/* * Copyright © 2012-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * Daniel Vetter * */ #include #include #include "i915_drv.h" #include "intel_drv.h" /** * DOC: runtime pm * * The i915 driver supports dynamic enabling and disabling of entire hardware * blocks at runtime. This is especially important on the display side where * software is supposed to control many power gates manually on recent hardware, * since on the GT side a lot of the power management is done by the hardware. * But even there some manual control at the device level is required. * * Since i915 supports a diverse set of platforms with a unified codebase and * hardware engineers just love to shuffle functionality around between power * domains there's a sizeable amount of indirection required. This file provides * generic functions to the driver for grabbing and releasing references for * abstract power domains. It then maps those to the actual power wells * present for a given platform. */ #define GEN9_ENABLE_DC5(dev) (IS_SKYLAKE(dev)) #define for_each_power_well(i, power_well, domain_mask, power_domains) \ for (i = 0; \ i < (power_domains)->power_well_count && \ ((power_well) = &(power_domains)->power_wells[i]); \ i++) \ if ((power_well)->domains & (domain_mask)) #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \ for (i = (power_domains)->power_well_count - 1; \ i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\ i--) \ if ((power_well)->domains & (domain_mask)) /* * We should only use the power well if we explicitly asked the hardware to * enable it, so check if it's enabled and also check if we've requested it to * be enabled. */ static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return I915_READ(HSW_PWR_WELL_DRIVER) == (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED); } /** * __intel_display_power_is_enabled - unlocked check for a power domain * @dev_priv: i915 device instance * @domain: power domain to check * * This is the unlocked version of intel_display_power_is_enabled() and should * only be used from error capture and recovery code where deadlocks are * possible. * * Returns: * True when the power domain is enabled, false otherwise. */ bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; struct i915_power_well *power_well; bool is_enabled; int i; if (dev_priv->pm.suspended) return false; power_domains = &dev_priv->power_domains; is_enabled = true; for_each_power_well_rev(i, power_well, BIT(domain), power_domains) { if (power_well->always_on) continue; if (!power_well->hw_enabled) { is_enabled = false; break; } } return is_enabled; } /** * intel_display_power_is_enabled - check for a power domain * @dev_priv: i915 device instance * @domain: power domain to check * * This function can be used to check the hw power domain state. It is mostly * used in hardware state readout functions. Everywhere else code should rely * upon explicit power domain reference counting to ensure that the hardware * block is powered up before accessing it. * * Callers must hold the relevant modesetting locks to ensure that concurrent * threads can't disable the power well while the caller tries to read a few * registers. * * Returns: * True when the power domain is enabled, false otherwise. */ bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; bool ret; power_domains = &dev_priv->power_domains; mutex_lock(&power_domains->lock); ret = __intel_display_power_is_enabled(dev_priv, domain); mutex_unlock(&power_domains->lock); return ret; } /** * intel_display_set_init_power - set the initial power domain state * @dev_priv: i915 device instance * @enable: whether to enable or disable the initial power domain state * * For simplicity our driver load/unload and system suspend/resume code assumes * that all power domains are always enabled. This functions controls the state * of this little hack. While the initial power domain state is enabled runtime * pm is effectively disabled. */ void intel_display_set_init_power(struct drm_i915_private *dev_priv, bool enable) { if (dev_priv->power_domains.init_power_on == enable) return; if (enable) intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); else intel_display_power_put(dev_priv, POWER_DOMAIN_INIT); dev_priv->power_domains.init_power_on = enable; } /* * Starting with Haswell, we have a "Power Down Well" that can be turned off * when not needed anymore. We have 4 registers that can request the power well * to be enabled, and it will only be disabled if none of the registers is * requesting it to be enabled. */ static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; /* * After we re-enable the power well, if we touch VGA register 0x3d5 * we'll get unclaimed register interrupts. This stops after we write * anything to the VGA MSR register. The vgacon module uses this * register all the time, so if we unbind our driver and, as a * consequence, bind vgacon, we'll get stuck in an infinite loop at * console_unlock(). So make here we touch the VGA MSR register, making * sure vgacon can keep working normally without triggering interrupts * and error messages. */ vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); if (IS_BROADWELL(dev)) gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_C | 1 << PIPE_B); } static void skl_power_well_post_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { struct drm_device *dev = dev_priv->dev; /* * After we re-enable the power well, if we touch VGA register 0x3d5 * we'll get unclaimed register interrupts. This stops after we write * anything to the VGA MSR register. The vgacon module uses this * register all the time, so if we unbind our driver and, as a * consequence, bind vgacon, we'll get stuck in an infinite loop at * console_unlock(). So make here we touch the VGA MSR register, making * sure vgacon can keep working normally without triggering interrupts * and error messages. */ if (power_well->data == SKL_DISP_PW_2) { vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_C | 1 << PIPE_B); } if (power_well->data == SKL_DISP_PW_1) { intel_prepare_ddi(dev); gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A); } } static void hsw_set_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { bool is_enabled, enable_requested; uint32_t tmp; tmp = I915_READ(HSW_PWR_WELL_DRIVER); is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED; enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST; if (enable) { if (!enable_requested) I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE_REQUEST); if (!is_enabled) { DRM_DEBUG_KMS("Enabling power well\n"); if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED), 20)) DRM_ERROR("Timeout enabling power well\n"); hsw_power_well_post_enable(dev_priv); } } else { if (enable_requested) { I915_WRITE(HSW_PWR_WELL_DRIVER, 0); POSTING_READ(HSW_PWR_WELL_DRIVER); DRM_DEBUG_KMS("Requesting to disable the power well\n"); } } } #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_TRANSCODER_A) | \ BIT(POWER_DOMAIN_PIPE_B) | \ BIT(POWER_DOMAIN_TRANSCODER_B) | \ BIT(POWER_DOMAIN_PIPE_C) | \ BIT(POWER_DOMAIN_TRANSCODER_C) | \ BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_AUX_D) | \ BIT(POWER_DOMAIN_AUDIO) | \ BIT(POWER_DOMAIN_VGA) | \ BIT(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \ SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ BIT(POWER_DOMAIN_PLLS) | \ BIT(POWER_DOMAIN_PIPE_A) | \ BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ BIT(POWER_DOMAIN_AUX_A) | \ BIT(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ BIT(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ BIT(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_MISC_IO_POWER_DOMAINS ( \ SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS) #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \ (POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ SKL_DISPLAY_DDI_A_E_POWER_DOMAINS | \ SKL_DISPLAY_DDI_B_POWER_DOMAINS | \ SKL_DISPLAY_DDI_C_POWER_DOMAINS | \ SKL_DISPLAY_DDI_D_POWER_DOMAINS | \ SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) | \ BIT(POWER_DOMAIN_INIT)) #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_TRANSCODER_A) | \ BIT(POWER_DOMAIN_PIPE_B) | \ BIT(POWER_DOMAIN_TRANSCODER_B) | \ BIT(POWER_DOMAIN_PIPE_C) | \ BIT(POWER_DOMAIN_TRANSCODER_C) | \ BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_AUDIO) | \ BIT(POWER_DOMAIN_VGA) | \ BIT(POWER_DOMAIN_INIT)) #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \ BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ BIT(POWER_DOMAIN_PIPE_A) | \ BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ BIT(POWER_DOMAIN_AUX_A) | \ BIT(POWER_DOMAIN_PLLS) | \ BIT(POWER_DOMAIN_INIT)) #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \ (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \ BIT(POWER_DOMAIN_INIT)) static void assert_can_enable_dc9(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n"); WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), "DC9 already programmed to be enabled.\n"); WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, "DC5 still not disabled to enable DC9.\n"); WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n"); WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); /* * TODO: check for the following to verify the conditions to enter DC9 * state are satisfied: * 1] Check relevant display engine registers to verify if mode set * disable sequence was followed. * 2] Check if display uninitialize sequence is initialized. */ } static void assert_can_disable_dc9(struct drm_i915_private *dev_priv) { WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), "DC9 already programmed to be disabled.\n"); WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, "DC5 still not disabled.\n"); /* * TODO: check for the following to verify DC9 state was indeed * entered before programming to disable it: * 1] Check relevant display engine registers to verify if mode * set disable sequence was followed. * 2] Check if display uninitialize sequence is initialized. */ } void bxt_enable_dc9(struct drm_i915_private *dev_priv) { uint32_t val; assert_can_enable_dc9(dev_priv); DRM_DEBUG_KMS("Enabling DC9\n"); val = I915_READ(DC_STATE_EN); val |= DC_STATE_EN_DC9; I915_WRITE(DC_STATE_EN, val); POSTING_READ(DC_STATE_EN); } void bxt_disable_dc9(struct drm_i915_private *dev_priv) { uint32_t val; assert_can_disable_dc9(dev_priv); DRM_DEBUG_KMS("Disabling DC9\n"); val = I915_READ(DC_STATE_EN); val &= ~DC_STATE_EN_DC9; I915_WRITE(DC_STATE_EN, val); POSTING_READ(DC_STATE_EN); } static void gen9_set_dc_state_debugmask_memory_up( struct drm_i915_private *dev_priv) { uint32_t val; /* The below bit doesn't need to be cleared ever afterwards */ val = I915_READ(DC_STATE_DEBUG); if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) { val |= DC_STATE_DEBUG_MASK_MEMORY_UP; I915_WRITE(DC_STATE_DEBUG, val); POSTING_READ(DC_STATE_DEBUG); } } static void gen9_enable_dc5(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t val; WARN_ON(!IS_GEN9(dev)); DRM_DEBUG_KMS("Enabling DC5\n"); gen9_set_dc_state_debugmask_memory_up(dev_priv); val = I915_READ(DC_STATE_EN); val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK; val |= DC_STATE_EN_UPTO_DC5; I915_WRITE(DC_STATE_EN, val); POSTING_READ(DC_STATE_EN); } static void gen9_disable_dc5(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t val; WARN_ON(!IS_GEN9(dev)); DRM_DEBUG_KMS("Disabling DC5\n"); val = I915_READ(DC_STATE_EN); val &= ~DC_STATE_EN_UPTO_DC5; I915_WRITE(DC_STATE_EN, val); POSTING_READ(DC_STATE_EN); } static void skl_set_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { struct drm_device *dev = dev_priv->dev; uint32_t tmp, fuse_status; uint32_t req_mask, state_mask; bool is_enabled, enable_requested, check_fuse_status = false; tmp = I915_READ(HSW_PWR_WELL_DRIVER); fuse_status = I915_READ(SKL_FUSE_STATUS); switch (power_well->data) { case SKL_DISP_PW_1: if (wait_for((I915_READ(SKL_FUSE_STATUS) & SKL_FUSE_PG0_DIST_STATUS), 1)) { DRM_ERROR("PG0 not enabled\n"); return; } break; case SKL_DISP_PW_2: if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) { DRM_ERROR("PG1 in disabled state\n"); return; } break; case SKL_DISP_PW_DDI_A_E: case SKL_DISP_PW_DDI_B: case SKL_DISP_PW_DDI_C: case SKL_DISP_PW_DDI_D: case SKL_DISP_PW_MISC_IO: break; default: WARN(1, "Unknown power well %lu\n", power_well->data); return; } req_mask = SKL_POWER_WELL_REQ(power_well->data); enable_requested = tmp & req_mask; state_mask = SKL_POWER_WELL_STATE(power_well->data); is_enabled = tmp & state_mask; if (enable) { if (!enable_requested) { WARN((tmp & state_mask) && !I915_READ(HSW_PWR_WELL_BIOS), "Invalid for power well status to be enabled, unless done by the BIOS, \ when request is to disable!\n"); if (GEN9_ENABLE_DC5(dev) && power_well->data == SKL_DISP_PW_2) gen9_disable_dc5(dev_priv); I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask); } if (!is_enabled) { DRM_DEBUG_KMS("Enabling %s\n", power_well->name); if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) & state_mask), 1)) DRM_ERROR("%s enable timeout\n", power_well->name); check_fuse_status = true; } } else { if (enable_requested) { I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask); POSTING_READ(HSW_PWR_WELL_DRIVER); DRM_DEBUG_KMS("Disabling %s\n", power_well->name); if (GEN9_ENABLE_DC5(dev) && power_well->data == SKL_DISP_PW_2) { enum csr_state state; wait_for((state = intel_csr_load_status_get(dev_priv)) != FW_UNINITIALIZED, 1000); if (state != FW_LOADED) DRM_ERROR("CSR firmware not ready (%d)\n", state); else gen9_enable_dc5(dev_priv); } } } if (check_fuse_status) { if (power_well->data == SKL_DISP_PW_1) { if (wait_for((I915_READ(SKL_FUSE_STATUS) & SKL_FUSE_PG1_DIST_STATUS), 1)) DRM_ERROR("PG1 distributing status timeout\n"); } else if (power_well->data == SKL_DISP_PW_2) { if (wait_for((I915_READ(SKL_FUSE_STATUS) & SKL_FUSE_PG2_DIST_STATUS), 1)) DRM_ERROR("PG2 distributing status timeout\n"); } } if (enable && !is_enabled) skl_power_well_post_enable(dev_priv, power_well); } static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { hsw_set_power_well(dev_priv, power_well, power_well->count > 0); /* * We're taking over the BIOS, so clear any requests made by it since * the driver is in charge now. */ if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST) I915_WRITE(HSW_PWR_WELL_BIOS, 0); } static void hsw_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { hsw_set_power_well(dev_priv, power_well, true); } static void hsw_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { hsw_set_power_well(dev_priv, power_well, false); } static bool skl_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) | SKL_POWER_WELL_STATE(power_well->data); return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask; } static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { skl_set_power_well(dev_priv, power_well, power_well->count > 0); /* Clear any request made by BIOS as driver is taking over */ I915_WRITE(HSW_PWR_WELL_BIOS, 0); } static void skl_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { skl_set_power_well(dev_priv, power_well, true); } static void skl_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { skl_set_power_well(dev_priv, power_well, false); } static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { } static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return true; } static void vlv_set_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { enum punit_power_well power_well_id = power_well->data; u32 mask; u32 state; u32 ctrl; mask = PUNIT_PWRGT_MASK(power_well_id); state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) : PUNIT_PWRGT_PWR_GATE(power_well_id); mutex_lock(&dev_priv->rps.hw_lock); #define COND \ ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state) if (COND) goto out; ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL); ctrl &= ~mask; ctrl |= state; vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl); if (wait_for(COND, 100)) DRM_ERROR("timout setting power well state %08x (%08x)\n", state, vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL)); #undef COND out: mutex_unlock(&dev_priv->rps.hw_lock); } static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, power_well->count > 0); } static void vlv_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, true); } static void vlv_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, false); } static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { int power_well_id = power_well->data; bool enabled = false; u32 mask; u32 state; u32 ctrl; mask = PUNIT_PWRGT_MASK(power_well_id); ctrl = PUNIT_PWRGT_PWR_ON(power_well_id); mutex_lock(&dev_priv->rps.hw_lock); state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask; /* * We only ever set the power-on and power-gate states, anything * else is unexpected. */ WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) && state != PUNIT_PWRGT_PWR_GATE(power_well_id)); if (state == ctrl) enabled = true; /* * A transient state at this point would mean some unexpected party * is poking at the power controls too. */ ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask; WARN_ON(ctrl != state); mutex_unlock(&dev_priv->rps.hw_lock); return enabled; } static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D); vlv_set_power_well(dev_priv, power_well, true); spin_lock_irq(&dev_priv->irq_lock); valleyview_enable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); /* * During driver initialization/resume we can avoid restoring the * part of the HW/SW state that will be inited anyway explicitly. */ if (dev_priv->power_domains.initializing) return; intel_hpd_init(dev_priv); i915_redisable_vga_power_on(dev_priv->dev); } static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D); spin_lock_irq(&dev_priv->irq_lock); valleyview_disable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); vlv_set_power_well(dev_priv, power_well, false); vlv_power_sequencer_reset(dev_priv); } static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC); /* * Enable the CRI clock source so we can get at the * display and the reference clock for VGA * hotplug / manual detection. */ I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ vlv_set_power_well(dev_priv, power_well, true); /* * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx - * 6. De-assert cmn_reset/side_reset. Same as VLV X0. * a. GUnit 0x2110 bit[0] set to 1 (def 0) * b. The other bits such as sfr settings / modesel may all * be set to 0. * * This should only be done on init and resume from S3 with * both PLLs disabled, or we risk losing DPIO and PLL * synchronization. */ I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST); } static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum pipe pipe; WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC); for_each_pipe(dev_priv, pipe) assert_pll_disabled(dev_priv, pipe); /* Assert common reset */ I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST); vlv_set_power_well(dev_priv, power_well, false); } static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum dpio_phy phy; WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC && power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D); /* * Enable the CRI clock source so we can get at the * display and the reference clock for VGA * hotplug / manual detection. */ if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) { phy = DPIO_PHY0; I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_REFA_CLK_ENABLE_VLV); I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); } else { phy = DPIO_PHY1; I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) | DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); } udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ vlv_set_power_well(dev_priv, power_well, true); /* Poll for phypwrgood signal */ if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1)) DRM_ERROR("Display PHY %d is not power up\n", phy); I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) | PHY_COM_LANE_RESET_DEASSERT(phy)); } static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum dpio_phy phy; WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC && power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D); if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) { phy = DPIO_PHY0; assert_pll_disabled(dev_priv, PIPE_A); assert_pll_disabled(dev_priv, PIPE_B); } else { phy = DPIO_PHY1; assert_pll_disabled(dev_priv, PIPE_C); } I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) & ~PHY_COM_LANE_RESET_DEASSERT(phy)); vlv_set_power_well(dev_priv, power_well, false); } static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum pipe pipe = power_well->data; bool enabled; u32 state, ctrl; mutex_lock(&dev_priv->rps.hw_lock); state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe); /* * We only ever set the power-on and power-gate states, anything * else is unexpected. */ WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe)); enabled = state == DP_SSS_PWR_ON(pipe); /* * A transient state at this point would mean some unexpected party * is poking at the power controls too. */ ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe); WARN_ON(ctrl << 16 != state); mutex_unlock(&dev_priv->rps.hw_lock); return enabled; } static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { enum pipe pipe = power_well->data; u32 state; u32 ctrl; state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe); mutex_lock(&dev_priv->rps.hw_lock); #define COND \ ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state) if (COND) goto out; ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); ctrl &= ~DP_SSC_MASK(pipe); ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe); vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl); if (wait_for(COND, 100)) DRM_ERROR("timout setting power well state %08x (%08x)\n", state, vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ)); #undef COND out: mutex_unlock(&dev_priv->rps.hw_lock); } static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0); } static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { WARN_ON_ONCE(power_well->data != PIPE_A && power_well->data != PIPE_B && power_well->data != PIPE_C); chv_set_pipe_power_well(dev_priv, power_well, true); if (power_well->data == PIPE_A) { spin_lock_irq(&dev_priv->irq_lock); valleyview_enable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); /* * During driver initialization/resume we can avoid restoring the * part of the HW/SW state that will be inited anyway explicitly. */ if (dev_priv->power_domains.initializing) return; intel_hpd_init(dev_priv); i915_redisable_vga_power_on(dev_priv->dev); } } static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { WARN_ON_ONCE(power_well->data != PIPE_A && power_well->data != PIPE_B && power_well->data != PIPE_C); if (power_well->data == PIPE_A) { spin_lock_irq(&dev_priv->irq_lock); valleyview_disable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } chv_set_pipe_power_well(dev_priv, power_well, false); if (power_well->data == PIPE_A) vlv_power_sequencer_reset(dev_priv); } /** * intel_display_power_get - grab a power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * * This function grabs a power domain reference for @domain and ensures that the * power domain and all its parents are powered up. Therefore users should only * grab a reference to the innermost power domain they need. * * Any power domain reference obtained by this function must have a symmetric * call to intel_display_power_put() to release the reference again. */ void intel_display_power_get(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; struct i915_power_well *power_well; int i; intel_runtime_pm_get(dev_priv); power_domains = &dev_priv->power_domains; mutex_lock(&power_domains->lock); for_each_power_well(i, power_well, BIT(domain), power_domains) { if (!power_well->count++) { DRM_DEBUG_KMS("enabling %s\n", power_well->name); power_well->ops->enable(dev_priv, power_well); power_well->hw_enabled = true; } } power_domains->domain_use_count[domain]++; mutex_unlock(&power_domains->lock); } /** * intel_display_power_put - release a power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * * This function drops the power domain reference obtained by * intel_display_power_get() and might power down the corresponding hardware * block right away if this is the last reference. */ void intel_display_power_put(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; struct i915_power_well *power_well; int i; power_domains = &dev_priv->power_domains; mutex_lock(&power_domains->lock); WARN_ON(!power_domains->domain_use_count[domain]); power_domains->domain_use_count[domain]--; for_each_power_well_rev(i, power_well, BIT(domain), power_domains) { WARN_ON(!power_well->count); if (!--power_well->count && i915.disable_power_well) { DRM_DEBUG_KMS("disabling %s\n", power_well->name); power_well->hw_enabled = false; power_well->ops->disable(dev_priv, power_well); } } mutex_unlock(&power_domains->lock); intel_runtime_pm_put(dev_priv); } #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1) #define HSW_ALWAYS_ON_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PIPE_A) | \ BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ BIT(POWER_DOMAIN_PORT_CRT) | \ BIT(POWER_DOMAIN_PLLS) | \ BIT(POWER_DOMAIN_AUX_A) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_AUX_D) | \ BIT(POWER_DOMAIN_INIT)) #define HSW_DISPLAY_POWER_DOMAINS ( \ (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \ BIT(POWER_DOMAIN_INIT)) #define BDW_ALWAYS_ON_POWER_DOMAINS ( \ HSW_ALWAYS_ON_POWER_DOMAINS | \ BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER)) #define BDW_DISPLAY_POWER_DOMAINS ( \ (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \ BIT(POWER_DOMAIN_INIT)) #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT) #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_PORT_CRT) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_PIPE_A_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PIPE_A) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_PIPE_B_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PIPE_B) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_PIPE_C_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PIPE_C) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ BIT(POWER_DOMAIN_AUX_B) | \ BIT(POWER_DOMAIN_AUX_C) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ BIT(POWER_DOMAIN_AUX_D) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ BIT(POWER_DOMAIN_AUX_D) | \ BIT(POWER_DOMAIN_INIT)) #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \ BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ BIT(POWER_DOMAIN_AUX_D) | \ BIT(POWER_DOMAIN_INIT)) static const struct i915_power_well_ops i9xx_always_on_power_well_ops = { .sync_hw = i9xx_always_on_power_well_noop, .enable = i9xx_always_on_power_well_noop, .disable = i9xx_always_on_power_well_noop, .is_enabled = i9xx_always_on_power_well_enabled, }; static const struct i915_power_well_ops chv_pipe_power_well_ops = { .sync_hw = chv_pipe_power_well_sync_hw, .enable = chv_pipe_power_well_enable, .disable = chv_pipe_power_well_disable, .is_enabled = chv_pipe_power_well_enabled, }; static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = { .sync_hw = vlv_power_well_sync_hw, .enable = chv_dpio_cmn_power_well_enable, .disable = chv_dpio_cmn_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static struct i915_power_well i9xx_always_on_power_well[] = { { .name = "always-on", .always_on = 1, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, }, }; static const struct i915_power_well_ops hsw_power_well_ops = { .sync_hw = hsw_power_well_sync_hw, .enable = hsw_power_well_enable, .disable = hsw_power_well_disable, .is_enabled = hsw_power_well_enabled, }; static const struct i915_power_well_ops skl_power_well_ops = { .sync_hw = skl_power_well_sync_hw, .enable = skl_power_well_enable, .disable = skl_power_well_disable, .is_enabled = skl_power_well_enabled, }; static struct i915_power_well hsw_power_wells[] = { { .name = "always-on", .always_on = 1, .domains = HSW_ALWAYS_ON_POWER_DOMAINS, .ops = &i9xx_always_on_power_well_ops, }, { .name = "display", .domains = HSW_DISPLAY_POWER_DOMAINS, .ops = &hsw_power_well_ops, }, }; static struct i915_power_well bdw_power_wells[] = { { .name = "always-on", .always_on = 1, .domains = BDW_ALWAYS_ON_POWER_DOMAINS, .ops = &i9xx_always_on_power_well_ops, }, { .name = "display", .domains = BDW_DISPLAY_POWER_DOMAINS, .ops = &hsw_power_well_ops, }, }; static const struct i915_power_well_ops vlv_display_power_well_ops = { .sync_hw = vlv_power_well_sync_hw, .enable = vlv_display_power_well_enable, .disable = vlv_display_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = { .sync_hw = vlv_power_well_sync_hw, .enable = vlv_dpio_cmn_power_well_enable, .disable = vlv_dpio_cmn_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_ops vlv_dpio_power_well_ops = { .sync_hw = vlv_power_well_sync_hw, .enable = vlv_power_well_enable, .disable = vlv_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static struct i915_power_well vlv_power_wells[] = { { .name = "always-on", .always_on = 1, .domains = VLV_ALWAYS_ON_POWER_DOMAINS, .ops = &i9xx_always_on_power_well_ops, }, { .name = "display", .domains = VLV_DISPLAY_POWER_DOMAINS, .data = PUNIT_POWER_WELL_DISP2D, .ops = &vlv_display_power_well_ops, }, { .name = "dpio-tx-b-01", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01, }, { .name = "dpio-tx-b-23", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23, }, { .name = "dpio-tx-c-01", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01, }, { .name = "dpio-tx-c-23", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23, }, { .name = "dpio-common", .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS, .data = PUNIT_POWER_WELL_DPIO_CMN_BC, .ops = &vlv_dpio_cmn_power_well_ops, }, }; static struct i915_power_well chv_power_wells[] = { { .name = "always-on", .always_on = 1, .domains = VLV_ALWAYS_ON_POWER_DOMAINS, .ops = &i9xx_always_on_power_well_ops, }, #if 0 { .name = "display", .domains = VLV_DISPLAY_POWER_DOMAINS, .data = PUNIT_POWER_WELL_DISP2D, .ops = &vlv_display_power_well_ops, }, #endif { .name = "pipe-a", /* * FIXME: pipe A power well seems to be the new disp2d well. * At least all registers seem to be housed there. Figure * out if this a a temporary situation in pre-production * hardware or a permanent state of affairs. */ .domains = CHV_PIPE_A_POWER_DOMAINS | VLV_DISPLAY_POWER_DOMAINS, .data = PIPE_A, .ops = &chv_pipe_power_well_ops, }, #if 0 { .name = "pipe-b", .domains = CHV_PIPE_B_POWER_DOMAINS, .data = PIPE_B, .ops = &chv_pipe_power_well_ops, }, { .name = "pipe-c", .domains = CHV_PIPE_C_POWER_DOMAINS, .data = PIPE_C, .ops = &chv_pipe_power_well_ops, }, #endif { .name = "dpio-common-bc", /* * XXX: cmnreset for one PHY seems to disturb the other. * As a workaround keep both powered on at the same * time for now. */ .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS, .data = PUNIT_POWER_WELL_DPIO_CMN_BC, .ops = &chv_dpio_cmn_power_well_ops, }, { .name = "dpio-common-d", /* * XXX: cmnreset for one PHY seems to disturb the other. * As a workaround keep both powered on at the same * time for now. */ .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS, .data = PUNIT_POWER_WELL_DPIO_CMN_D, .ops = &chv_dpio_cmn_power_well_ops, }, #if 0 { .name = "dpio-tx-b-01", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01, }, { .name = "dpio-tx-b-23", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23, }, { .name = "dpio-tx-c-01", .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01, }, { .name = "dpio-tx-c-23", .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23, }, { .name = "dpio-tx-d-01", .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS | CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01, }, { .name = "dpio-tx-d-23", .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS | CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23, }, #endif }; static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv, enum punit_power_well power_well_id) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *power_well; int i; for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) { if (power_well->data == power_well_id) return power_well; } return NULL; } static struct i915_power_well skl_power_wells[] = { { .name = "always-on", .always_on = 1, .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS, .ops = &i9xx_always_on_power_well_ops, }, { .name = "power well 1", .domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_1, }, { .name = "MISC IO power well", .domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_MISC_IO, }, { .name = "power well 2", .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_2, }, { .name = "DDI A/E power well", .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_DDI_A_E, }, { .name = "DDI B power well", .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_DDI_B, }, { .name = "DDI C power well", .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_DDI_C, }, { .name = "DDI D power well", .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_DDI_D, }, }; static struct i915_power_well bxt_power_wells[] = { { .name = "always-on", .always_on = 1, .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS, .ops = &i9xx_always_on_power_well_ops, }, { .name = "power well 1", .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_1, }, { .name = "power well 2", .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS, .ops = &skl_power_well_ops, .data = SKL_DISP_PW_2, } }; #define set_power_wells(power_domains, __power_wells) ({ \ (power_domains)->power_wells = (__power_wells); \ (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \ }) /** * intel_power_domains_init - initializes the power domain structures * @dev_priv: i915 device instance * * Initializes the power domain structures for @dev_priv depending upon the * supported platform. */ int intel_power_domains_init(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; mutex_init(&power_domains->lock); /* * The enabling order will be from lower to higher indexed wells, * the disabling order is reversed. */ if (IS_HASWELL(dev_priv->dev)) { set_power_wells(power_domains, hsw_power_wells); } else if (IS_BROADWELL(dev_priv->dev)) { set_power_wells(power_domains, bdw_power_wells); } else if (IS_SKYLAKE(dev_priv->dev)) { set_power_wells(power_domains, skl_power_wells); } else if (IS_BROXTON(dev_priv->dev)) { set_power_wells(power_domains, bxt_power_wells); } else if (IS_CHERRYVIEW(dev_priv->dev)) { set_power_wells(power_domains, chv_power_wells); } else if (IS_VALLEYVIEW(dev_priv->dev)) { set_power_wells(power_domains, vlv_power_wells); } else { set_power_wells(power_domains, i9xx_always_on_power_well); } return 0; } static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct device *device = &dev->pdev->dev; if (!HAS_RUNTIME_PM(dev)) return; if (!intel_enable_rc6(dev)) return; /* Make sure we're not suspended first. */ pm_runtime_get_sync(device); pm_runtime_disable(device); } /** * intel_power_domains_fini - finalizes the power domain structures * @dev_priv: i915 device instance * * Finalizes the power domain structures for @dev_priv depending upon the * supported platform. This function also disables runtime pm and ensures that * the device stays powered up so that the driver can be reloaded. */ void intel_power_domains_fini(struct drm_i915_private *dev_priv) { intel_runtime_pm_disable(dev_priv); /* The i915.ko module is still not prepared to be loaded when * the power well is not enabled, so just enable it in case * we're going to unload/reload. */ intel_display_set_init_power(dev_priv, true); } static void intel_power_domains_resume(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *power_well; int i; mutex_lock(&power_domains->lock); for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) { power_well->ops->sync_hw(dev_priv, power_well); power_well->hw_enabled = power_well->ops->is_enabled(dev_priv, power_well); } mutex_unlock(&power_domains->lock); } static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn = lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC); struct i915_power_well *disp2d = lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D); /* If the display might be already active skip this */ if (cmn->ops->is_enabled(dev_priv, cmn) && disp2d->ops->is_enabled(dev_priv, disp2d) && I915_READ(DPIO_CTL) & DPIO_CMNRST) return; DRM_DEBUG_KMS("toggling display PHY side reset\n"); /* cmnlane needs DPLL registers */ disp2d->ops->enable(dev_priv, disp2d); /* * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: * Need to assert and de-assert PHY SB reset by gating the * common lane power, then un-gating it. * Simply ungating isn't enough to reset the PHY enough to get * ports and lanes running. */ cmn->ops->disable(dev_priv, cmn); } /** * intel_power_domains_init_hw - initialize hardware power domain state * @dev_priv: i915 device instance * * This function initializes the hardware power domain state and enables all * power domains using intel_display_set_init_power(). */ void intel_power_domains_init_hw(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct i915_power_domains *power_domains = &dev_priv->power_domains; power_domains->initializing = true; if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { mutex_lock(&power_domains->lock); vlv_cmnlane_wa(dev_priv); mutex_unlock(&power_domains->lock); } /* For now, we need the power well to be always enabled. */ intel_display_set_init_power(dev_priv, true); intel_power_domains_resume(dev_priv); power_domains->initializing = false; } /** * intel_aux_display_runtime_get - grab an auxiliary power domain reference * @dev_priv: i915 device instance * * This function grabs a power domain reference for the auxiliary power domain * (for access to the GMBUS and DP AUX blocks) and ensures that it and all its * parents are powered up. Therefore users should only grab a reference to the * innermost power domain they need. * * Any power domain reference obtained by this function must have a symmetric * call to intel_aux_display_runtime_put() to release the reference again. */ void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv) { intel_runtime_pm_get(dev_priv); } /** * intel_aux_display_runtime_put - release an auxiliary power domain reference * @dev_priv: i915 device instance * * This function drops the auxiliary power domain reference obtained by * intel_aux_display_runtime_get() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv) { intel_runtime_pm_put(dev_priv); } /** * intel_runtime_pm_get - grab a runtime pm reference * @dev_priv: i915 device instance * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on) and ensures that it is powered up. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. */ void intel_runtime_pm_get(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct device *device = &dev->pdev->dev; if (!HAS_RUNTIME_PM(dev)) return; pm_runtime_get_sync(device); WARN(dev_priv->pm.suspended, "Device still suspended.\n"); } /** * intel_runtime_pm_get_noresume - grab a runtime pm reference * @dev_priv: i915 device instance * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on). * * It will _not_ power up the device but instead only check that it's powered * on. Therefore it is only valid to call this functions from contexts where * the device is known to be powered up and where trying to power it up would * result in hilarity and deadlocks. That pretty much means only the system * suspend/resume code where this is used to grab runtime pm references for * delayed setup down in work items. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. */ void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct device *device = &dev->pdev->dev; if (!HAS_RUNTIME_PM(dev)) return; WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n"); pm_runtime_get_noresume(device); } /** * intel_runtime_pm_put - release a runtime pm reference * @dev_priv: i915 device instance * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_runtime_pm_put(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct device *device = &dev->pdev->dev; if (!HAS_RUNTIME_PM(dev)) return; pm_runtime_mark_last_busy(device); pm_runtime_put_autosuspend(device); } /** * intel_runtime_pm_enable - enable runtime pm * @dev_priv: i915 device instance * * This function enables runtime pm at the end of the driver load sequence. * * Note that this function does currently not enable runtime pm for the * subordinate display power domains. That is only done on the first modeset * using intel_display_set_init_power(). */ void intel_runtime_pm_enable(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct device *device = &dev->pdev->dev; if (!HAS_RUNTIME_PM(dev)) return; pm_runtime_set_active(device); /* * RPM depends on RC6 to save restore the GT HW context, so make RC6 a * requirement. */ if (!intel_enable_rc6(dev)) { DRM_INFO("RC6 disabled, disabling runtime PM support\n"); return; } pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */ pm_runtime_mark_last_busy(device); pm_runtime_use_autosuspend(device); pm_runtime_put_autosuspend(device); }