA from 32bit aligned addresses. This means that gadgets such * as the CDC Ethernet cannot work as they often pass packets which are * not 32bit aligned. * * Unfortunately the choice to use DMA or not is global to the controller * and seems to be only settable when the controller is being put through * a core reset. This means we either need to fix the gadgets to take * account of DMA alignment, or add bounce buffers (yuerk). * * Until this issue is sorted out, we always return 'false'. */ static inline bool using_dma(struct s3c_hsotg *hsotg) { return false; /* support is not complete */ } /** * s3c_hsotg_en_gsint - enable one or more of the general interrupt * @hsotg: The device state * @ints: A bitmask of the interrupts to enable */ static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints) { u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK); u32 new_gsintmsk; new_gsintmsk = gsintmsk | ints; if (new_gsintmsk != gsintmsk) { dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK); } } /** * s3c_hsotg_disable_gsint - disable one or more of the general interrupt * @hsotg: The device state * @ints: A bitmask of the interrupts to enable */ static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints) { u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK); u32 new_gsintmsk; new_gsintmsk = gsintmsk & ~ints; if (new_gsintmsk != gsintmsk) writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK); } /** * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq * @hsotg: The device state * @ep: The endpoint index * @dir_in: True if direction is in. * @en: The enable value, true to enable * * Set or clear the mask for an individual endpoint's interrupt * request. */ static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg, unsigned int ep, unsigned int dir_in, unsigned int en) { unsigned long flags; u32 bit = 1 << ep; u32 daint; if (!dir_in) bit <<= 16; local_irq_save(flags); daint = readl(hsotg->regs + S3C_DAINTMSK); if (en) daint |= bit; else daint &= ~bit; writel(daint, hsotg->regs + S3C_DAINTMSK); local_irq_restore(flags); } /** * s3c_hsotg_init_fifo - initialise non-periodic FIFOs * @hsotg: The device instance. */ static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg) { unsigned int ep; unsigned int addr; unsigned int size; int timeout; u32 val; /* the ryu 2.6.24 release ahs writel(0x1C0, hsotg->regs + S3C_GRXFSIZ); writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) | S3C_GNPTXFSIZ_NPTxFDep(0x1C0), hsotg->regs + S3C_GNPTXFSIZ); */ /* set FIFO sizes to 2048/1024 */ writel(2048, hsotg->regs + S3C_GRXFSIZ); writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) | S3C_GNPTXFSIZ_NPTxFDep(1024), hsotg->regs + S3C_GNPTXFSIZ); /* arange all the rest of the TX FIFOs, as some versions of this * block have overlapping default addresses. This also ensures * that if the settings have been changed, then they are set to * known values. */ /* start at the end of the GNPTXFSIZ, rounded up */ addr = 2048 + 1024; size = 768; /* currently we allocate TX FIFOs for all possible endpoints, * and assume that they are all the same size. */ for (ep = 0; ep <= 15; ep++) { val = addr; val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT; addr += size; writel(val, hsotg->regs + S3C_DPTXFSIZn(ep)); } /* according to p428 of the design guide, we need to ensure that * all fifos are flushed before continuing */ writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL); /* wait until the fifos are both flushed */ timeout = 100; while (1) { val = readl(hsotg->regs + S3C_GRSTCTL); if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0) break; if (--timeout == 0) { dev_err(hsotg->dev, "%s: timeout flushing fifos (GRSTCTL=%08x)\n", __func__, val); } udelay(1); } dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); } /** * @ep: USB endpoint to allocate request for. * @flags: Allocation flags * * Allocate a new USB request structure appropriate for the specified endpoint */ static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, gfp_t flags) { struct s3c_hsotg_req *req; req = kzalloc(sizeof(struct s3c_hsotg_req), flags); if (!req) return NULL; INIT_LIST_HEAD(&req->queue); req->req.dma = DMA_ADDR_INVALID; return &req->req; } /** * is_ep_periodic - return true if the endpoint is in periodic mode. * @hs_ep: The endpoint to query. * * Returns true if the endpoint is in periodic mode, meaning it is being * used for an Interrupt or ISO transfer. */ static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep) { return hs_ep->periodic; } /** * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request * @hsotg: The device state. * @hs_ep: The endpoint for the request * @hs_req: The request being processed. * * This is the reverse of s3c_hsotg_map_dma(), called for the completion * of a request to ensure the buffer is ready for access by the caller. */ static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req) { struct usb_request *req = &hs_req->req; enum dma_data_direction dir; dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE; /* ignore this if we're not moving any data */ if (hs_req->req.length == 0) return; if (hs_req->mapped) { /* we mapped this, so unmap and remove the dma */ dma_unmap_single(hsotg->dev, req->dma, req->length, dir); req->dma = DMA_ADDR_INVALID; hs_req->mapped = 0; } else { dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir); } } /** * s3c_hsotg_write_fifo - write packet Data to the TxFIFO * @hsotg: The controller state. * @hs_ep: The endpoint we're going to write for. * @hs_req: The request to write data for. * * This is called when the TxFIFO has some space in it to hold a new * transmission and we have something to give it. The actual setup of * the data size is done elsewhere, so all we have to do is to actually * write the data. * * The return value is zero if there is more space (or nothing was done) * otherwise -ENOSPC is returned if the FIFO space was used up. * * This routine is only needed for PIO */ static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req) { bool periodic = is_ep_periodic(hs_ep); u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS); int buf_pos = hs_req->req.actual; int to_write = hs_ep->size_loaded; void *data; int can_write; int pkt_round; to_write -= (buf_pos - hs_ep->last_load); /* if there's nothing to write, get out early */ if (to_write == 0) return 0; if (periodic && !hsotg->dedicated_fifos) { u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index)); int size_left; int size_done; /* work out how much data was loaded so we can calculate * how much data is left in the fifo. */ size_left = S3C_DxEPTSIZ_XferSize_GET(epsize); /* if shared fifo, we cannot write anything until the * previous data has been completely sent. */ if (hs_ep->fifo_load != 0) { s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp); return -ENOSPC; } dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", __func__, size_left, hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); /* how much of the data has moved */ size_done = hs_ep->size_loaded - size_left; /* how much data is left in the fifo */ can_write = hs_ep->fifo_load - size_done; dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", __func__, can_write); can_write = hs_ep->fifo_size - can_write; dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", __func__, can_write); if (can_write <= 0) { s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp); return -ENOSPC; } } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index)); can_write &= 0xffff; can_write *= 4; } else { if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) { dev_dbg(hsotg->dev, "%s: no queue slots available (0x%08x)\n", __func__, gnptxsts); s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp); return -ENOSPC; } can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts); can_write *= 4; /* fifo size is in 32bit quantities. */ } dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n", __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket); /* limit to 512 bytes of data, it seems at least on the non-periodic * FIFO, requests of >512 cause the endpoint to get stuck with a * fragment of the end of the transfer in it. */ if (can_write > 512) can_write = 512; /* limit the write to one max-packet size worth of data, but allow * the transfer to return that it did not run out of fifo space * doing it. */ if (to_write > hs_ep->ep.maxpacket) { to_write = hs_ep->ep.maxpacket; s3c_hsotg_en_gsint(hsotg, periodic ? S3C_GINTSTS_PTxFEmp : S3C_GINTSTS_NPTxFEmp); } /* see if we can write data */ if (to_write > can_write) { to_write = can_write; pkt_round = to_write % hs_ep->ep.maxpacket; /* Not sure, but we probably shouldn't be writing partial * packets into the FIFO, so round the write down to an * exact number of packets. * * Note, we do not currently check to see if we can ever * write a full packet or not to the FIFO. */ if (pkt_round) to_write -= pkt_round; /* enable correct FIFO interrupt to alert us when there * is more room left. */ s3c_hsotg_en_gsint(hsotg, periodic ? S3C_GINTSTS_PTxFEmp : S3C_GINTSTS_NPTxFEmp); } dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", to_write, hs_req->req.length, can_write, buf_pos); if (to_write <= 0) return -ENOSPC; hs_req->req.actual = buf_pos + to_write; hs_ep->total_data += to_write; if (periodic) hs_ep->fifo_load += to_write; to_write = DIV_ROUND_UP(to_write, 4); data = hs_req->req.buf + buf_pos; writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write); return (to_write >= can_write) ? -ENOSPC : 0; } /** * get_ep_limit - get the maximum data legnth for this endpoint * @hs_ep: The endpoint * * Return the maximum data that can be queued in one go on a given endpoint * so that transfers that are too long can be split. */ static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep) { int index = hs_ep->index; unsigned maxsize; unsigned maxpkt; if (index != 0) { maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1; maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1; } else { if (hs_ep->dir_in) { maxsize = 64+64; maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1; } else { maxsize = 0x3f; maxpkt = 2; } } /* we made the constant loading easier above by using +1 */ maxpkt--; maxsize--; /* constrain by packet count if maxpkts*pktsize is greater * than the length register size. */ if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) maxsize = maxpkt * hs_ep->ep.maxpacket; return maxsize; } /** * s3c_hsotg_start_req - start a USB request from an endpoint's queue * @hsotg: The controller state. * @hs_ep: The endpoint to process a request for * @hs_req: The request to start. * @continuing: True if we are doing more for the current request. * * Start the given request running by setting the endpoint registers * appropriately, and writing any data to the FIFOs. */ static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req, bool continuing) { struct usb_request *ureq = &hs_req->req; int index = hs_ep->index; int dir_in = hs_ep->dir_in; u32 epctrl_reg; u32 epsize_reg; u32 epsize; u32 ctrl; unsigned length; unsigned packets; unsigned maxreq; if (index != 0) { if (hs_ep->req && !continuing) { dev_err(hsotg->dev, "%s: active request\n", __func__); WARN_ON(1); return; } else if (hs_ep->req != hs_req && continuing) { dev_err(hsotg->dev, "%s: continue different req\n", __func__); WARN_ON(1); return; } } epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index); epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index); dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", __func__, readl(hsotg->regs + epctrl_reg), index, hs_ep->dir_in ? "in" : "out"); length = ureq->length - ureq->actual; if (0) dev_dbg(hsotg->dev, "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n", ureq->buf, length, ureq->dma, ureq->no_interrupt, ureq->zero, ureq->short_not_ok); maxreq = get_ep_limit(hs_ep); if (length > maxreq) { int round = maxreq % hs_ep->ep.maxpacket; dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", __func__, length, maxreq, round); /* round down to multiple of packets */ if (round) maxreq -= round; length = maxreq; } if (length) packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); else packets = 1; /* send one packet if length is zero. */ if (dir_in && index != 0) epsize = S3C_DxEPTSIZ_MC(1); else epsize = 0; if (index != 0 && ureq->zero) { /* test for the packets being exactly right for the * transfer */ if (length == (packets * hs_ep->ep.maxpacket)) packets++; } epsize |= S3C_DxEPTSIZ_PktCnt(packets); epsize |= S3C_DxEPTSIZ_XferSize(length); dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", __func__, packets, length, ureq->length, epsize, epsize_reg); /* store the request as the current one we're doing */ hs_ep->req = hs_req; /* write size / packets */ writel(epsize, hsotg->regs + epsize_reg); ctrl = readl(hsotg->regs + epctrl_reg); if (ctrl & S3C_DxEPCTL_Stall) { dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); /* not sure what we can do here, if it is EP0 then we should * get this cleared once the endpoint has transmitted the * STALL packet, otherwise it needs to be cleared by the * host. */ } if (using_dma(hsotg)) { unsigned int dma_reg; /* write DMA address to control register, buffer already * synced by s3c_hsotg_ep_queue(). */ dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index); writel(ureq->dma, hsotg->regs + dma_reg); dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n", __func__, ureq->dma, dma_reg); } ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */ ctrl |= S3C_DxEPCTL_USBActEp; ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */ dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); writel(ctrl, hsotg->regs + epctrl_reg); /* set these, it seems that DMA support increments past the end * of the packet buffer so we need to calculate the length from * this information. */ hs_ep->size_loaded = length; hs_ep->last_load = ureq->actual; if (dir_in && !using_dma(hsotg)) { /* set these anyway, we may need them for non-periodic in */ hs_ep->fifo_load = 0; s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); } /* clear the INTknTXFEmpMsk when we start request, more as a aide * to debugging to see what is going on. */ if (dir_in) writel(S3C_DIEPMSK_INTknTXFEmpMsk, hsotg->regs + S3C_DIEPINT(index)); /* Note, trying to clear the NAK here causes problems with transmit * on the S3C6400 ending up with the TXFIFO becomming full. */ /* check ep is enabled */ if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna)) dev_warn(hsotg->dev, "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n", index, readl(hsotg->regs + epctrl_reg)); dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, readl(hsotg->regs + epctrl_reg)); } /** * s3c_hsotg_map_dma - map the DMA memory being used for the request * @hsotg: The device state. * @hs_ep: The endpoint the request is on. * @req: The request being processed. * * We've been asked to queue a request, so ensure that the memory buffer * is correctly setup for DMA. If we've been passed an extant DMA address * then ensure the buffer has been synced to memory. If our buffer has no * DMA memory, then we map the memory and mark our request to allow us to * cleanup on completion. */ static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, struct usb_request *req) { enum dma_data_direction dir; struct s3c_hsotg_req *hs_req = our_req(req); dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE; /* if the length is zero, ignore the DMA data */ if (hs_req->req.length == 0) return 0; if (req->dma == DMA_ADDR_INVALID) { dma_addr_t dma; dma = dma_map_single(hsotg->dev, req->buf, req->length, dir); if (unlikely(dma_mapping_error(hsotg->dev, dma))) goto dma_error; if (dma & 3) { dev_err(hsotg->dev, "%s: unaligned dma buffer\n", __func__); dma_unmap_single(hsotg->dev, dma, req->length, dir); return -EINVAL; } hs_req->mapped = 1; req->dma = dma; } else { dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir); hs_req->mapped = 0; } return 0; dma_error: dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", __func__, req->buf, req->length); return -EIO; } static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) { struct s3c_hsotg_req *hs_req = our_req(req); struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hs = hs_ep->parent; unsigned long irqflags; bool first; dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", ep->name, req, req->length, req->buf, req->no_interrupt, req->zero, req->short_not_ok); /* initialise status of the request */ INIT_LIST_HEAD(&hs_req->queue); req->actual = 0; req->status = -EINPROGRESS; /* if we're using DMA, sync the buffers as necessary */ if (using_dma(hs)) { int ret = s3c_hsotg_map_dma(hs, hs_ep, req); if (ret) return ret; } spin_lock_irqsave(&hs_ep->lock, irqflags); first = list_empty(&hs_ep->queue); list_add_tail(&hs_req->queue, &hs_ep->queue); if (first) s3c_hsotg_start_req(hs, hs_ep, hs_req, false); spin_unlock_irqrestore(&hs_ep->lock, irqflags); return 0; } static void s3c_hsotg_ep_free_request(struct usb_ep *ep, struct usb_request *req) { struct s3c_hsotg_req *hs_req = our_req(req); kfree(hs_req); } /** * s3c_hsotg_complete_oursetup - setup completion callback * @ep: The endpoint the request was on. * @req: The request completed. * * Called on completion of any requests the driver itself * submitted that need cleaning up. */ static void s3c_hsotg_complete_oursetup(struct usb_ep *ep, struct usb_request *req) { struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hsotg = hs_ep->parent; dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); s3c_hsotg_ep_free_request(ep, req); } /** * ep_from_windex - convert control wIndex value to endpoint * @hsotg: The driver state. * @windex: The control request wIndex field (in host order). * * Convert the given wIndex into a pointer to an driver endpoint * structure, or return NULL if it is not a valid endpoint. */ static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg, u32 windex) { struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F]; int dir = (windex & USB_DIR_IN) ? 1 : 0; int idx = windex & 0x7F; if (windex >= 0x100) return NULL; if (idx > S3C_HSOTG_EPS) return NULL; if (idx && ep->dir_in != dir) return NULL; return ep; } /** * s3c_hsotg_send_reply - send reply to control request * @hsotg: The device state * @ep: Endpoint 0 * @buff: Buffer for request * @length: Length of reply. * * Create a request and queue it on the given endpoint. This is useful as * an internal method of sending replies to certain control requests, etc. */ static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *ep, void *buff, int length) { struct usb_request *req; int ret; dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); hsotg->ep0_reply = req; if (!req) { dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); return -ENOMEM; } req->buf = hsotg->ep0_buff; req->length = length; req->zero = 1; /* always do zero-length final transfer */ req->complete = s3c_hsotg_complete_oursetup; if (length) memcpy(req->buf, buff, length); else ep->sent_zlp = 1; ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); if (ret) { dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); return ret; } return 0; } /** * s3c_hsotg_process_req_status - process request GET_STATUS * @hsotg: The device state * @ctrl: USB control request */ static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg, struct usb_ctrlrequest *ctrl) { struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; struct s3c_hsotg_ep *ep; __le16 reply; int ret; dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); if (!ep0->dir_in) { dev_warn(hsotg->dev, "%s: direction out?\n", __func__); return -EINVAL; } switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: reply = cpu_to_le16(0); /* bit 0 => self powered, * bit 1 => remote wakeup */ break; case USB_RECIP_INTERFACE: /* currently, the data result should be zero */ reply = cpu_to_le16(0); break; case USB_RECIP_ENDPOINT: ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); if (!ep) return -ENOENT; reply = cpu_to_le16(ep->halted ? 1 : 0); break; default: return 0; } if (le16_to_cpu(ctrl->wLength) != 2) return -EINVAL; ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2); if (ret) { dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); return ret; } return 1; } static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value); /** * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE * @hsotg: The device state * @ctrl: USB control request */ static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg, struct usb_ctrlrequest *ctrl) { bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); struct s3c_hsotg_ep *ep; dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", __func__, set ? "SET" : "CLEAR"); if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); if (!ep) { dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", __func__, le16_to_cpu(ctrl->wIndex)); return -ENOENT; } switch (le16_to_cpu(ctrl->wValue)) { case USB_ENDPOINT_HALT: s3c_hsotg_ep_sethalt(&ep->ep, set); break; default: return -ENOENT; } } else return -ENOENT; /* currently only deal with endpoint */ return 1; } /** * s3c_hsotg_process_control - process a control request * @hsotg: The device state * @ctrl: The control request received * * The controller has received the SETUP phase of a control request, and * needs to work out what to do next (and whether to pass it on to the * gadget driver). */ static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg, struct usb_ctrlrequest *ctrl) { struct s3c_hsotg_ep *ep0 = &hsotg->eps[0]; int ret = 0; u32 dcfg; ep0->sent_zlp = 0; dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n", ctrl->bRequest, ctrl->bRequestType, ctrl->wValue, ctrl->wLength); /* record the direction of the request, for later use when enquing * packets onto EP0. */ ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0; dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in); /* if we've no data with this request, then the last part of the * transaction is going to implicitly be IN. */ if (ctrl->wLength == 0) ep0->dir_in = 1; if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { switch (ctrl->bRequest) { case USB_REQ_SET_ADDRESS: dcfg = readl(hsotg->regs + S3C_DCFG); dcfg &= ~S3C_DCFG_DevAddr_MASK; dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT; writel(dcfg, hsotg->regs + S3C_DCFG); dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); return; case USB_REQ_GET_STATUS: ret = s3c_hsotg_process_req_status(hsotg, ctrl); break; case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: ret = s3c_hsotg_process_req_feature(hsotg, ctrl); break; } } /* as a fallback, try delivering it to the driver to deal with */ if (ret == 0 && hsotg->driver) { ret = hsotg->driver->setup(&hsotg->gadget, ctrl); if (ret < 0) dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); } if (ret > 0) { if (!ep0->dir_in) { /* need to generate zlp in reply or take data */ /* todo - deal with any data we might be sent? */ ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0); } } /* the request is either unhandlable, or is not formatted correctly * so respond with a STALL for the status stage to indicate failure. */ if (ret < 0) { u32 reg; u32 ctrl; dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0; /* S3C_DxEPCTL_Stall will be cleared by EP once it has * taken effect, so no need to clear later. */ ctrl = readl(hsotg->regs + reg); ctrl |= S3C_DxEPCTL_Stall; ctrl |= S3C_DxEPCTL_CNAK; writel(ctrl, hsotg->regs + reg); dev_dbg(hsotg->dev, "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n", ctrl, reg, readl(hsotg->regs + reg)); /* don't belive we need to anything more to get the EP * to reply with a STALL packet */ } } static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg); /** * s3c_hsotg_complete_setup - completion of a setup transfer * @ep: The endpoint the request was on. * @req: The request completed. * * Called on completion of any requests the driver itself submitted for * EP0 setup packets */ static void s3c_hsotg_complete_setup(struct usb_ep *ep, struct usb_request *req) { struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hsotg = hs_ep->parent; if (req->status < 0) { dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); return; } if (req->actual == 0) s3c_hsotg_enqueue_setup(hsotg); else s3c_hsotg_process_control(hsotg, req->buf); } /** * s3c_hsotg_enqueue_setup - start a request for EP0 packets * @hsotg: The device state. * * Enqueue a request on EP0 if necessary to received any SETUP packets * received from the host. */ static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg) { struct usb_request *req = hsotg->ctrl_req; struct s3c_hsotg_req *hs_req = our_req(req); int ret; dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); req->zero = 0; req->length = 8; req->buf = hsotg->ctrl_buff; req->complete = s3c_hsotg_complete_setup; if (!list_empty(&hs_req->queue)) { dev_dbg(hsotg->dev, "%s already queued???\n", __func__); return; } hsotg->eps[0].dir_in = 0; ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC); if (ret < 0) { dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); /* Don't think there's much we can do other than watch the * driver fail. */ } } /** * get_ep_head - return the first request on the endpoint * @hs_ep: The controller endpoint to get * * Get the first request on the endpoint. */ static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep) { if (list_empty(&hs_ep->queue)) return NULL; return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue); } /** * s3c_hsotg_complete_request - complete a request given to us * @hsotg: The device state. * @hs_ep: The endpoint the request was on. * @hs_req: The request to complete. * @result: The result code (0 => Ok, otherwise errno) * * The given request has finished, so call the necessary completion * if it has one and then look to see if we can start a new request * on the endpoint. * * Note, expects the ep to already be locked as appropriate. */ static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req, int result) { bool restart; if (!hs_req) { dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); return; } dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); /* only replace the status if we've not already set an error * from a previous transaction */ if (hs_req->req.status == -EINPROGRESS) hs_req->req.status = result; hs_ep->req = NULL; list_del_init(&hs_req->queue); if (using_dma(hsotg)) s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req); /* call the complete request with the locks off, just in case the * request tries to queue more work for this endpoint. */ if (hs_req->req.complete) { spin_unlock(&hs_ep->lock); hs_req->req.complete(&hs_ep->ep, &hs_req->req); spin_lock(&hs_ep->lock); } /* Look to see if there is anything else to do. Note, the completion * of the previous request may have caused a new request to be started * so be careful when doing this. */ if (!hs_ep->req && result >= 0) { restart = !list_empty(&hs_ep->queue); if (restart) { hs_req = get_ep_head(hs_ep); s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false); } } } /** * s3c_hsotg_complete_request_lock - complete a request given to us (locked) * @hsotg: The device state. * @hs_ep: The endpoint the request was on. * @hs_req: The request to complete. * @result: The result code (0 => Ok, otherwise errno) * * See s3c_hsotg_complete_request(), but called with the endpoint's * lock held. */ static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req, int result) { unsigned long flags; spin_lock_irqsave(&hs_ep->lock, flags); s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result); spin_unlock_irqrestore(&hs_ep->lock, flags); } /** * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint * @hsotg: The device state. * @ep_idx: The endpoint index for the data * @size: The size of data in the fifo, in bytes * * The FIFO status shows there is data to read from the FIFO for a given * endpoint, so sort out whether we need to read the data into a request * that has been made for that endpoint. */ static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size) { struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx]; struct s3c_hsotg_req *hs_req = hs_ep->req; void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx); int to_read; int max_req; int read_ptr; if (!hs_req) { u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx)); int ptr; dev_warn(hsotg->dev, "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n", __func__, size, ep_idx, epctl); /* dump the data from the FIFO, we've nothing we can do */ for (ptr = 0; ptr < size; ptr += 4) (void)readl(fifo); return; } spin_lock(&hs_ep->lock); to_read = size; read_ptr = hs_req->req.actual; max_req = hs_req->req.length - read_ptr; if (to_read > max_req) { /* more data appeared than we where willing * to deal with in this request. */ /* currently we don't deal this */ WARN_ON_ONCE(1); } dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", __func__, to_read, max_req, read_ptr, hs_req->req.length); hs_ep->total_data += to_read; hs_req->req.actual += to_read; to_read = DIV_ROUND_UP(to_read, 4); /* note, we might over-write the buffer end by 3 bytes depending on * alignment of the data. */ readsl(fifo, hs_req->req.buf + read_ptr, to_read); spin_unlock(&hs_ep->lock); } /** * s3c_hsotg_send_zlp - send zero-length packet on control endpoint * @hsotg: The device instance * @req: The request currently on this endpoint * * Generate a zero-length IN packet request for terminating a SETUP * transaction. * * Note, since we don't write any data to the TxFIFO, then it is * currently belived that we do not need to wait for any space in * the TxFIFO. */ static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg, struct s3c_hsotg_req *req) { u32 ctrl; if (!req) { dev_warn(hsotg->dev, "%s: no request?\n", __func__); return; } if (req->req.length == 0) { hsotg->eps[0].sent_zlp = 1; s3c_hsotg_enqueue_setup(hsotg); return; } hsotg->eps[0].dir_in = 1; hsotg->eps[0].sent_zlp = 1; dev_dbg(hsotg->dev, "sending zero-length packet\n"); /* issue a zero-sized packet to terminate this */ writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) | S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0)); ctrl = readl(hsotg->regs + S3C_DIEPCTL0); ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */ ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */ ctrl |= S3C_DxEPCTL_USBActEp; writel(ctrl, hsotg->regs + S3C_DIEPCTL0); } /** * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO * @hsotg: The device instance * @epnum: The endpoint received from * @was_setup: Set if processing a SetupDone event. * * The RXFIFO has delivered an OutDone event, which means that the data * transfer for an OUT endpoint has been completed, either by a short * packet or by the finish of a transfer. */ static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg, int epnum, bool was_setup) { struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum]; struct s3c_hsotg_req *hs_req = hs_ep->req; struct usb_request *req = &hs_req->req; int result = 0; if (!hs_req) { dev_dbg(hsotg->dev, "%s: no request active\n", __func__); return; } if (using_dma(hsotg)) { u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum)); unsigned size_done; unsigned size_left; /* Calculate the size of the transfer by checking how much * is left in the endpoint size register and then working it * out from the amount we loaded for the transfer. * * We need to do this as DMA pointers are always 32bit aligned * so may overshoot/undershoot the transfer. */ size_left = S3C_DxEPTSIZ_XferSize_GET(epsize); size_done = hs_ep->size_loaded - size_left; size_done += hs_ep->last_load; req->actual = size_done; } if (req->actual < req->length && req->short_not_ok) { dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", __func__, req->actual, req->length); /* todo - what should we return here? there's no one else * even bothering to check the status. */ } if (epnum == 0) { if (!was_setup && req->complete != s3c_hsotg_complete_setup) s3c_hsotg_send_zlp(hsotg, hs_req); } s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result); } /** * s3c_hsotg_read_frameno - read current frame number * @hsotg: The device instance * * Return the current frame number */ static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg) { u32 dsts; dsts = readl(hsotg->regs + S3C_DSTS); dsts &= S3C_DSTS_SOFFN_MASK; dsts >>= S3C_DSTS_SOFFN_SHIFT; return dsts; } /** * s3c_hsotg_handle_rx - RX FIFO has data * @hsotg: The device instance * * The IRQ handler has detected that the RX FIFO has some data in it * that requires processing, so find out what is in there and do the * appropriate read. * * The RXFIFO is a true FIFO, the packets comming out are still in packet * chunks, so if you have x packets received on an endpoint you'll get x * FIFO events delivered, each with a packet's worth of data in it. * * When using DMA, we should not be processing events from the RXFIFO * as the actual data should be sent to the memory directly and we turn * on the completion interrupts to get notifications of transfer completion. */ static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg) { u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP); u32 epnum, status, size; WARN_ON(using_dma(hsotg)); epnum = grxstsr & S3C_GRXSTS_EPNum_MASK; status = grxstsr & S3C_GRXSTS_PktSts_MASK; size = grxstsr & S3C_GRXSTS_ByteCnt_MASK; size >>= S3C_GRXSTS_ByteCnt_SHIFT; if (1) dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", __func__, grxstsr, size, epnum); #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT) switch (status >> S3C_GRXSTS_PktSts_SHIFT) { case __status(S3C_GRXSTS_PktSts_GlobalOutNAK): dev_dbg(hsotg->dev, "GlobalOutNAK\n"); break; case __status(S3C_GRXSTS_PktSts_OutDone): dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", s3c_hsotg_read_frameno(hsotg)); if (!using_dma(hsotg)) s3c_hsotg_handle_outdone(hsotg, epnum, false); break; case __status(S3C_GRXSTS_PktSts_SetupDone): dev_dbg(hsotg->dev, "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", s3c_hsotg_read_frameno(hsotg), readl(hsotg->regs + S3C_DOEPCTL(0))); s3c_hsotg_handle_outdone(hsotg, epnum, true); break; case __status(S3C_GRXSTS_PktSts_OutRX): s3c_hsotg_rx_data(hsotg, epnum, size); break; case __status(S3C_GRXSTS_PktSts_SetupRX): dev_dbg(hsotg->dev, "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", s3c_hsotg_read_frameno(hsotg), readl(hsotg->regs + S3C_DOEPCTL(0))); s3c_hsotg_rx_data(hsotg, epnum, size); break; default: dev_warn(hsotg->dev, "%s: unknown status %08x\n", __func__, grxstsr); s3c_hsotg_dump(hsotg); break; } } /** * s3c_hsotg_ep0_mps - turn max packet size into register setting * @mps: The maximum packet size in bytes. */ static u32 s3c_hsotg_ep0_mps(unsigned int mps) { switch (mps) { case 64: return S3C_D0EPCTL_MPS_64; case 32: return S3C_D0EPCTL_MPS_32; case 16: return S3C_D0EPCTL_MPS_16; case 8: return S3C_D0EPCTL_MPS_8; } /* bad max packet size, warn and return invalid result */ WARN_ON(1); return (u32)-1; } /** * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field * @hsotg: The driver state. * @ep: The index number of the endpoint * @mps: The maximum packet size in bytes * * Configure the maximum packet size for the given endpoint, updating * the hardware control registers to reflect this. */ static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg, unsigned int ep, unsigned int mps) { struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep]; void __iomem *regs = hsotg->regs; u32 mpsval; u32 reg; if (ep == 0) { /* EP0 is a special case */ mpsval = s3c_hsotg_ep0_mps(mps); if (mpsval > 3) goto bad_mps; } else { if (mps >= S3C_DxEPCTL_MPS_LIMIT+1) goto bad_mps; mpsval = mps; } hs_ep->ep.maxpacket = mps; /* update both the in and out endpoint controldir_ registers, even * if one of the directions may not be in use. */ reg = readl(regs + S3C_DIEPCTL(ep)); reg &= ~S3C_DxEPCTL_MPS_MASK; reg |= mpsval; writel(reg, regs + S3C_DIEPCTL(ep)); reg = readl(regs + S3C_DOEPCTL(ep)); reg &= ~S3C_DxEPCTL_MPS_MASK; reg |= mpsval; writel(reg, regs + S3C_DOEPCTL(ep)); return; bad_mps: dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); } /** * s3c_hsotg_trytx - check to see if anything needs transmitting * @hsotg: The driver state * @hs_ep: The driver endpoint to check. * * Check to see if there is a request that has data to send, and if so * make an attempt to write data into the FIFO. */ static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep) { struct s3c_hsotg_req *hs_req = hs_ep->req; if (!hs_ep->dir_in || !hs_req) return 0; if (hs_req->req.actual < hs_req->req.length) { dev_dbg(hsotg->dev, "trying to write more for ep%d\n", hs_ep->index); return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req); } return 0; } /** * s3c_hsotg_complete_in - complete IN transfer * @hsotg: The device state. * @hs_ep: The endpoint that has just completed. * * An IN transfer has been completed, update the transfer's state and then * call the relevant completion routines. */ static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep) { struct s3c_hsotg_req *hs_req = hs_ep->req; u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index)); int size_left, size_done; if (!hs_req) { dev_dbg(hsotg->dev, "XferCompl but no req\n"); return; } /* Calculate the size of the transfer by checking how much is left * in the endpoint size register and then working it out from * the amount we loaded for the transfer. * * We do this even for DMA, as the transfer may have incremented * past the end of the buffer (DMA transfers are always 32bit * aligned). */ size_left = S3C_DxEPTSIZ_XferSize_GET(epsize); size_done = hs_ep->size_loaded - size_left; size_done += hs_ep->last_load; if (hs_req->req.actual != size_done) dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", __func__, hs_req->req.actual, size_done); hs_req->req.actual = size_done; /* if we did all of the transfer, and there is more data left * around, then try restarting the rest of the request */ if (!size_left && hs_req->req.actual < hs_req->req.length) { dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true); } else s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0); } /** * s3c_hsotg_epint - handle an in/out endpoint interrupt * @hsotg: The driver state * @idx: The index for the endpoint (0..15) * @dir_in: Set if this is an IN endpoint * * Process and clear any interrupt pending for an individual endpoint */ static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx, int dir_in) { struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx]; u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx); u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx); u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx); u32 ints; u32 clear = 0; ints = readl(hsotg->regs + epint_reg); dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", __func__, idx, dir_in ? "in" : "out", ints); if (ints & S3C_DxEPINT_XferCompl) { dev_dbg(hsotg->dev, "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n", __func__, readl(hsotg->regs + epctl_reg), readl(hsotg->regs + epsiz_reg)); /* we get OutDone from the FIFO, so we only need to look * at completing IN requests here */ if (dir_in) { s3c_hsotg_complete_in(hsotg, hs_ep); if (idx == 0 && !hs_ep->req) s3c_hsotg_enqueue_setup(hsotg); } else if (using_dma(hsotg)) { /* We're using DMA, we need to fire an OutDone here * as we ignore the RXFIFO. */ s3c_hsotg_handle_outdone(hsotg, idx, false); } clear |= S3C_DxEPINT_XferCompl; } if (ints & S3C_DxEPINT_EPDisbld) { dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); clear |= S3C_DxEPINT_EPDisbld; } if (ints & S3C_DxEPINT_AHBErr) { dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); clear |= S3C_DxEPINT_AHBErr; } if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */ dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); if (using_dma(hsotg) && idx == 0) { /* this is the notification we've received a * setup packet. In non-DMA mode we'd get this * from the RXFIFO, instead we need to process * the setup here. */ if (dir_in) WARN_ON_ONCE(1); else s3c_hsotg_handle_outdone(hsotg, 0, true); } clear |= S3C_DxEPINT_Setup; } if (ints & S3C_DxEPINT_Back2BackSetup) { dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); clear |= S3C_DxEPINT_Back2BackSetup; } if (dir_in) { /* not sure if this is important, but we'll clear it anyway */ if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) { dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", __func__, idx); clear |= S3C_DIEPMSK_INTknTXFEmpMsk; } /* this probably means something bad is happening */ if (ints & S3C_DIEPMSK_INTknEPMisMsk) { dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", __func__, idx); clear |= S3C_DIEPMSK_INTknEPMisMsk; } /* FIFO has space or is empty (see GAHBCFG) */ if (hsotg->dedicated_fifos && ints & S3C_DIEPMSK_TxFIFOEmpty) { dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", __func__, idx); s3c_hsotg_trytx(hsotg, hs_ep); clear |= S3C_DIEPMSK_TxFIFOEmpty; } } writel(clear, hsotg->regs + epint_reg); } /** * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) * @hsotg: The device state. * * Handle updating the device settings after the enumeration phase has * been completed. */ static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg) { u32 dsts = readl(hsotg->regs + S3C_DSTS); int ep0_mps = 0, ep_mps; /* This should signal the finish of the enumeration phase * of the USB handshaking, so we should now know what rate * we connected at. */ dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); /* note, since we're limited by the size of transfer on EP0, and * it seems IN transfers must be a even number of packets we do * not advertise a 64byte MPS on EP0. */ /* catch both EnumSpd_FS and EnumSpd_FS48 */ switch (dsts & S3C_DSTS_EnumSpd_MASK) { case S3C_DSTS_EnumSpd_FS: case S3C_DSTS_EnumSpd_FS48: hsotg->gadget.speed = USB_SPEED_FULL; dev_info(hsotg->dev, "new device is full-speed\n"); ep0_mps = EP0_MPS_LIMIT; ep_mps = 64; break; case S3C_DSTS_EnumSpd_HS: dev_info(hsotg->dev, "new device is high-speed\n"); hsotg->gadget.speed = USB_SPEED_HIGH; ep0_mps = EP0_MPS_LIMIT; ep_mps = 512; break; case S3C_DSTS_EnumSpd_LS: hsotg->gadget.speed = USB_SPEED_LOW; dev_info(hsotg->dev, "new device is low-speed\n"); /* note, we don't actually support LS in this driver at the * moment, and the documentation seems to imply that it isn't * supported by the PHYs on some of the devices. */ break; } /* we should now know the maximum packet size for an * endpoint, so set the endpoints to a default value. */ if (ep0_mps) { int i; s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps); for (i = 1; i < S3C_HSOTG_EPS; i++) s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps); } /* ensure after enumeration our EP0 is active */ s3c_hsotg_enqueue_setup(hsotg); dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", readl(hsotg->regs + S3C_DIEPCTL0), readl(hsotg->regs + S3C_DOEPCTL0)); } /** * kill_all_requests - remove all requests from the endpoint's queue * @hsotg: The device state. * @ep: The endpoint the requests may be on. * @result: The result code to use. * @force: Force removal of any current requests * * Go through the requests on the given endpoint and mark them * completed with the given result code. */ static void kill_all_requests(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *ep, int result, bool force) { struct s3c_hsotg_req *req, *treq; unsigned long flags; spin_lock_irqsave(&ep->lock, flags); list_for_each_entry_safe(req, treq, &ep->queue, queue) { /* currently, we can't do much about an already * running request on an in endpoint */ if (ep->req == req && ep->dir_in && !force) continue; s3c_hsotg_complete_request(hsotg, ep, req, result); } spin_unlock_irqrestore(&ep->lock, flags); } #define call_gadget(_hs, _entry) \ if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \ (_hs)->driver && (_hs)->driver->_entry) \ (_hs)->driver->_entry(&(_hs)->gadget); /** * s3c_hsotg_disconnect_irq - disconnect irq service * @hsotg: The device state. * * A disconnect IRQ has been received, meaning that the host has * lost contact with the bus. Remove all current transactions * and signal the gadget driver that this has happened. */ static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg) { unsigned ep; for (ep = 0; ep < S3C_HSOTG_EPS; ep++) kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true); call_gadget(hsotg, disconnect); } /** * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler * @hsotg: The device state: * @periodic: True if this is a periodic FIFO interrupt */ static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic) { struct s3c_hsotg_ep *ep; int epno, ret; /* look through for any more data to transmit */ for (epno = 0; epno < S3C_HSOTG_EPS; epno++) { ep = &hsotg->eps[epno]; if (!ep->dir_in) continue; if ((periodic && !ep->periodic) || (!periodic && ep->periodic)) continue; ret = s3c_hsotg_trytx(hsotg, ep); if (ret < 0) break; } } static struct s3c_hsotg *our_hsotg; /* IRQ flags which will trigger a retry around the IRQ loop */ #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \ S3C_GINTSTS_PTxFEmp | \ S3C_GINTSTS_RxFLvl) /** * s3c_hsotg_irq - handle device interrupt * @irq: The IRQ number triggered * @pw: The pw value when registered the handler. */ static irqreturn_t s3c_hsotg_irq(int irq, void *pw) { struct s3c_hsotg *hsotg = pw; int retry_count = 8; u32 gintsts; u32 gintmsk; irq_retry: gintsts = readl(hsotg->regs + S3C_GINTSTS); gintmsk = readl(hsotg->regs + S3C_GINTMSK); dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); gintsts &= gintmsk; if (gintsts & S3C_GINTSTS_OTGInt) { u32 otgint = readl(hsotg->regs + S3C_GOTGINT); dev_info(hsotg->dev, "OTGInt: %08x\n", otgint); writel(otgint, hsotg->regs + S3C_GOTGINT); writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_DisconnInt) { dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__); writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS); s3c_hsotg_disconnect_irq(hsotg); } if (gintsts & S3C_GINTSTS_SessReqInt) { dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__); writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_EnumDone) { s3c_hsotg_irq_enumdone(hsotg); writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_ConIDStsChng) { dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n", readl(hsotg->regs + S3C_DSTS), readl(hsotg->regs + S3C_GOTGCTL)); writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS); } if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) { u32 daint = readl(hsotg->regs + S3C_DAINT); u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT; u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT); int ep; dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) { if (daint_out & 1) s3c_hsotg_epint(hsotg, ep, 0); } for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) { if (daint_in & 1) s3c_hsotg_epint(hsotg, ep, 1); } writel(daint, hsotg->regs + S3C_DAINT); writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt), hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_USBRst) { dev_info(hsotg->dev, "%s: USBRst\n", __func__); dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", readl(hsotg->regs + S3C_GNPTXSTS)); kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true); /* it seems after a reset we can end up with a situation * where the TXFIFO still has data in it... the docs * suggest resetting all the fifos, so use the init_fifo * code to relayout and flush the fifos. */ s3c_hsotg_init_fifo(hsotg); s3c_hsotg_enqueue_setup(hsotg); writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS); } /* check both FIFOs */ if (gintsts & S3C_GINTSTS_NPTxFEmp) { dev_dbg(hsotg->dev, "NPTxFEmp\n"); /* Disable the interrupt to stop it happening again * unless one of these endpoint routines decides that * it needs re-enabling */ s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp); s3c_hsotg_irq_fifoempty(hsotg, false); writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_PTxFEmp) { dev_dbg(hsotg->dev, "PTxFEmp\n"); /* See note in S3C_GINTSTS_NPTxFEmp */ s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp); s3c_hsotg_irq_fifoempty(hsotg, true); writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_RxFLvl) { /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, * we need to retry s3c_hsotg_handle_rx if this is still * set. */ s3c_hsotg_handle_rx(hsotg); writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_ModeMis) { dev_warn(hsotg->dev, "warning, mode mismatch triggered\n"); writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_USBSusp) { dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n"); writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS); call_gadget(hsotg, suspend); } if (gintsts & S3C_GINTSTS_WkUpInt) { dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n"); writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS); call_gadget(hsotg, resume); } if (gintsts & S3C_GINTSTS_ErlySusp) { dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n"); writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS); } /* these next two seem to crop-up occasionally causing the core * to shutdown the USB transfer, so try clearing them and logging * the occurence. */ if (gintsts & S3C_GINTSTS_GOUTNakEff) { dev_info(hsotg->dev, "GOUTNakEff triggered\n"); s3c_hsotg_dump(hsotg); writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL); writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS); } if (gintsts & S3C_GINTSTS_GINNakEff) { dev_info(hsotg->dev, "GINNakEff triggered\n"); s3c_hsotg_dump(hsotg); writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL); writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS); } /* if we've had fifo events, we should try and go around the * loop again to see if there's any point in returning yet. */ if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) goto irq_retry; return IRQ_HANDLED; } /** * s3c_hsotg_ep_enable - enable the given endpoint * @ep: The USB endpint to configure * @desc: The USB endpoint descriptor to configure with. * * This is called from the USB gadget code's usb_ep_enable(). */ static int s3c_hsotg_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hsotg = hs_ep->parent; unsigned long flags; int index = hs_ep->index; u32 epctrl_reg; u32 epctrl; u32 mps; int dir_in; int ret = 0; dev_dbg(hsotg->dev, "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, desc->wMaxPacketSize, desc->bInterval); /* not to be called for EP0 */ WARN_ON(index == 0); dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; if (dir_in != hs_ep->dir_in) { dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); return -EINVAL; } mps = le16_to_cpu(desc->wMaxPacketSize); /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */ epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index); epctrl = readl(hsotg->regs + epctrl_reg); dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", __func__, epctrl, epctrl_reg); spin_lock_irqsave(&hs_ep->lock, flags); epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK); epctrl |= S3C_DxEPCTL_MPS(mps); /* mark the endpoint as active, otherwise the core may ignore * transactions entirely for this endpoint */ epctrl |= S3C_DxEPCTL_USBActEp; /* set the NAK status on the endpoint, otherwise we might try and * do something with data that we've yet got a request to process * since the RXFIFO will take data for an endpoint even if the * size register hasn't been set. */ epctrl |= S3C_DxEPCTL_SNAK; /* update the endpoint state */ hs_ep->ep.maxpacket = mps; /* default, set to non-periodic */ hs_ep->periodic = 0; switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { case USB_ENDPOINT_XFER_ISOC: dev_err(hsotg->dev, "no current ISOC support\n"); ret = -EINVAL; goto out; case USB_ENDPOINT_XFER_BULK: epctrl |= S3C_DxEPCTL_EPType_Bulk; break; case USB_ENDPOINT_XFER_INT: if (dir_in) { /* Allocate our TxFNum by simply using the index * of the endpoint for the moment. We could do * something better if the host indicates how * many FIFOs we are expecting to use. */ hs_ep->periodic = 1; epctrl |= S3C_DxEPCTL_TxFNum(index); } epctrl |= S3C_DxEPCTL_EPType_Intterupt; break; case USB_ENDPOINT_XFER_CONTROL: epctrl |= S3C_DxEPCTL_EPType_Control; break; } /* if the hardware has dedicated fifos, we must give each IN EP * a unique tx-fifo even if it is non-periodic. */ if (dir_in && hsotg->dedicated_fifos) epctrl |= S3C_DxEPCTL_TxFNum(index); /* for non control endpoints, set PID to D0 */ if (index) epctrl |= S3C_DxEPCTL_SetD0PID; dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", __func__, epctrl); writel(epctrl, hsotg->regs + epctrl_reg); dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", __func__, readl(hsotg->regs + epctrl_reg)); /* enable the endpoint interrupt */ s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1); out: spin_unlock_irqrestore(&hs_ep->lock, flags); return ret; } static int s3c_hsotg_ep_disable(struct usb_ep *ep) { struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hsotg = hs_ep->parent; int dir_in = hs_ep->dir_in; int index = hs_ep->index; unsigned long flags; u32 epctrl_reg; u32 ctrl; dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep); if (ep == &hsotg->eps[0].ep) { dev_err(hsotg->dev, "%s: called for ep0\n", __func__); return -EINVAL; } epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index); /* terminate all requests with shutdown */ kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false); spin_lock_irqsave(&hs_ep->lock, flags); ctrl = readl(hsotg->regs + epctrl_reg); ctrl &= ~S3C_DxEPCTL_EPEna; ctrl &= ~S3C_DxEPCTL_USBActEp; ctrl |= S3C_DxEPCTL_SNAK; dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); writel(ctrl, hsotg->regs + epctrl_reg); /* disable endpoint interrupts */ s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); spin_unlock_irqrestore(&hs_ep->lock, flags); return 0; } /** * on_list - check request is on the given endpoint * @ep: The endpoint to check. * @test: The request to test if it is on the endpoint. */ static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test) { struct s3c_hsotg_req *req, *treq; list_for_each_entry_safe(req, treq, &ep->queue, queue) { if (req == test) return true; } return false; } static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) { struct s3c_hsotg_req *hs_req = our_req(req); struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hs = hs_ep->parent; unsigned long flags; dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); if (hs_req == hs_ep->req) { dev_dbg(hs->dev, "%s: already in progress\n", __func__); return -EINPROGRESS; } spin_lock_irqsave(&hs_ep->lock, flags); if (!on_list(hs_ep, hs_req)) { spin_unlock_irqrestore(&hs_ep->lock, flags); return -EINVAL; } s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); spin_unlock_irqrestore(&hs_ep->lock, flags); return 0; } static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value) { struct s3c_hsotg_ep *hs_ep = our_ep(ep); struct s3c_hsotg *hs = hs_ep->parent; int index = hs_ep->index; unsigned long irqflags; u32 epreg; u32 epctl; dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); spin_lock_irqsave(&hs_ep->lock, irqflags); /* write both IN and OUT control registers */ epreg = S3C_DIEPCTL(index); epctl = readl(hs->regs + epreg); if (value) epctl |= S3C_DxEPCTL_Stall; else epctl &= ~S3C_DxEPCTL_Stall; writel(epctl, hs->regs + epreg); epreg = S3C_DOEPCTL(index); epctl = readl(hs->regs + epreg); if (value) epctl |= S3C_DxEPCTL_Stall; else epctl &= ~S3C_DxEPCTL_Stall; writel(epctl, hs->regs + epreg); spin_unlock_irqrestore(&hs_ep->lock, irqflags); return 0; } static struct usb_ep_ops s3c_hsotg_ep_ops = { .enable = s3c_hsotg_ep_enable, .disable = s3c_hsotg_ep_disable, .alloc_request = s3c_hsotg_ep_alloc_request, .free_request = s3c_hsotg_ep_free_request, .queue = s3c_hsotg_ep_queue, .dequeue = s3c_hsotg_ep_dequeue, .set_halt = s3c_hsotg_ep_sethalt, /* note, don't belive we have any call for the fifo routines */ }; /** * s3c_hsotg_corereset - issue softreset to the core * @hsotg: The device state * * Issue a soft reset to the core, and await the core finishing it. */ static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg) { int timeout; u32 grstctl; dev_dbg(hsotg->dev, "resetting core\n"); /* issue soft reset */ writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL); timeout = 1000; do { grstctl = readl(hsotg->regs + S3C_GRSTCTL); } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0); if (!(grstctl & S3C_GRSTCTL_CSftRst)) { dev_err(hsotg->dev, "Failed to get CSftRst asserted\n"); return -EINVAL; } timeout = 1000; while (1) { u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL); if (timeout-- < 0) { dev_info(hsotg->dev, "%s: reset failed, GRSTCTL=%08x\n", __func__, grstctl); return -ETIMEDOUT; } if (grstctl & S3C_GRSTCTL_CSftRst) continue; if (!(grstctl & S3C_GRSTCTL_AHBIdle)) continue; break; /* reset done */ } dev_dbg(hsotg->dev, "reset successful\n"); return 0; } int usb_gadget_register_driver(struct usb_gadget_driver *driver) { struct s3c_hsotg *hsotg = our_hsotg; int ret; if (!hsotg) { printk(KERN_ERR "%s: called with no device\n", __func__); return -ENODEV; } if (!driver) { dev_err(hsotg->dev, "%s: no driver\n", __func__); return -EINVAL; } if (driver->speed != USB_SPEED_HIGH && driver->speed != USB_SPEED_FULL) { dev_err(hsotg->dev, "%s: bad speed\n", __func__); } if (!driver->bind || !driver->setup) { dev_err(hsotg->dev, "%s: missing entry points\n", __func__); return -EINVAL; } WARN_ON(hsotg->driver); driver->driver.bus = NULL; hsotg->driver = driver; hsotg->gadget.dev.driver = &driver->driver; hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask; hsotg->gadget.speed = USB_SPEED_UNKNOWN; ret = device_add(&hsotg->gadget.dev); if (ret) { dev_err(hsotg->dev, "failed to register gadget device\n"); goto err; } ret = driver->bind(&hsotg->gadget); if (ret) { dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name); hsotg->gadget.dev.driver = NULL; hsotg->driver = NULL; goto err; } /* we must now enable ep0 ready for host detection and then * set configuration. */ s3c_hsotg_corereset(hsotg); /* set the PLL on, remove the HNP/SRP and set the PHY */ writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10), hsotg->regs + S3C_GUSBCFG); /* looks like soft-reset changes state of FIFOs */ s3c_hsotg_init_fifo(hsotg); __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon); writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG); writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt | S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst | S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt | S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt | S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff | S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTMSK); if (using_dma(hsotg)) writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn | S3C_GAHBCFG_HBstLen_Incr4, hsotg->regs + S3C_GAHBCFG); else writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG); /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end * up being flooded with interrupts if the host is polling the * endpoint to try and read data. */ writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk | S3C_DIEPMSK_INTknEPMisMsk | S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk | ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0), hsotg->regs + S3C_DIEPMSK); /* don't need XferCompl, we get that from RXFIFO in slave mode. In * DMA mode we may need this. */ writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk | S3C_DOEPMSK_EPDisbldMsk | (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk | S3C_DIEPMSK_TimeOUTMsk) : 0), hsotg->regs + S3C_DOEPMSK); writel(0, hsotg->regs + S3C_DAINTMSK); dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", readl(hsotg->regs + S3C_DIEPCTL0), readl(hsotg->regs + S3C_DOEPCTL0)); /* enable in and out endpoint interrupts */ s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt); /* Enable the RXFIFO when in slave mode, as this is how we collect * the data. In DMA mode, we get events from the FIFO but also * things we cannot process, so do not use it. */ if (!using_dma(hsotg)) s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl); /* Enable interrupts for EP0 in and out */ s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1); s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1); __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone); udelay(10); /* see openiboot */ __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone); dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL)); /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by writing to the EPCTL register.. */ /* set to read 1 8byte packet */ writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) | S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0); writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna | S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DOEPCTL0); /* enable, but don't activate EP0in */ writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) | S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0); s3c_hsotg_enqueue_setup(hsotg); dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", readl(hsotg->regs + S3C_DIEPCTL0), readl(hsotg->regs + S3C_DOEPCTL0)); /* clear global NAKs */ writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL); /* must be at-least 3ms to allow bus to see disconnect */ msleep(3); /* remove the soft-disconnect and let's go */ __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon); /* report to the user, and return */ dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); return 0; err: hsotg->driver = NULL; hsotg->gadget.dev.driver = NULL; return ret; } EXPORT_SYMBOL(usb_gadget_register_driver); int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) { struct s3c_hsotg *hsotg = our_hsotg; int ep; if (!hsotg) return -ENODEV; if (!driver || driver != hsotg->driver || !driver->unbind) return -EINVAL; /* all endpoints should be shutdown */ for (ep = 0; ep < S3C_HSOTG_EPS; ep++) s3c_hsotg_ep_disable(&hsotg->eps[ep].ep); call_gadget(hsotg, disconnect); driver->unbind(&hsotg->gadget); hsotg->driver = NULL; hsotg->gadget.speed = USB_SPEED_UNKNOWN; device_del(&hsotg->gadget.dev); dev_info(hsotg->dev, "unregistered gadget driver '%s'\n", driver->driver.name); return 0; } EXPORT_SYMBOL(usb_gadget_unregister_driver); static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget) { return s3c_hsotg_read_frameno(to_hsotg(gadget)); } static struct usb_gadget_ops s3c_hsotg_gadget_ops = { .get_frame = s3c_hsotg_gadget_getframe, }; /** * s3c_hsotg_initep - initialise a single endpoint * @hsotg: The device state. * @hs_ep: The endpoint to be initialised. * @epnum: The endpoint number * * Initialise the given endpoint (as part of the probe and device state * creation) to give to the gadget driver. Setup the endpoint name, any * direction information and other state that may be required. */ static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg, struct s3c_hsotg_ep *hs_ep, int epnum) { u32 ptxfifo; char *dir; if (epnum == 0) dir = ""; else if ((epnum % 2) == 0) { dir = "out"; } else { dir = "in"; hs_ep->dir_in = 1; } hs_ep->index = epnum; snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); INIT_LIST_HEAD(&hs_ep->queue); INIT_LIST_HEAD(&hs_ep->ep.ep_list); spin_lock_init(&hs_ep->lock); /* add to the list of endpoints known by the gadget driver */ if (epnum) list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); hs_ep->parent = hsotg; hs_ep->ep.name = hs_ep->name; hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT; hs_ep->ep.ops = &s3c_hsotg_ep_ops; /* Read the FIFO size for the Periodic TX FIFO, even if we're * an OUT endpoint, we may as well do this if in future the * code is changed to make each endpoint's direction changeable. */ ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum)); hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4; /* if we're using dma, we need to set the next-endpoint pointer * to be something valid. */ if (using_dma(hsotg)) { u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15); writel(next, hsotg->regs + S3C_DIEPCTL(epnum)); writel(next, hsotg->regs + S3C_DOEPCTL(epnum)); } } /** * s3c_hsotg_otgreset - reset the OtG phy block * @hsotg: The host state. * * Power up the phy, set the basic configuration and start the PHY. */ static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg) { u32 osc; writel(0, S3C_PHYPWR); mdelay(1); osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0; writel(osc | 0x10, S3C_PHYCLK); /* issue a full set of resets to the otg and core */ writel(S3C_RSTCON_PHY, S3C_RSTCON); udelay(20); /* at-least 10uS */ writel(0, S3C_RSTCON); } static void s3c_hsotg_init(struct s3c_hsotg *hsotg) { u32 cfg4; /* unmask subset of endpoint interrupts */ writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk | S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk, hsotg->regs + S3C_DIEPMSK); writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk | S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk, hsotg->regs + S3C_DOEPMSK); writel(0, hsotg->regs + S3C_DAINTMSK); /* Be in disconnected state until gadget is registered */ __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon); if (0) { /* post global nak until we're ready */ writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak, hsotg->regs + S3C_DCTL); } /* setup fifos */ dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", readl(hsotg->regs + S3C_GRXFSIZ), readl(hsotg->regs + S3C_GNPTXFSIZ)); s3c_hsotg_init_fifo(hsotg); /* set the PLL on, remove the HNP/SRP and set the PHY */ writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10), hsotg->regs + S3C_GUSBCFG); writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0, hsotg->regs + S3C_GAHBCFG); /* check hardware configuration */ cfg4 = readl(hsotg->regs + 0x50); hsotg->dedicated_fifos = (cfg4 >> 25) & 1; dev_info(hsotg->dev, "%s fifos\n", hsotg->dedicated_fifos ? "dedicated" : "shared"); } static void s3c_hsotg_dump(struct s3c_hsotg *hsotg) { struct device *dev = hsotg->dev; void __iomem *regs = hsotg->regs; u32 val; int idx; dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", readl(regs + S3C_DCFG), readl(regs + S3C_DCTL), readl(regs + S3C_DIEPMSK)); dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n", readl(regs + S3C_GAHBCFG), readl(regs + 0x44)); dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ)); /* show periodic fifo settings */ for (idx = 1; idx <= 15; idx++) { val = readl(regs + S3C_DPTXFSIZn(idx)); dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT, val & S3C_DPTXFSIZn_DPTxFStAddr_MASK); } for (idx = 0; idx < 15; idx++) { dev_info(dev, "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, readl(regs + S3C_DIEPCTL(idx)), readl(regs + S3C_DIEPTSIZ(idx)), readl(regs + S3C_DIEPDMA(idx))); val = readl(regs + S3C_DOEPCTL(idx)); dev_info(dev, "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, readl(regs + S3C_DOEPCTL(idx)), readl(regs + S3C_DOEPTSIZ(idx)), readl(regs + S3C_DOEPDMA(idx))); } dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE)); } /** * state_show - debugfs: show overall driver and device state. * @seq: The seq file to write to. * @v: Unused parameter. * * This debugfs entry shows the overall state of the hardware and * some general information about each of the endpoints available * to the system. */ static int state_show(struct seq_file *seq, void *v) { struct s3c_hsotg *hsotg = seq->private; void __iomem *regs = hsotg->regs; int idx; seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n", readl(regs + S3C_DCFG), readl(regs + S3C_DCTL), readl(regs + S3C_DSTS)); seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n", readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK)); seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n", readl(regs + S3C_GINTMSK), readl(regs + S3C_GINTSTS)); seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n", readl(regs + S3C_DAINTMSK), readl(regs + S3C_DAINT)); seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n", readl(regs + S3C_GNPTXSTS), readl(regs + S3C_GRXSTSR)); seq_printf(seq, "\nEndpoint status:\n"); for (idx = 0; idx < 15; idx++) { u32 in, out; in = readl(regs + S3C_DIEPCTL(idx)); out = readl(regs + S3C_DOEPCTL(idx)); seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x", idx, in, out); in = readl(regs + S3C_DIEPTSIZ(idx)); out = readl(regs + S3C_DOEPTSIZ(idx)); seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x", in, out); seq_printf(seq, "\n"); } return 0; } static int state_open(struct inode *inode, struct file *file) { return single_open(file, state_show, inode->i_private); } static const struct file_operations state_fops = { .owner = THIS_MODULE, .open = state_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /** * fifo_show - debugfs: show the fifo information * @seq: The seq_file to write data to. * @v: Unused parameter. * * Show the FIFO information for the overall fifo and all the * periodic transmission FIFOs. */ static int fifo_show(struct seq_file *seq, void *v) { struct s3c_hsotg *hsotg = seq->private; void __iomem *regs = hsotg->regs; u32 val; int idx; seq_printf(seq, "Non-periodic FIFOs:\n"); seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ)); val = readl(regs + S3C_GNPTXFSIZ); seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n", val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT, val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK); seq_printf(seq, "\nPeriodic TXFIFOs:\n"); for (idx = 1; idx <= 15; idx++) { val = readl(regs + S3C_DPTXFSIZn(idx)); seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx, val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT, val & S3C_DPTXFSIZn_DPTxFStAddr_MASK); } return 0; } static int fifo_open(struct inode *inode, struct file *file) { return single_open(file, fifo_show, inode->i_private); } static const struct file_operations fifo_fops = { .owner = THIS_MODULE, .open = fifo_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const char *decode_direction(int is_in) { return is_in ? "in" : "out"; } /** * ep_show - debugfs: show the state of an endpoint. * @seq: The seq_file to write data to. * @v: Unused parameter. * * This debugfs entry shows the state of the given endpoint (one is * registered for each available). */ static int ep_show(struct seq_file *seq, void *v) { struct s3c_hsotg_ep *ep = seq->private; struct s3c_hsotg *hsotg = ep->parent; struct s3c_hsotg_req *req; void __iomem *regs = hsotg->regs; int index = ep->index; int show_limit = 15; unsigned long flags; seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n", ep->index, ep->ep.name, decode_direction(ep->dir_in)); /* first show the register state */ seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n", readl(regs + S3C_DIEPCTL(index)), readl(regs + S3C_DOEPCTL(index))); seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n", readl(regs + S3C_DIEPDMA(index)), readl(regs + S3C_DOEPDMA(index))); seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n", readl(regs + S3C_DIEPINT(index)), readl(regs + S3C_DOEPINT(index))); seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n", readl(regs + S3C_DIEPTSIZ(index)), readl(regs + S3C_DOEPTSIZ(index))); seq_printf(seq, "\n"); seq_printf(seq, "mps %d\n", ep->ep.maxpacket); seq_printf(seq, "total_data=%ld\n", ep->total_data); seq_printf(seq, "request list (%p,%p):\n", ep->queue.next, ep->queue.prev); spin_lock_irqsave(&ep->lock, flags); list_for_each_entry(req, &ep->queue, queue) { if (--show_limit < 0) { seq_printf(seq, "not showing more requests...\n"); break; } seq_printf(seq, "%c req %p: %d bytes @%p, ", req == ep->req ? '*' : ' ', req, req->req.length, req->req.buf); seq_printf(seq, "%d done, res %d\n", req->req.actual, req->req.status); } spin_unlock_irqrestore(&ep->lock, flags); return 0; } static int ep_open(struct inode *inode, struct file *file) { return single_open(file, ep_show, inode->i_private); } static const struct file_operations ep_fops = { .owner = THIS_MODULE, .open = ep_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /** * s3c_hsotg_create_debug - create debugfs directory and files * @hsotg: The driver state * * Create the debugfs files to allow the user to get information * about the state of the system. The directory name is created * with the same name as the device itself, in case we end up * with multiple blocks in future systems. */ static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg) { struct dentry *root; unsigned epidx; root = debugfs_create_dir(dev_name(hsotg->dev), NULL); hsotg->debug_root = root; if (IS_ERR(root)) { dev_err(hsotg->dev, "cannot create debug root\n"); return; } /* create general state file */ hsotg->debug_file = debugfs_create_file("state", 0444, root, hsotg, &state_fops); if (IS_ERR(hsotg->debug_file)) dev_err(hsotg->dev, "%s: failed to create state\n", __func__); hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root, hsotg, &fifo_fops); if (IS_ERR(hsotg->debug_fifo)) dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__); /* create one file for each endpoint */ for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) { struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; ep->debugfs = debugfs_create_file(ep->name, 0444, root, ep, &ep_fops); if (IS_ERR(ep->debugfs)) dev_err(hsotg->dev, "failed to create %s debug file\n", ep->name); } } /** * s3c_hsotg_delete_debug - cleanup debugfs entries * @hsotg: The driver state * * Cleanup (remove) the debugfs files for use on module exit. */ static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg) { unsigned epidx; for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) { struct s3c_hsotg_ep *ep = &hsotg->eps[epidx]; debugfs_remove(ep->debugfs); } debugfs_remove(hsotg->debug_file); debugfs_remove(hsotg->debug_fifo); debugfs_remove(hsotg->debug_root); } /** * s3c_hsotg_gate - set the hardware gate for the block * @pdev: The device we bound to * @on: On or off. * * Set the hardware gate setting into the block. If we end up on * something other than an S3C64XX, then we might need to change this * to using a platform data callback, or some other mechanism. */ static void s3c_hsotg_gate(struct platform_device *pdev, bool on) { unsigned long flags; u32 others; local_irq_save(flags); others = __raw_readl(S3C64XX_OTHERS); if (on) others |= S3C64XX_OTHERS_USBMASK; else others &= ~S3C64XX_OTHERS_USBMASK; __raw_writel(others, S3C64XX_OTHERS); local_irq_restore(flags); } static struct s3c_hsotg_plat s3c_hsotg_default_pdata; static int __devinit s3c_hsotg_probe(struct platform_device *pdev) { struct s3c_hsotg_plat *plat = pdev->dev.platform_data; struct device *dev = &pdev->dev; struct s3c_hsotg *hsotg; struct resource *res; int epnum; int ret; if (!plat) plat = &s3c_hsotg_default_pdata; hsotg = kzalloc(sizeof(struct s3c_hsotg) + sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS, GFP_KERNEL); if (!hsotg) { dev_err(dev, "cannot get memory\n"); return -ENOMEM; } hsotg->dev = dev; hsotg->plat = plat; platform_set_drvdata(pdev, hsotg); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "cannot find register resource 0\n"); ret = -EINVAL; goto err_mem; } hsotg->regs_res = request_mem_region(res->start, resource_size(res), dev_name(dev)); if (!hsotg->regs_res) { dev_err(dev, "cannot reserve registers\n"); ret = -ENOENT; goto err_mem; } hsotg->regs = ioremap(res->start, resource_size(res)); if (!hsotg->regs) { dev_err(dev, "cannot map registers\n"); ret = -ENXIO; goto err_regs_res; } ret = platform_get_irq(pdev, 0); if (ret < 0) { dev_err(dev, "cannot find IRQ\n"); goto err_regs; } hsotg->irq = ret; ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg); if (ret < 0) { dev_err(dev, "cannot claim IRQ\n"); goto err_regs; } dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq); device_initialize(&hsotg->gadget.dev); dev_set_name(&hsotg->gadget.dev, "gadget"); hsotg->gadget.is_dualspeed = 1; hsotg->gadget.ops = &s3c_hsotg_gadget_ops; hsotg->gadget.name = dev_name(dev); hsotg->gadget.dev.parent = dev; hsotg->gadget.dev.dma_mask = dev->dma_mask; /* setup endpoint information */ INIT_LIST_HEAD(&hsotg->gadget.ep_list); hsotg->gadget.ep0 = &hsotg->eps[0].ep; /* allocate EP0 request */ hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep, GFP_KERNEL); if (!hsotg->ctrl_req) { dev_err(dev, "failed to allocate ctrl req\n"); goto err_regs; } /* reset the system */ s3c_hsotg_gate(pdev, true); s3c_hsotg_otgreset(hsotg); s3c_hsotg_corereset(hsotg); s3c_hsotg_init(hsotg); /* initialise the endpoints now the core has been initialised */ for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++) s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum); s3c_hsotg_create_debug(hsotg); s3c_hsotg_dump(hsotg); our_hsotg = hsotg; return 0; err_regs: iounmap(hsotg->regs); err_regs_res: release_resource(hsotg->regs_res); kfree(hsotg->regs_res); err_mem: kfree(hsotg); return ret; } static int __devexit s3c_hsotg_remove(struct platform_device *pdev) { struct s3c_hsotg *hsotg = platform_get_drvdata(pdev); s3c_hsotg_delete_debug(hsotg); usb_gadget_unregister_driver(hsotg->driver); free_irq(hsotg->irq, hsotg); iounmap(hsotg->regs); release_resource(hsotg->regs_res); kfree(hsotg->regs_res); s3c_hsotg_gate(pdev, false); kfree(hsotg); return 0; } #if 1 #define s3c_hsotg_suspend NULL #define s3c_hsotg_resume NULL #endif static struct platform_driver s3c_hsotg_driver = { .driver = { .name = "s3c-hsotg", .owner = THIS_MODULE, }, .probe = s3c_hsotg_probe, .remove = __devexit_p(s3c_hsotg_remove), .suspend = s3c_hsotg_suspend, .resume = s3c_hsotg_resume, }; static int __init s3c_hsotg_modinit(void) { return platform_driver_register(&s3c_hsotg_driver); } static void __exit s3c_hsotg_modexit(void) { platform_driver_unregister(&s3c_hsotg_driver); } module_init(s3c_hsotg_modinit); module_exit(s3c_hsotg_modexit); MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device"); MODULE_AUTHOR("Ben Dooks "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:s3c-hsotg");