/* * Written by: Patricia Gaughen , IBM Corporation * August 2002: added remote node KVA remap - Martin J. Bligh * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); /* * numa interface - we expect the numa architecture specific code to have * populated the following initialisation. * * 1) node_online_map - the map of all nodes configured (online) in the system * 2) node_start_pfn - the starting page frame number for a node * 3) node_end_pfn - the ending page fram number for a node */ unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; #ifdef CONFIG_DISCONTIGMEM /* * 4) physnode_map - the mapping between a pfn and owning node * physnode_map keeps track of the physical memory layout of a generic * numa node on a 64Mb break (each element of the array will * represent 64Mb of memory and will be marked by the node id. so, * if the first gig is on node 0, and the second gig is on node 1 * physnode_map will contain: * * physnode_map[0-15] = 0; * physnode_map[16-31] = 1; * physnode_map[32- ] = -1; */ s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; EXPORT_SYMBOL(physnode_map); void memory_present(int nid, unsigned long start, unsigned long end) { unsigned long pfn; printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", nid, start, end); printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); printk(KERN_DEBUG " "); for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { physnode_map[pfn / PAGES_PER_ELEMENT] = nid; printk(KERN_CONT "%lx ", pfn); } printk(KERN_CONT "\n"); } unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, unsigned long end_pfn) { unsigned long nr_pages = end_pfn - start_pfn; if (!nr_pages) return 0; return (nr_pages + 1) * sizeof(struct page); } #endif extern unsigned long find_max_low_pfn(void); extern unsigned long highend_pfn, highstart_pfn; #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) static void *node_remap_start_vaddr[MAX_NUMNODES]; void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); /* * FLAT - support for basic PC memory model with discontig enabled, essentially * a single node with all available processors in it with a flat * memory map. */ int __init get_memcfg_numa_flat(void) { printk(KERN_DEBUG "NUMA - single node, flat memory mode\n"); node_start_pfn[0] = 0; node_end_pfn[0] = max_pfn; memblock_x86_register_active_regions(0, 0, max_pfn); memory_present(0, 0, max_pfn); /* Indicate there is one node available. */ nodes_clear(node_online_map); node_set_online(0); return 1; } /* * Find the highest page frame number we have available for the node */ static void __init propagate_e820_map_node(int nid) { if (node_end_pfn[nid] > max_pfn) node_end_pfn[nid] = max_pfn; /* * if a user has given mem=XXXX, then we need to make sure * that the node _starts_ before that, too, not just ends */ if (node_start_pfn[nid] > max_pfn) node_start_pfn[nid] = max_pfn; BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); } /* * Allocate memory for the pg_data_t for this node via a crude pre-bootmem * method. For node zero take this from the bottom of memory, for * subsequent nodes place them at node_remap_start_vaddr which contains * node local data in physically node local memory. See setup_memory() * for details. */ static void __init allocate_pgdat(int nid) { char buf[16]; NODE_DATA(nid) = alloc_remap(nid, ALIGN(sizeof(pg_data_t), PAGE_SIZE)); if (!NODE_DATA(nid)) { unsigned long pgdat_phys; pgdat_phys = memblock_find_in_range(min_low_pfn<>PAGE_SHIFT)); memset(buf, 0, sizeof(buf)); sprintf(buf, "NODE_DATA %d", nid); memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf); } printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n", nid, (unsigned long)NODE_DATA(nid)); } /* * Remap memory allocator */ static unsigned long node_remap_start_pfn[MAX_NUMNODES]; static void *node_remap_end_vaddr[MAX_NUMNODES]; static void *node_remap_alloc_vaddr[MAX_NUMNODES]; /** * alloc_remap - Allocate remapped memory * @nid: NUMA node to allocate memory from * @size: The size of allocation * * Allocate @size bytes from the remap area of NUMA node @nid. The * size of the remap area is predetermined by init_alloc_remap() and * only the callers considered there should call this function. For * more info, please read the comment on top of init_alloc_remap(). * * The caller must be ready to handle allocation failure from this * function and fall back to regular memory allocator in such cases. * * CONTEXT: * Single CPU early boot context. * * RETURNS: * Pointer to the allocated memory on success, %NULL on failure. */ void *alloc_remap(int nid, unsigned long size) { void *allocation = node_remap_alloc_vaddr[nid]; size = ALIGN(size, L1_CACHE_BYTES); if (!allocation || (allocation + size) > node_remap_end_vaddr[nid]) return NULL; node_remap_alloc_vaddr[nid] += size; memset(allocation, 0, size); return allocation; } #ifdef CONFIG_HIBERNATION /** * resume_map_numa_kva - add KVA mapping to the temporary page tables created * during resume from hibernation * @pgd_base - temporary resume page directory */ void resume_map_numa_kva(pgd_t *pgd_base) { int node; for_each_online_node(node) { unsigned long start_va, start_pfn, nr_pages, pfn; start_va = (unsigned long)node_remap_start_vaddr[node]; start_pfn = node_remap_start_pfn[node]; nr_pages = (node_remap_end_vaddr[node] - node_remap_start_vaddr[node]) >> PAGE_SHIFT; printk(KERN_DEBUG "%s: node %d\n", __func__, node); for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) { unsigned long vaddr = start_va + (pfn << PAGE_SHIFT); pgd_t *pgd = pgd_base + pgd_index(vaddr); pud_t *pud = pud_offset(pgd, vaddr); pmd_t *pmd = pmd_offset(pud, vaddr); set_pmd(pmd, pfn_pmd(start_pfn + pfn, PAGE_KERNEL_LARGE_EXEC)); printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n", __func__, vaddr, start_pfn + pfn); } } } #endif /** * init_alloc_remap - Initialize remap allocator for a NUMA node * @nid: NUMA node to initizlie remap allocator for * * NUMA nodes may end up without any lowmem. As allocating pgdat and * memmap on a different node with lowmem is inefficient, a special * remap allocator is implemented which can be used by alloc_remap(). * * For each node, the amount of memory which will be necessary for * pgdat and memmap is calculated and two memory areas of the size are * allocated - one in the node and the other in lowmem; then, the area * in the node is remapped to the lowmem area. * * As pgdat and memmap must be allocated in lowmem anyway, this * doesn't waste lowmem address space; however, the actual lowmem * which gets remapped over is wasted. The amount shouldn't be * problematic on machines this feature will be used. * * Initialization failure isn't fatal. alloc_remap() is used * opportunistically and the callers will fall back to other memory * allocation mechanisms on failure. */ static __init void init_alloc_remap(int nid) { unsigned long size, pfn; u64 node_pa, remap_pa; void *remap_va; /* * The acpi/srat node info can show hot-add memroy zones where * memory could be added but not currently present. */ printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", nid, node_start_pfn[nid], node_end_pfn[nid]); if (node_start_pfn[nid] > max_pfn) return; if (!node_end_pfn[nid]) return; if (node_end_pfn[nid] > max_pfn) node_end_pfn[nid] = max_pfn; /* calculate the necessary space aligned to large page size */ size = node_memmap_size_bytes(nid, node_start_pfn[nid], min(node_end_pfn[nid], max_pfn)); size += ALIGN(sizeof(pg_data_t), PAGE_SIZE); size = ALIGN(size, LARGE_PAGE_BYTES); /* allocate node memory and the lowmem remap area */ node_pa = memblock_find_in_range(node_start_pfn[nid] << PAGE_SHIFT, (u64)node_end_pfn[nid] << PAGE_SHIFT, size, LARGE_PAGE_BYTES); if (node_pa == MEMBLOCK_ERROR) { pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n", size, nid); return; } memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM"); remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT, size, LARGE_PAGE_BYTES); if (remap_pa == MEMBLOCK_ERROR) { pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n", size, nid); memblock_x86_free_range(node_pa, node_pa + size); return; } memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG"); remap_va = phys_to_virt(remap_pa); /* perform actual remap */ for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE) set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT), (node_pa >> PAGE_SHIFT) + pfn, PAGE_KERNEL_LARGE); /* initialize remap allocator parameters */ node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT; node_remap_start_vaddr[nid] = remap_va; node_remap_end_vaddr[nid] = remap_va + size; node_remap_alloc_vaddr[nid] = remap_va; printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n", nid, node_pa, node_pa + size, remap_va, remap_va + size); } void __init initmem_init(void) { int nid; get_memcfg_numa(); numa_init_array(); for_each_online_node(nid) init_alloc_remap(nid); #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; if (max_pfn > max_low_pfn) highstart_pfn = max_low_pfn; printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", pages_to_mb(highend_pfn - highstart_pfn)); num_physpages = highend_pfn; high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; #else num_physpages = max_low_pfn; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; #endif printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(max_low_pfn)); printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", max_low_pfn, highstart_pfn); printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", (ulong) pfn_to_kaddr(max_low_pfn)); for_each_online_node(nid) allocate_pgdat(nid); printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", (ulong) pfn_to_kaddr(highstart_pfn)); for_each_online_node(nid) propagate_e820_map_node(nid); for_each_online_node(nid) { memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); NODE_DATA(nid)->node_id = nid; } setup_bootmem_allocator(); } #ifdef CONFIG_MEMORY_HOTPLUG static int paddr_to_nid(u64 addr) { int nid; unsigned long pfn = PFN_DOWN(addr); for_each_node(nid) if (node_start_pfn[nid] <= pfn && pfn < node_end_pfn[nid]) return nid; return -1; } /* * This function is used to ask node id BEFORE memmap and mem_section's * initialization (pfn_to_nid() can't be used yet). * If _PXM is not defined on ACPI's DSDT, node id must be found by this. */ int memory_add_physaddr_to_nid(u64 addr) { int nid = paddr_to_nid(addr); return (nid >= 0) ? nid : 0; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif