#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_LOCAL_APIC #include #include #include #include #endif #include #include #include #include #include #include #include #include #include "cpu.h" static struct cpu_dev *this_cpu __cpuinitdata; #ifdef CONFIG_X86_64 /* We need valid kernel segments for data and code in long mode too * IRET will check the segment types kkeil 2000/10/28 * Also sysret mandates a special GDT layout */ /* The TLS descriptors are currently at a different place compared to i386. Hopefully nobody expects them at a fixed place (Wine?) */ DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = { [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } }, [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } }, [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } }, [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } }, [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } }, [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } }, } }; #else DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } }, [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } }, [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } }, [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } }, /* * Segments used for calling PnP BIOS have byte granularity. * They code segments and data segments have fixed 64k limits, * the transfer segment sizes are set at run time. */ /* 32-bit code */ [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } }, /* 16-bit code */ [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } }, /* 16-bit data */ [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } }, /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } }, /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } }, /* * The APM segments have byte granularity and their bases * are set at run time. All have 64k limits. */ /* 32-bit code */ [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } }, /* 16-bit code */ [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } }, /* data */ [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } }, [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } }, [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } }, } }; #endif EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); #ifdef CONFIG_X86_32 static int cachesize_override __cpuinitdata = -1; static int disable_x86_serial_nr __cpuinitdata = 1; static int __init cachesize_setup(char *str) { get_option(&str, &cachesize_override); return 1; } __setup("cachesize=", cachesize_setup); /* * Naming convention should be: [()] * This table only is used unless init_() below doesn't set it; * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used * */ /* Look up CPU names by table lookup. */ static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c) { struct cpu_model_info *info; if (c->x86_model >= 16) return NULL; /* Range check */ if (!this_cpu) return NULL; info = this_cpu->c_models; while (info && info->family) { if (info->family == c->x86) return info->model_names[c->x86_model]; info++; } return NULL; /* Not found */ } static int __init x86_fxsr_setup(char *s) { setup_clear_cpu_cap(X86_FEATURE_FXSR); setup_clear_cpu_cap(X86_FEATURE_XMM); return 1; } __setup("nofxsr", x86_fxsr_setup); static int __init x86_sep_setup(char *s) { setup_clear_cpu_cap(X86_FEATURE_SEP); return 1; } __setup("nosep", x86_sep_setup); /* Standard macro to see if a specific flag is changeable */ static inline int flag_is_changeable_p(u32 flag) { u32 f1, f2; asm("pushfl\n\t" "pushfl\n\t" "popl %0\n\t" "movl %0,%1\n\t" "xorl %2,%0\n\t" "pushl %0\n\t" "popfl\n\t" "pushfl\n\t" "popl %0\n\t" "popfl\n\t" : "=&r" (f1), "=&r" (f2) : "ir" (flag)); return ((f1^f2) & flag) != 0; } /* Probe for the CPUID instruction */ static int __cpuinit have_cpuid_p(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) { /* Disable processor serial number */ unsigned long lo, hi; rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); lo |= 0x200000; wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); printk(KERN_NOTICE "CPU serial number disabled.\n"); clear_cpu_cap(c, X86_FEATURE_PN); /* Disabling the serial number may affect the cpuid level */ c->cpuid_level = cpuid_eax(0); } } static int __init x86_serial_nr_setup(char *s) { disable_x86_serial_nr = 0; return 1; } __setup("serialnumber", x86_serial_nr_setup); #else /* Probe for the CPUID instruction */ static inline int have_cpuid_p(void) { return 1; } #endif __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata; /* Current gdt points %fs at the "master" per-cpu area: after this, * it's on the real one. */ void switch_to_new_gdt(void) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id()); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); #ifdef CONFIG_X86_32 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory"); #endif } static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; static void __cpuinit default_init(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 display_cacheinfo(c); #else /* Not much we can do here... */ /* Check if at least it has cpuid */ if (c->cpuid_level == -1) { /* No cpuid. It must be an ancient CPU */ if (c->x86 == 4) strcpy(c->x86_model_id, "486"); else if (c->x86 == 3) strcpy(c->x86_model_id, "386"); } #endif } static struct cpu_dev __cpuinitdata default_cpu = { .c_init = default_init, .c_vendor = "Unknown", .c_x86_vendor = X86_VENDOR_UNKNOWN, }; int __cpuinit get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; char *p, *q; if (c->extended_cpuid_level < 0x80000004) return 0; v = (unsigned int *) c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; /* Intel chips right-justify this string for some dumb reason; undo that brain damage */ p = q = &c->x86_model_id[0]; while (*p == ' ') p++; if (p != q) { while (*p) *q++ = *p++; while (q <= &c->x86_model_id[48]) *q++ = '\0'; /* Zero-pad the rest */ } return 1; } void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) { unsigned int n, dummy, ebx, ecx, edx, l2size; n = c->extended_cpuid_level; if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n", edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); c->x86_cache_size = (ecx>>24) + (edx>>24); #ifdef CONFIG_X86_64 /* On K8 L1 TLB is inclusive, so don't count it */ c->x86_tlbsize = 0; #endif } if (n < 0x80000006) /* Some chips just has a large L1. */ return; cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); l2size = ecx >> 16; #ifdef CONFIG_X86_64 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); #else /* do processor-specific cache resizing */ if (this_cpu->c_size_cache) l2size = this_cpu->c_size_cache(c, l2size); /* Allow user to override all this if necessary. */ if (cachesize_override != -1) l2size = cachesize_override; if (l2size == 0) return; /* Again, no L2 cache is possible */ #endif c->x86_cache_size = l2size; printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", l2size, ecx & 0xFF); } void __cpuinit detect_ht(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_HT u32 eax, ebx, ecx, edx; int index_msb, core_bits; if (!cpu_has(c, X86_FEATURE_HT)) return; if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) goto out; if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) return; cpuid(1, &eax, &ebx, &ecx, &edx); smp_num_siblings = (ebx & 0xff0000) >> 16; if (smp_num_siblings == 1) { printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); } else if (smp_num_siblings > 1) { if (smp_num_siblings > NR_CPUS) { printk(KERN_WARNING "CPU: Unsupported number of siblings %d", smp_num_siblings); smp_num_siblings = 1; return; } index_msb = get_count_order(smp_num_siblings); #ifdef CONFIG_X86_64 c->phys_proc_id = phys_pkg_id(index_msb); #else c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb); #endif smp_num_siblings = smp_num_siblings / c->x86_max_cores; index_msb = get_count_order(smp_num_siblings); core_bits = get_count_order(c->x86_max_cores); #ifdef CONFIG_X86_64 c->cpu_core_id = phys_pkg_id(index_msb) & ((1 << core_bits) - 1); #else c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) & ((1 << core_bits) - 1); #endif } out: if ((c->x86_max_cores * smp_num_siblings) > 1) { printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id); printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id); } #endif } static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; int i; static int printed; for (i = 0; i < X86_VENDOR_NUM; i++) { if (!cpu_devs[i]) break; if (!strcmp(v, cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v, cpu_devs[i]->c_ident[1]))) { this_cpu = cpu_devs[i]; c->x86_vendor = this_cpu->c_x86_vendor; return; } } if (!printed) { printed++; printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n"); printk(KERN_ERR "CPU: Your system may be unstable.\n"); } c->x86_vendor = X86_VENDOR_UNKNOWN; this_cpu = &default_cpu; } void __cpuinit cpu_detect(struct cpuinfo_x86 *c) { /* Get vendor name */ cpuid(0x00000000, (unsigned int *)&c->cpuid_level, (unsigned int *)&c->x86_vendor_id[0], (unsigned int *)&c->x86_vendor_id[8], (unsigned int *)&c->x86_vendor_id[4]); c->x86 = 4; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { u32 junk, tfms, cap0, misc; cpuid(0x00000001, &tfms, &misc, &junk, &cap0); c->x86 = (tfms >> 8) & 0xf; c->x86_model = (tfms >> 4) & 0xf; c->x86_mask = tfms & 0xf; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xf) << 4; if (cap0 & (1<<19)) { c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; c->x86_cache_alignment = c->x86_clflush_size; } } } static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c) { u32 tfms, xlvl; u32 ebx; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { u32 capability, excap; cpuid(0x00000001, &tfms, &ebx, &excap, &capability); c->x86_capability[0] = capability; c->x86_capability[4] = excap; } /* AMD-defined flags: level 0x80000001 */ xlvl = cpuid_eax(0x80000000); c->extended_cpuid_level = xlvl; if ((xlvl & 0xffff0000) == 0x80000000) { if (xlvl >= 0x80000001) { c->x86_capability[1] = cpuid_edx(0x80000001); c->x86_capability[6] = cpuid_ecx(0x80000001); } } #ifdef CONFIG_X86_64 /* Transmeta-defined flags: level 0x80860001 */ xlvl = cpuid_eax(0x80860000); if ((xlvl & 0xffff0000) == 0x80860000) { /* Don't set x86_cpuid_level here for now to not confuse. */ if (xlvl >= 0x80860001) c->x86_capability[2] = cpuid_edx(0x80860001); } if (c->extended_cpuid_level >= 0x80000007) c->x86_power = cpuid_edx(0x80000007); if (c->extended_cpuid_level >= 0x80000008) { u32 eax = cpuid_eax(0x80000008); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; } #endif } /* * Do minimum CPU detection early. * Fields really needed: vendor, cpuid_level, family, model, mask, * cache alignment. * The others are not touched to avoid unwanted side effects. * * WARNING: this function is only called on the BP. Don't add code here * that is supposed to run on all CPUs. */ static void __init early_identify_cpu(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 c->x86_clflush_size = 64; #else c->x86_clflush_size = 32; #endif c->x86_cache_alignment = c->x86_clflush_size; if (!have_cpuid_p()) return; memset(&c->x86_capability, 0, sizeof c->x86_capability); c->extended_cpuid_level = 0; cpu_detect(c); get_cpu_vendor(c); get_cpu_cap(c); if (this_cpu->c_early_init) this_cpu->c_early_init(c); validate_pat_support(c); } void __init early_cpu_init(void) { struct cpu_dev **cdev; int count = 0; printk("KERNEL supported cpus:\n"); for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { struct cpu_dev *cpudev = *cdev; unsigned int j; if (count >= X86_VENDOR_NUM) break; cpu_devs[count] = cpudev; count++; for (j = 0; j < 2; j++) { if (!cpudev->c_ident[j]) continue; printk(" %s %s\n", cpudev->c_vendor, cpudev->c_ident[j]); } } early_identify_cpu(&boot_cpu_data); } /* * The NOPL instruction is supposed to exist on all CPUs with * family >= 6, unfortunately, that's not true in practice because * of early VIA chips and (more importantly) broken virtualizers that * are not easy to detect. Hence, probe for it based on first * principles. */ static void __cpuinit detect_nopl(struct cpuinfo_x86 *c) { const u32 nopl_signature = 0x888c53b1; /* Random number */ u32 has_nopl = nopl_signature; clear_cpu_cap(c, X86_FEATURE_NOPL); if (c->x86 >= 6) { asm volatile("\n" "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */ "2:\n" " .section .fixup,\"ax\"\n" "3: xor %0,%0\n" " jmp 2b\n" " .previous\n" _ASM_EXTABLE(1b,3b) : "+a" (has_nopl)); if (has_nopl == nopl_signature) set_cpu_cap(c, X86_FEATURE_NOPL); } } static void __cpuinit generic_identify(struct cpuinfo_x86 *c) { if (!have_cpuid_p()) return; c->extended_cpuid_level = 0; cpu_detect(c); get_cpu_vendor(c); get_cpu_cap(c); if (c->cpuid_level >= 0x00000001) { c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; #ifdef CONFIG_X86_HT c->apicid = phys_pkg_id(c->initial_apicid, 0); c->phys_proc_id = c->initial_apicid; #else c->apicid = c->initial_apicid; #endif } if (c->extended_cpuid_level >= 0x80000004) get_model_name(c); /* Default name */ init_scattered_cpuid_features(c); detect_nopl(c); } /* * This does the hard work of actually picking apart the CPU stuff... */ static void __cpuinit identify_cpu(struct cpuinfo_x86 *c) { int i; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = -1; c->x86_vendor = X86_VENDOR_UNKNOWN; c->cpuid_level = -1; /* CPUID not detected */ c->x86_model = c->x86_mask = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ c->x86_max_cores = 1; c->x86_clflush_size = 32; memset(&c->x86_capability, 0, sizeof c->x86_capability); if (!have_cpuid_p()) { /* * First of all, decide if this is a 486 or higher * It's a 486 if we can modify the AC flag */ if (flag_is_changeable_p(X86_EFLAGS_AC)) c->x86 = 4; else c->x86 = 3; } generic_identify(c); if (this_cpu->c_identify) this_cpu->c_identify(c); /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ if (this_cpu->c_init) this_cpu->c_init(c); /* Disable the PN if appropriate */ squash_the_stupid_serial_number(c); /* * The vendor-specific functions might have changed features. Now * we do "generic changes." */ /* If the model name is still unset, do table lookup. */ if (!c->x86_model_id[0]) { char *p; p = table_lookup_model(c); if (p) strcpy(c->x86_model_id, p); else /* Last resort... */ sprintf(c->x86_model_id, "%02x/%02x", c->x86, c->x86_model); } /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if (c != &boot_cpu_data) { /* AND the already accumulated flags with these */ for (i = 0; i < NCAPINTS; i++) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; } /* Clear all flags overriden by options */ for (i = 0; i < NCAPINTS; i++) c->x86_capability[i] &= ~cleared_cpu_caps[i]; /* Init Machine Check Exception if available. */ mcheck_init(c); select_idle_routine(c); } void __init identify_boot_cpu(void) { identify_cpu(&boot_cpu_data); sysenter_setup(); enable_sep_cpu(); } void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) { BUG_ON(c == &boot_cpu_data); identify_cpu(c); enable_sep_cpu(); mtrr_ap_init(); } struct msr_range { unsigned min; unsigned max; }; static struct msr_range msr_range_array[] __cpuinitdata = { { 0x00000000, 0x00000418}, { 0xc0000000, 0xc000040b}, { 0xc0010000, 0xc0010142}, { 0xc0011000, 0xc001103b}, }; static void __cpuinit print_cpu_msr(void) { unsigned index; u64 val; int i; unsigned index_min, index_max; for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { index_min = msr_range_array[i].min; index_max = msr_range_array[i].max; for (index = index_min; index < index_max; index++) { if (rdmsrl_amd_safe(index, &val)) continue; printk(KERN_INFO " MSR%08x: %016llx\n", index, val); } } } static int show_msr __cpuinitdata; static __init int setup_show_msr(char *arg) { int num; get_option(&arg, &num); if (num > 0) show_msr = num; return 1; } __setup("show_msr=", setup_show_msr); static __init int setup_noclflush(char *arg) { setup_clear_cpu_cap(X86_FEATURE_CLFLSH); return 1; } __setup("noclflush", setup_noclflush); void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) { char *vendor = NULL; if (c->x86_vendor < X86_VENDOR_NUM) vendor = this_cpu->c_vendor; else if (c->cpuid_level >= 0) vendor = c->x86_vendor_id; if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor))) printk(KERN_CONT "%s ", vendor); if (c->x86_model_id[0]) printk(KERN_CONT "%s", c->x86_model_id); else printk(KERN_CONT "%d86", c->x86); if (c->x86_mask || c->cpuid_level >= 0) printk(KERN_CONT " stepping %02x\n", c->x86_mask); else printk(KERN_CONT "\n"); #ifdef CONFIG_SMP if (c->cpu_index < show_msr) print_cpu_msr(); #else if (show_msr) print_cpu_msr(); #endif } static __init int setup_disablecpuid(char *arg) { int bit; if (get_option(&arg, &bit) && bit < NCAPINTS*32) setup_clear_cpu_cap(bit); else return 0; return 1; } __setup("clearcpuid=", setup_disablecpuid); cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE; #ifdef CONFIG_X86_64 struct x8664_pda **_cpu_pda __read_mostly; EXPORT_SYMBOL(_cpu_pda); struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table }; char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss; unsigned long __supported_pte_mask __read_mostly = ~0UL; EXPORT_SYMBOL_GPL(__supported_pte_mask); static int do_not_nx __cpuinitdata; /* noexec=on|off Control non executable mappings for 64bit processes. on Enable(default) off Disable */ static int __init nonx_setup(char *str) { if (!str) return -EINVAL; if (!strncmp(str, "on", 2)) { __supported_pte_mask |= _PAGE_NX; do_not_nx = 0; } else if (!strncmp(str, "off", 3)) { do_not_nx = 1; __supported_pte_mask &= ~_PAGE_NX; } return 0; } early_param("noexec", nonx_setup); int force_personality32; /* noexec32=on|off Control non executable heap for 32bit processes. To control the stack too use noexec=off on PROT_READ does not imply PROT_EXEC for 32bit processes (default) off PROT_READ implies PROT_EXEC */ static int __init nonx32_setup(char *str) { if (!strcmp(str, "on")) force_personality32 &= ~READ_IMPLIES_EXEC; else if (!strcmp(str, "off")) force_personality32 |= READ_IMPLIES_EXEC; return 1; } __setup("noexec32=", nonx32_setup); void pda_init(int cpu) { struct x8664_pda *pda = cpu_pda(cpu); /* Setup up data that may be needed in __get_free_pages early */ loadsegment(fs, 0); loadsegment(gs, 0); /* Memory clobbers used to order PDA accessed */ mb(); wrmsrl(MSR_GS_BASE, pda); mb(); pda->cpunumber = cpu; pda->irqcount = -1; pda->kernelstack = (unsigned long)stack_thread_info() - PDA_STACKOFFSET + THREAD_SIZE; pda->active_mm = &init_mm; pda->mmu_state = 0; if (cpu == 0) { /* others are initialized in smpboot.c */ pda->pcurrent = &init_task; pda->irqstackptr = boot_cpu_stack; pda->irqstackptr += IRQSTACKSIZE - 64; } else { if (!pda->irqstackptr) { pda->irqstackptr = (char *) __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER); if (!pda->irqstackptr) panic("cannot allocate irqstack for cpu %d", cpu); pda->irqstackptr += IRQSTACKSIZE - 64; } if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE) pda->nodenumber = cpu_to_node(cpu); } } char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ] __page_aligned_bss; extern asmlinkage void ignore_sysret(void); /* May not be marked __init: used by software suspend */ void syscall_init(void) { /* * LSTAR and STAR live in a bit strange symbiosis. * They both write to the same internal register. STAR allows to * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. */ wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); wrmsrl(MSR_LSTAR, system_call); wrmsrl(MSR_CSTAR, ignore_sysret); #ifdef CONFIG_IA32_EMULATION syscall32_cpu_init(); #endif /* Flags to clear on syscall */ wrmsrl(MSR_SYSCALL_MASK, X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); } void __cpuinit check_efer(void) { unsigned long efer; rdmsrl(MSR_EFER, efer); if (!(efer & EFER_NX) || do_not_nx) __supported_pte_mask &= ~_PAGE_NX; } unsigned long kernel_eflags; /* * Copies of the original ist values from the tss are only accessed during * debugging, no special alignment required. */ DEFINE_PER_CPU(struct orig_ist, orig_ist); #else /* Make sure %fs is initialized properly in idle threads */ struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs) { memset(regs, 0, sizeof(struct pt_regs)); regs->fs = __KERNEL_PERCPU; return regs; } #endif /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT * and IDT. We reload them nevertheless, this function acts as a * 'CPU state barrier', nothing should get across. * A lot of state is already set up in PDA init for 64 bit */ #ifdef CONFIG_X86_64 void __cpuinit cpu_init(void) { int cpu = stack_smp_processor_id(); struct tss_struct *t = &per_cpu(init_tss, cpu); struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu); unsigned long v; char *estacks = NULL; struct task_struct *me; int i; /* CPU 0 is initialised in head64.c */ if (cpu != 0) pda_init(cpu); else estacks = boot_exception_stacks; me = current; if (cpu_test_and_set(cpu, cpu_initialized)) panic("CPU#%d already initialized!\n", cpu); printk(KERN_INFO "Initializing CPU#%d\n", cpu); clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); /* * Initialize the per-CPU GDT with the boot GDT, * and set up the GDT descriptor: */ switch_to_new_gdt(); load_idt((const struct desc_ptr *)&idt_descr); memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); syscall_init(); wrmsrl(MSR_FS_BASE, 0); wrmsrl(MSR_KERNEL_GS_BASE, 0); barrier(); check_efer(); if (cpu != 0 && x2apic) enable_x2apic(); /* * set up and load the per-CPU TSS */ if (!orig_ist->ist[0]) { static const unsigned int order[N_EXCEPTION_STACKS] = { [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER, [DEBUG_STACK - 1] = DEBUG_STACK_ORDER }; for (v = 0; v < N_EXCEPTION_STACKS; v++) { if (cpu) { estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]); if (!estacks) panic("Cannot allocate exception " "stack %ld %d\n", v, cpu); } estacks += PAGE_SIZE << order[v]; orig_ist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks; } } t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); /* * <= is required because the CPU will access up to * 8 bits beyond the end of the IO permission bitmap. */ for (i = 0; i <= IO_BITMAP_LONGS; i++) t->io_bitmap[i] = ~0UL; atomic_inc(&init_mm.mm_count); me->active_mm = &init_mm; if (me->mm) BUG(); enter_lazy_tlb(&init_mm, me); load_sp0(t, ¤t->thread); set_tss_desc(cpu, t); load_TR_desc(); load_LDT(&init_mm.context); #ifdef CONFIG_KGDB /* * If the kgdb is connected no debug regs should be altered. This * is only applicable when KGDB and a KGDB I/O module are built * into the kernel and you are using early debugging with * kgdbwait. KGDB will control the kernel HW breakpoint registers. */ if (kgdb_connected && arch_kgdb_ops.correct_hw_break) arch_kgdb_ops.correct_hw_break(); else { #endif /* * Clear all 6 debug registers: */ set_debugreg(0UL, 0); set_debugreg(0UL, 1); set_debugreg(0UL, 2); set_debugreg(0UL, 3); set_debugreg(0UL, 6); set_debugreg(0UL, 7); #ifdef CONFIG_KGDB /* If the kgdb is connected no debug regs should be altered. */ } #endif fpu_init(); raw_local_save_flags(kernel_eflags); if (is_uv_system()) uv_cpu_init(); } #else void __cpuinit cpu_init(void) { int cpu = smp_processor_id(); struct task_struct *curr = current; struct tss_struct *t = &per_cpu(init_tss, cpu); struct thread_struct *thread = &curr->thread; if (cpu_test_and_set(cpu, cpu_initialized)) { printk(KERN_WARNING "CPU#%d already initialized!\n", cpu); for (;;) local_irq_enable(); } printk(KERN_INFO "Initializing CPU#%d\n", cpu); if (cpu_has_vme || cpu_has_tsc || cpu_has_de) clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); load_idt(&idt_descr); switch_to_new_gdt(); /* * Set up and load the per-CPU TSS and LDT */ atomic_inc(&init_mm.mm_count); curr->active_mm = &init_mm; if (curr->mm) BUG(); enter_lazy_tlb(&init_mm, curr); load_sp0(t, thread); set_tss_desc(cpu, t); load_TR_desc(); load_LDT(&init_mm.context); #ifdef CONFIG_DOUBLEFAULT /* Set up doublefault TSS pointer in the GDT */ __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); #endif /* Clear %gs. */ asm volatile ("mov %0, %%gs" : : "r" (0)); /* Clear all 6 debug registers: */ set_debugreg(0, 0); set_debugreg(0, 1); set_debugreg(0, 2); set_debugreg(0, 3); set_debugreg(0, 6); set_debugreg(0, 7); /* * Force FPU initialization: */ if (cpu_has_xsave) current_thread_info()->status = TS_XSAVE; else current_thread_info()->status = 0; clear_used_math(); mxcsr_feature_mask_init(); /* * Boot processor to setup the FP and extended state context info. */ if (!smp_processor_id()) init_thread_xstate(); xsave_init(); } #ifdef CONFIG_HOTPLUG_CPU void __cpuinit cpu_uninit(void) { int cpu = raw_smp_processor_id(); cpu_clear(cpu, cpu_initialized); /* lazy TLB state */ per_cpu(cpu_tlbstate, cpu).state = 0; per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm; } #endif #endif