/* * x86_64 specific EFI support functions * Based on Extensible Firmware Interface Specification version 1.0 * * Copyright (C) 2005-2008 Intel Co. * Fenghua Yu * Bibo Mao * Chandramouli Narayanan * Huang Ying * * Code to convert EFI to E820 map has been implemented in elilo bootloader * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table * is setup appropriately for EFI runtime code. * - mouli 06/14/2007. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * We allocate runtime services regions bottom-up, starting from -4G, i.e. * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. */ static u64 efi_va = EFI_VA_START; struct efi_scratch efi_scratch; static void __init early_code_mapping_set_exec(int executable) { efi_memory_desc_t *md; void *p; if (!(__supported_pte_mask & _PAGE_NX)) return; /* Make EFI service code area executable */ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if (md->type == EFI_RUNTIME_SERVICES_CODE || md->type == EFI_BOOT_SERVICES_CODE) efi_set_executable(md, executable); } } pgd_t * __init efi_call_phys_prolog(void) { unsigned long vaddress; pgd_t *save_pgd; int pgd; int n_pgds; if (!efi_enabled(EFI_OLD_MEMMAP)) { save_pgd = (pgd_t *)read_cr3(); write_cr3((unsigned long)efi_scratch.efi_pgt); goto out; } early_code_mapping_set_exec(1); n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL); for (pgd = 0; pgd < n_pgds; pgd++) { save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE); vaddress = (unsigned long)__va(pgd * PGDIR_SIZE); set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress)); } out: __flush_tlb_all(); return save_pgd; } void __init efi_call_phys_epilog(pgd_t *save_pgd) { /* * After the lock is released, the original page table is restored. */ int pgd_idx; int nr_pgds; if (!efi_enabled(EFI_OLD_MEMMAP)) { write_cr3((unsigned long)save_pgd); __flush_tlb_all(); return; } nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); kfree(save_pgd); __flush_tlb_all(); early_code_mapping_set_exec(0); } static pgd_t *efi_pgd; /* * We need our own copy of the higher levels of the page tables * because we want to avoid inserting EFI region mappings (EFI_VA_END * to EFI_VA_START) into the standard kernel page tables. Everything * else can be shared, see efi_sync_low_kernel_mappings(). */ int __init efi_alloc_page_tables(void) { pgd_t *pgd; pud_t *pud; gfp_t gfp_mask; if (efi_enabled(EFI_OLD_MEMMAP)) return 0; gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO; efi_pgd = (pgd_t *)__get_free_page(gfp_mask); if (!efi_pgd) return -ENOMEM; pgd = efi_pgd + pgd_index(EFI_VA_END); pud = pud_alloc_one(NULL, 0); if (!pud) { free_page((unsigned long)efi_pgd); return -ENOMEM; } pgd_populate(NULL, pgd, pud); return 0; } /* * Add low kernel mappings for passing arguments to EFI functions. */ void efi_sync_low_kernel_mappings(void) { unsigned num_entries; pgd_t *pgd_k, *pgd_efi; pud_t *pud_k, *pud_efi; if (efi_enabled(EFI_OLD_MEMMAP)) return; /* * We can share all PGD entries apart from the one entry that * covers the EFI runtime mapping space. * * Make sure the EFI runtime region mappings are guaranteed to * only span a single PGD entry and that the entry also maps * other important kernel regions. */ BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != (EFI_VA_END & PGDIR_MASK)); pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); pgd_k = pgd_offset_k(PAGE_OFFSET); num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); /* * We share all the PUD entries apart from those that map the * EFI regions. Copy around them. */ BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); pgd_efi = efi_pgd + pgd_index(EFI_VA_END); pud_efi = pud_offset(pgd_efi, 0); pgd_k = pgd_offset_k(EFI_VA_END); pud_k = pud_offset(pgd_k, 0); num_entries = pud_index(EFI_VA_END); memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); pud_efi = pud_offset(pgd_efi, EFI_VA_START); pud_k = pud_offset(pgd_k, EFI_VA_START); num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); } int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) { unsigned long pfn, text; efi_memory_desc_t *md; struct page *page; unsigned npages; pgd_t *pgd; if (efi_enabled(EFI_OLD_MEMMAP)) return 0; efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd); pgd = efi_pgd; /* * It can happen that the physical address of new_memmap lands in memory * which is not mapped in the EFI page table. Therefore we need to go * and ident-map those pages containing the map before calling * phys_efi_set_virtual_address_map(). */ pfn = pa_memmap >> PAGE_SHIFT; if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX)) { pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); return 1; } efi_scratch.use_pgd = true; /* * When making calls to the firmware everything needs to be 1:1 * mapped and addressable with 32-bit pointers. Map the kernel * text and allocate a new stack because we can't rely on the * stack pointer being < 4GB. */ if (!IS_ENABLED(CONFIG_EFI_MIXED)) return 0; /* * Map all of RAM so that we can access arguments in the 1:1 * mapping when making EFI runtime calls. */ for_each_efi_memory_desc(&memmap, md) { if (md->type != EFI_CONVENTIONAL_MEMORY && md->type != EFI_LOADER_DATA && md->type != EFI_LOADER_CODE) continue; pfn = md->phys_addr >> PAGE_SHIFT; npages = md->num_pages; if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, 0)) { pr_err("Failed to map 1:1 memory\n"); return 1; } } page = alloc_page(GFP_KERNEL|__GFP_DMA32); if (!page) panic("Unable to allocate EFI runtime stack < 4GB\n"); efi_scratch.phys_stack = virt_to_phys(page_address(page)); efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ npages = (_end - _text) >> PAGE_SHIFT; text = __pa(_text); pfn = text >> PAGE_SHIFT; if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, 0)) { pr_err("Failed to map kernel text 1:1\n"); return 1; } return 0; } void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages) { kernel_unmap_pages_in_pgd(efi_pgd, pa_memmap, num_pages); } static void __init __map_region(efi_memory_desc_t *md, u64 va) { unsigned long flags = 0; unsigned long pfn; pgd_t *pgd = efi_pgd; if (!(md->attribute & EFI_MEMORY_WB)) flags |= _PAGE_PCD; pfn = md->phys_addr >> PAGE_SHIFT; if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", md->phys_addr, va); } void __init efi_map_region(efi_memory_desc_t *md) { unsigned long size = md->num_pages << PAGE_SHIFT; u64 pa = md->phys_addr; if (efi_enabled(EFI_OLD_MEMMAP)) return old_map_region(md); /* * Make sure the 1:1 mappings are present as a catch-all for b0rked * firmware which doesn't update all internal pointers after switching * to virtual mode and would otherwise crap on us. */ __map_region(md, md->phys_addr); /* * Enforce the 1:1 mapping as the default virtual address when * booting in EFI mixed mode, because even though we may be * running a 64-bit kernel, the firmware may only be 32-bit. */ if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { md->virt_addr = md->phys_addr; return; } efi_va -= size; /* Is PA 2M-aligned? */ if (!(pa & (PMD_SIZE - 1))) { efi_va &= PMD_MASK; } else { u64 pa_offset = pa & (PMD_SIZE - 1); u64 prev_va = efi_va; /* get us the same offset within this 2M page */ efi_va = (efi_va & PMD_MASK) + pa_offset; if (efi_va > prev_va) efi_va -= PMD_SIZE; } if (efi_va < EFI_VA_END) { pr_warn(FW_WARN "VA address range overflow!\n"); return; } /* Do the VA map */ __map_region(md, efi_va); md->virt_addr = efi_va; } /* * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. * md->virt_addr is the original virtual address which had been mapped in kexec * 1st kernel. */ void __init efi_map_region_fixed(efi_memory_desc_t *md) { __map_region(md, md->virt_addr); } void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, u32 type, u64 attribute) { unsigned long last_map_pfn; if (type == EFI_MEMORY_MAPPED_IO) return ioremap(phys_addr, size); last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { unsigned long top = last_map_pfn << PAGE_SHIFT; efi_ioremap(top, size - (top - phys_addr), type, attribute); } if (!(attribute & EFI_MEMORY_WB)) efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); return (void __iomem *)__va(phys_addr); } void __init parse_efi_setup(u64 phys_addr, u32 data_len) { efi_setup = phys_addr + sizeof(struct setup_data); } void __init efi_runtime_mkexec(void) { if (!efi_enabled(EFI_OLD_MEMMAP)) return; if (__supported_pte_mask & _PAGE_NX) runtime_code_page_mkexec(); } void __init efi_dump_pagetable(void) { #ifdef CONFIG_EFI_PGT_DUMP ptdump_walk_pgd_level(NULL, efi_pgd); #endif } #ifdef CONFIG_EFI_MIXED extern efi_status_t efi64_thunk(u32, ...); #define runtime_service32(func) \ ({ \ u32 table = (u32)(unsigned long)efi.systab; \ u32 *rt, *___f; \ \ rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ *___f; \ }) /* * Switch to the EFI page tables early so that we can access the 1:1 * runtime services mappings which are not mapped in any other page * tables. This function must be called before runtime_service32(). * * Also, disable interrupts because the IDT points to 64-bit handlers, * which aren't going to function correctly when we switch to 32-bit. */ #define efi_thunk(f, ...) \ ({ \ efi_status_t __s; \ unsigned long flags; \ u32 func; \ \ efi_sync_low_kernel_mappings(); \ local_irq_save(flags); \ \ efi_scratch.prev_cr3 = read_cr3(); \ write_cr3((unsigned long)efi_scratch.efi_pgt); \ __flush_tlb_all(); \ \ func = runtime_service32(f); \ __s = efi64_thunk(func, __VA_ARGS__); \ \ write_cr3(efi_scratch.prev_cr3); \ __flush_tlb_all(); \ local_irq_restore(flags); \ \ __s; \ }) efi_status_t efi_thunk_set_virtual_address_map( void *phys_set_virtual_address_map, unsigned long memory_map_size, unsigned long descriptor_size, u32 descriptor_version, efi_memory_desc_t *virtual_map) { efi_status_t status; unsigned long flags; u32 func; efi_sync_low_kernel_mappings(); local_irq_save(flags); efi_scratch.prev_cr3 = read_cr3(); write_cr3((unsigned long)efi_scratch.efi_pgt); __flush_tlb_all(); func = (u32)(unsigned long)phys_set_virtual_address_map; status = efi64_thunk(func, memory_map_size, descriptor_size, descriptor_version, virtual_map); write_cr3(efi_scratch.prev_cr3); __flush_tlb_all(); local_irq_restore(flags); return status; } static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) { efi_status_t status; u32 phys_tm, phys_tc; spin_lock(&rtc_lock); phys_tm = virt_to_phys(tm); phys_tc = virt_to_phys(tc); status = efi_thunk(get_time, phys_tm, phys_tc); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_set_time(efi_time_t *tm) { efi_status_t status; u32 phys_tm; spin_lock(&rtc_lock); phys_tm = virt_to_phys(tm); status = efi_thunk(set_time, phys_tm); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) { efi_status_t status; u32 phys_enabled, phys_pending, phys_tm; spin_lock(&rtc_lock); phys_enabled = virt_to_phys(enabled); phys_pending = virt_to_phys(pending); phys_tm = virt_to_phys(tm); status = efi_thunk(get_wakeup_time, phys_enabled, phys_pending, phys_tm); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) { efi_status_t status; u32 phys_tm; spin_lock(&rtc_lock); phys_tm = virt_to_phys(tm); status = efi_thunk(set_wakeup_time, enabled, phys_tm); spin_unlock(&rtc_lock); return status; } static efi_status_t efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, u32 *attr, unsigned long *data_size, void *data) { efi_status_t status; u32 phys_name, phys_vendor, phys_attr; u32 phys_data_size, phys_data; phys_data_size = virt_to_phys(data_size); phys_vendor = virt_to_phys(vendor); phys_name = virt_to_phys(name); phys_attr = virt_to_phys(attr); phys_data = virt_to_phys(data); status = efi_thunk(get_variable, phys_name, phys_vendor, phys_attr, phys_data_size, phys_data); return status; } static efi_status_t efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data) { u32 phys_name, phys_vendor, phys_data; efi_status_t status; phys_name = virt_to_phys(name); phys_vendor = virt_to_phys(vendor); phys_data = virt_to_phys(data); /* If data_size is > sizeof(u32) we've got problems */ status = efi_thunk(set_variable, phys_name, phys_vendor, attr, data_size, phys_data); return status; } static efi_status_t efi_thunk_get_next_variable(unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) { efi_status_t status; u32 phys_name_size, phys_name, phys_vendor; phys_name_size = virt_to_phys(name_size); phys_vendor = virt_to_phys(vendor); phys_name = virt_to_phys(name); status = efi_thunk(get_next_variable, phys_name_size, phys_name, phys_vendor); return status; } static efi_status_t efi_thunk_get_next_high_mono_count(u32 *count) { efi_status_t status; u32 phys_count; phys_count = virt_to_phys(count); status = efi_thunk(get_next_high_mono_count, phys_count); return status; } static void efi_thunk_reset_system(int reset_type, efi_status_t status, unsigned long data_size, efi_char16_t *data) { u32 phys_data; phys_data = virt_to_phys(data); efi_thunk(reset_system, reset_type, status, data_size, phys_data); } static efi_status_t efi_thunk_update_capsule(efi_capsule_header_t **capsules, unsigned long count, unsigned long sg_list) { /* * To properly support this function we would need to repackage * 'capsules' because the firmware doesn't understand 64-bit * pointers. */ return EFI_UNSUPPORTED; } static efi_status_t efi_thunk_query_variable_info(u32 attr, u64 *storage_space, u64 *remaining_space, u64 *max_variable_size) { efi_status_t status; u32 phys_storage, phys_remaining, phys_max; if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) return EFI_UNSUPPORTED; phys_storage = virt_to_phys(storage_space); phys_remaining = virt_to_phys(remaining_space); phys_max = virt_to_phys(max_variable_size); status = efi_thunk(query_variable_info, attr, phys_storage, phys_remaining, phys_max); return status; } static efi_status_t efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, unsigned long count, u64 *max_size, int *reset_type) { /* * To properly support this function we would need to repackage * 'capsules' because the firmware doesn't understand 64-bit * pointers. */ return EFI_UNSUPPORTED; } void efi_thunk_runtime_setup(void) { efi.get_time = efi_thunk_get_time; efi.set_time = efi_thunk_set_time; efi.get_wakeup_time = efi_thunk_get_wakeup_time; efi.set_wakeup_time = efi_thunk_set_wakeup_time; efi.get_variable = efi_thunk_get_variable; efi.get_next_variable = efi_thunk_get_next_variable; efi.set_variable = efi_thunk_set_variable; efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; efi.reset_system = efi_thunk_reset_system; efi.query_variable_info = efi_thunk_query_variable_info; efi.update_capsule = efi_thunk_update_capsule; efi.query_capsule_caps = efi_thunk_query_capsule_caps; } #endif /* CONFIG_EFI_MIXED */