/* * linux/drivers/usb/gadget/pxa2xx_udc.c * Intel PXA25x and IXP4xx on-chip full speed USB device controllers * * Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker) * Copyright (C) 2003 Robert Schwebel, Pengutronix * Copyright (C) 2003 Benedikt Spranger, Pengutronix * Copyright (C) 2003 David Brownell * Copyright (C) 2003 Joshua Wise * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #undef DEBUG // #define VERBOSE DBG_VERBOSE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This driver handles the USB Device Controller (UDC) in Intel's PXA 25x * series processors. The UDC for the IXP 4xx series is very similar. * There are fifteen endpoints, in addition to ep0. * * Such controller drivers work with a gadget driver. The gadget driver * returns descriptors, implements configuration and data protocols used * by the host to interact with this device, and allocates endpoints to * the different protocol interfaces. The controller driver virtualizes * usb hardware so that the gadget drivers will be more portable. * * This UDC hardware wants to implement a bit too much USB protocol, so * it constrains the sorts of USB configuration change events that work. * The errata for these chips are misleading; some "fixed" bugs from * pxa250 a0/a1 b0/b1/b2 sure act like they're still there. */ #define DRIVER_VERSION "4-May-2005" #define DRIVER_DESC "PXA 25x USB Device Controller driver" static const char driver_name [] = "pxa2xx_udc"; static const char ep0name [] = "ep0"; // #define USE_DMA // #define USE_OUT_DMA // #define DISABLE_TEST_MODE #ifdef CONFIG_ARCH_IXP4XX #undef USE_DMA /* cpu-specific register addresses are compiled in to this code */ #ifdef CONFIG_ARCH_PXA #error "Can't configure both IXP and PXA" #endif #endif #include "pxa2xx_udc.h" #ifdef USE_DMA static int use_dma = 1; module_param(use_dma, bool, 0); MODULE_PARM_DESC (use_dma, "true to use dma"); static void dma_nodesc_handler (int dmach, void *_ep, struct pt_regs *r); static void kick_dma(struct pxa2xx_ep *ep, struct pxa2xx_request *req); #ifdef USE_OUT_DMA #define DMASTR " (dma support)" #else #define DMASTR " (dma in)" #endif #else /* !USE_DMA */ #define DMASTR " (pio only)" #undef USE_OUT_DMA #endif #ifdef CONFIG_USB_PXA2XX_SMALL #define SIZE_STR " (small)" #else #define SIZE_STR "" #endif #ifdef DISABLE_TEST_MODE /* (mode == 0) == no undocumented chip tweaks * (mode & 1) == double buffer bulk IN * (mode & 2) == double buffer bulk OUT * ... so mode = 3 (or 7, 15, etc) does it for both */ static ushort fifo_mode = 0; module_param(fifo_mode, ushort, 0); MODULE_PARM_DESC (fifo_mode, "pxa2xx udc fifo mode"); #endif /* --------------------------------------------------------------------------- * endpoint related parts of the api to the usb controller hardware, * used by gadget driver; and the inner talker-to-hardware core. * --------------------------------------------------------------------------- */ static void pxa2xx_ep_fifo_flush (struct usb_ep *ep); static void nuke (struct pxa2xx_ep *, int status); static void pio_irq_enable(int bEndpointAddress) { bEndpointAddress &= 0xf; if (bEndpointAddress < 8) UICR0 &= ~(1 << bEndpointAddress); else { bEndpointAddress -= 8; UICR1 &= ~(1 << bEndpointAddress); } } static void pio_irq_disable(int bEndpointAddress) { bEndpointAddress &= 0xf; if (bEndpointAddress < 8) UICR0 |= 1 << bEndpointAddress; else { bEndpointAddress -= 8; UICR1 |= 1 << bEndpointAddress; } } /* The UDCCR reg contains mask and interrupt status bits, * so using '|=' isn't safe as it may ack an interrupt. */ #define UDCCR_MASK_BITS (UDCCR_REM | UDCCR_SRM | UDCCR_UDE) static inline void udc_set_mask_UDCCR(int mask) { UDCCR = (UDCCR & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS); } static inline void udc_clear_mask_UDCCR(int mask) { UDCCR = (UDCCR & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS); } static inline void udc_ack_int_UDCCR(int mask) { /* udccr contains the bits we dont want to change */ __u32 udccr = UDCCR & UDCCR_MASK_BITS; UDCCR = udccr | (mask & ~UDCCR_MASK_BITS); } /* * endpoint enable/disable * * we need to verify the descriptors used to enable endpoints. since pxa2xx * endpoint configurations are fixed, and are pretty much always enabled, * there's not a lot to manage here. * * because pxa2xx can't selectively initialize bulk (or interrupt) endpoints, * (resetting endpoint halt and toggle), SET_INTERFACE is unusable except * for a single interface (with only the default altsetting) and for gadget * drivers that don't halt endpoints (not reset by set_interface). that also * means that if you use ISO, you must violate the USB spec rule that all * iso endpoints must be in non-default altsettings. */ static int pxa2xx_ep_enable (struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct pxa2xx_ep *ep; struct pxa2xx_udc *dev; ep = container_of (_ep, struct pxa2xx_ep, ep); if (!_ep || !desc || ep->desc || _ep->name == ep0name || desc->bDescriptorType != USB_DT_ENDPOINT || ep->bEndpointAddress != desc->bEndpointAddress || ep->fifo_size < le16_to_cpu (desc->wMaxPacketSize)) { DMSG("%s, bad ep or descriptor\n", __FUNCTION__); return -EINVAL; } /* xfer types must match, except that interrupt ~= bulk */ if (ep->bmAttributes != desc->bmAttributes && ep->bmAttributes != USB_ENDPOINT_XFER_BULK && desc->bmAttributes != USB_ENDPOINT_XFER_INT) { DMSG("%s, %s type mismatch\n", __FUNCTION__, _ep->name); return -EINVAL; } /* hardware _could_ do smaller, but driver doesn't */ if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK && le16_to_cpu (desc->wMaxPacketSize) != BULK_FIFO_SIZE) || !desc->wMaxPacketSize) { DMSG("%s, bad %s maxpacket\n", __FUNCTION__, _ep->name); return -ERANGE; } dev = ep->dev; if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) { DMSG("%s, bogus device state\n", __FUNCTION__); return -ESHUTDOWN; } ep->desc = desc; ep->dma = -1; ep->stopped = 0; ep->pio_irqs = ep->dma_irqs = 0; ep->ep.maxpacket = le16_to_cpu (desc->wMaxPacketSize); /* flush fifo (mostly for OUT buffers) */ pxa2xx_ep_fifo_flush (_ep); /* ... reset halt state too, if we could ... */ #ifdef USE_DMA /* for (some) bulk and ISO endpoints, try to get a DMA channel and * bind it to the endpoint. otherwise use PIO. */ switch (ep->bmAttributes) { case USB_ENDPOINT_XFER_ISOC: if (le16_to_cpu(desc->wMaxPacketSize) % 32) break; // fall through case USB_ENDPOINT_XFER_BULK: if (!use_dma || !ep->reg_drcmr) break; ep->dma = pxa_request_dma ((char *)_ep->name, (le16_to_cpu (desc->wMaxPacketSize) > 64) ? DMA_PRIO_MEDIUM /* some iso */ : DMA_PRIO_LOW, dma_nodesc_handler, ep); if (ep->dma >= 0) { *ep->reg_drcmr = DRCMR_MAPVLD | ep->dma; DMSG("%s using dma%d\n", _ep->name, ep->dma); } } #endif DBG(DBG_VERBOSE, "enabled %s\n", _ep->name); return 0; } static int pxa2xx_ep_disable (struct usb_ep *_ep) { struct pxa2xx_ep *ep; unsigned long flags; ep = container_of (_ep, struct pxa2xx_ep, ep); if (!_ep || !ep->desc) { DMSG("%s, %s not enabled\n", __FUNCTION__, _ep ? ep->ep.name : NULL); return -EINVAL; } local_irq_save(flags); nuke (ep, -ESHUTDOWN); #ifdef USE_DMA if (ep->dma >= 0) { *ep->reg_drcmr = 0; pxa_free_dma (ep->dma); ep->dma = -1; } #endif /* flush fifo (mostly for IN buffers) */ pxa2xx_ep_fifo_flush (_ep); ep->desc = NULL; ep->stopped = 1; local_irq_restore(flags); DBG(DBG_VERBOSE, "%s disabled\n", _ep->name); return 0; } /*-------------------------------------------------------------------------*/ /* for the pxa2xx, these can just wrap kmalloc/kfree. gadget drivers * must still pass correctly initialized endpoints, since other controller * drivers may care about how it's currently set up (dma issues etc). */ /* * pxa2xx_ep_alloc_request - allocate a request data structure */ static struct usb_request * pxa2xx_ep_alloc_request (struct usb_ep *_ep, unsigned gfp_flags) { struct pxa2xx_request *req; req = kmalloc (sizeof *req, gfp_flags); if (!req) return NULL; memset (req, 0, sizeof *req); INIT_LIST_HEAD (&req->queue); return &req->req; } /* * pxa2xx_ep_free_request - deallocate a request data structure */ static void pxa2xx_ep_free_request (struct usb_ep *_ep, struct usb_request *_req) { struct pxa2xx_request *req; req = container_of (_req, struct pxa2xx_request, req); WARN_ON (!list_empty (&req->queue)); kfree(req); } /* PXA cache needs flushing with DMA I/O (it's dma-incoherent), but there's * no device-affinity and the heap works perfectly well for i/o buffers. * It wastes much less memory than dma_alloc_coherent() would, and even * prevents cacheline (32 bytes wide) sharing problems. */ static void * pxa2xx_ep_alloc_buffer(struct usb_ep *_ep, unsigned bytes, dma_addr_t *dma, unsigned gfp_flags) { char *retval; retval = kmalloc (bytes, gfp_flags & ~(__GFP_DMA|__GFP_HIGHMEM)); if (retval) #ifdef USE_DMA *dma = virt_to_bus (retval); #else *dma = (dma_addr_t)~0; #endif return retval; } static void pxa2xx_ep_free_buffer(struct usb_ep *_ep, void *buf, dma_addr_t dma, unsigned bytes) { kfree (buf); } /*-------------------------------------------------------------------------*/ /* * done - retire a request; caller blocked irqs */ static void done(struct pxa2xx_ep *ep, struct pxa2xx_request *req, int status) { unsigned stopped = ep->stopped; list_del_init(&req->queue); if (likely (req->req.status == -EINPROGRESS)) req->req.status = status; else status = req->req.status; if (status && status != -ESHUTDOWN) DBG(DBG_VERBOSE, "complete %s req %p stat %d len %u/%u\n", ep->ep.name, &req->req, status, req->req.actual, req->req.length); /* don't modify queue heads during completion callback */ ep->stopped = 1; req->req.complete(&ep->ep, &req->req); ep->stopped = stopped; } static inline void ep0_idle (struct pxa2xx_udc *dev) { dev->ep0state = EP0_IDLE; } static int write_packet(volatile u32 *uddr, struct pxa2xx_request *req, unsigned max) { u8 *buf; unsigned length, count; buf = req->req.buf + req->req.actual; prefetch(buf); /* how big will this packet be? */ length = min(req->req.length - req->req.actual, max); req->req.actual += length; count = length; while (likely(count--)) *uddr = *buf++; return length; } /* * write to an IN endpoint fifo, as many packets as possible. * irqs will use this to write the rest later. * caller guarantees at least one packet buffer is ready (or a zlp). */ static int write_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req) { unsigned max; max = le16_to_cpu(ep->desc->wMaxPacketSize); do { unsigned count; int is_last, is_short; count = write_packet(ep->reg_uddr, req, max); /* last packet is usually short (or a zlp) */ if (unlikely (count != max)) is_last = is_short = 1; else { if (likely(req->req.length != req->req.actual) || req->req.zero) is_last = 0; else is_last = 1; /* interrupt/iso maxpacket may not fill the fifo */ is_short = unlikely (max < ep->fifo_size); } DBG(DBG_VERY_NOISY, "wrote %s %d bytes%s%s %d left %p\n", ep->ep.name, count, is_last ? "/L" : "", is_short ? "/S" : "", req->req.length - req->req.actual, req); /* let loose that packet. maybe try writing another one, * double buffering might work. TSP, TPC, and TFS * bit values are the same for all normal IN endpoints. */ *ep->reg_udccs = UDCCS_BI_TPC; if (is_short) *ep->reg_udccs = UDCCS_BI_TSP; /* requests complete when all IN data is in the FIFO */ if (is_last) { done (ep, req, 0); if (list_empty(&ep->queue) || unlikely(ep->dma >= 0)) { pio_irq_disable (ep->bEndpointAddress); #ifdef USE_DMA /* unaligned data and zlps couldn't use dma */ if (unlikely(!list_empty(&ep->queue))) { req = list_entry(ep->queue.next, struct pxa2xx_request, queue); kick_dma(ep,req); return 0; } #endif } return 1; } // TODO experiment: how robust can fifo mode tweaking be? // double buffering is off in the default fifo mode, which // prevents TFS from being set here. } while (*ep->reg_udccs & UDCCS_BI_TFS); return 0; } /* caller asserts req->pending (ep0 irq status nyet cleared); starts * ep0 data stage. these chips want very simple state transitions. */ static inline void ep0start(struct pxa2xx_udc *dev, u32 flags, const char *tag) { UDCCS0 = flags|UDCCS0_SA|UDCCS0_OPR; USIR0 = USIR0_IR0; dev->req_pending = 0; DBG(DBG_VERY_NOISY, "%s %s, %02x/%02x\n", __FUNCTION__, tag, UDCCS0, flags); } static int write_ep0_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req) { unsigned count; int is_short; count = write_packet(&UDDR0, req, EP0_FIFO_SIZE); ep->dev->stats.write.bytes += count; /* last packet "must be" short (or a zlp) */ is_short = (count != EP0_FIFO_SIZE); DBG(DBG_VERY_NOISY, "ep0in %d bytes %d left %p\n", count, req->req.length - req->req.actual, req); if (unlikely (is_short)) { if (ep->dev->req_pending) ep0start(ep->dev, UDCCS0_IPR, "short IN"); else UDCCS0 = UDCCS0_IPR; count = req->req.length; done (ep, req, 0); ep0_idle(ep->dev); #if 1 /* This seems to get rid of lost status irqs in some cases: * host responds quickly, or next request involves config * change automagic, or should have been hidden, or ... * * FIXME get rid of all udelays possible... */ if (count >= EP0_FIFO_SIZE) { count = 100; do { if ((UDCCS0 & UDCCS0_OPR) != 0) { /* clear OPR, generate ack */ UDCCS0 = UDCCS0_OPR; break; } count--; udelay(1); } while (count); } #endif } else if (ep->dev->req_pending) ep0start(ep->dev, 0, "IN"); return is_short; } /* * read_fifo - unload packet(s) from the fifo we use for usb OUT * transfers and put them into the request. caller should have made * sure there's at least one packet ready. * * returns true if the request completed because of short packet or the * request buffer having filled (and maybe overran till end-of-packet). */ static int read_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req) { for (;;) { u32 udccs; u8 *buf; unsigned bufferspace, count, is_short; /* make sure there's a packet in the FIFO. * UDCCS_{BO,IO}_RPC are all the same bit value. * UDCCS_{BO,IO}_RNE are all the same bit value. */ udccs = *ep->reg_udccs; if (unlikely ((udccs & UDCCS_BO_RPC) == 0)) break; buf = req->req.buf + req->req.actual; prefetchw(buf); bufferspace = req->req.length - req->req.actual; /* read all bytes from this packet */ if (likely (udccs & UDCCS_BO_RNE)) { count = 1 + (0x0ff & *ep->reg_ubcr); req->req.actual += min (count, bufferspace); } else /* zlp */ count = 0; is_short = (count < ep->ep.maxpacket); DBG(DBG_VERY_NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n", ep->ep.name, udccs, count, is_short ? "/S" : "", req, req->req.actual, req->req.length); while (likely (count-- != 0)) { u8 byte = (u8) *ep->reg_uddr; if (unlikely (bufferspace == 0)) { /* this happens when the driver's buffer * is smaller than what the host sent. * discard the extra data. */ if (req->req.status != -EOVERFLOW) DMSG("%s overflow %d\n", ep->ep.name, count); req->req.status = -EOVERFLOW; } else { *buf++ = byte; bufferspace--; } } *ep->reg_udccs = UDCCS_BO_RPC; /* RPC/RSP/RNE could now reflect the other packet buffer */ /* iso is one request per packet */ if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) { if (udccs & UDCCS_IO_ROF) req->req.status = -EHOSTUNREACH; /* more like "is_done" */ is_short = 1; } /* completion */ if (is_short || req->req.actual == req->req.length) { done (ep, req, 0); if (list_empty(&ep->queue)) pio_irq_disable (ep->bEndpointAddress); return 1; } /* finished that packet. the next one may be waiting... */ } return 0; } /* * special ep0 version of the above. no UBCR0 or double buffering; status * handshaking is magic. most device protocols don't need control-OUT. * CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other * protocols do use them. */ static int read_ep0_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req) { u8 *buf, byte; unsigned bufferspace; buf = req->req.buf + req->req.actual; bufferspace = req->req.length - req->req.actual; while (UDCCS0 & UDCCS0_RNE) { byte = (u8) UDDR0; if (unlikely (bufferspace == 0)) { /* this happens when the driver's buffer * is smaller than what the host sent. * discard the extra data. */ if (req->req.status != -EOVERFLOW) DMSG("%s overflow\n", ep->ep.name); req->req.status = -EOVERFLOW; } else { *buf++ = byte; req->req.actual++; bufferspace--; } } UDCCS0 = UDCCS0_OPR | UDCCS0_IPR; /* completion */ if (req->req.actual >= req->req.length) return 1; /* finished that packet. the next one may be waiting... */ return 0; } #ifdef USE_DMA #define MAX_IN_DMA ((DCMD_LENGTH + 1) - BULK_FIFO_SIZE) static void start_dma_nodesc(struct pxa2xx_ep *ep, struct pxa2xx_request *req, int is_in) { u32 dcmd = req->req.length; u32 buf = req->req.dma; u32 fifo = io_v2p ((u32)ep->reg_uddr); /* caller guarantees there's a packet or more remaining * - IN may end with a short packet (TSP set separately), * - OUT is always full length */ buf += req->req.actual; dcmd -= req->req.actual; ep->dma_fixup = 0; /* no-descriptor mode can be simple for bulk-in, iso-in, iso-out */ DCSR(ep->dma) = DCSR_NODESC; if (is_in) { DSADR(ep->dma) = buf; DTADR(ep->dma) = fifo; if (dcmd > MAX_IN_DMA) dcmd = MAX_IN_DMA; else ep->dma_fixup = (dcmd % ep->ep.maxpacket) != 0; dcmd |= DCMD_BURST32 | DCMD_WIDTH1 | DCMD_FLOWTRG | DCMD_INCSRCADDR; } else { #ifdef USE_OUT_DMA DSADR(ep->dma) = fifo; DTADR(ep->dma) = buf; if (ep->bmAttributes != USB_ENDPOINT_XFER_ISOC) dcmd = ep->ep.maxpacket; dcmd |= DCMD_BURST32 | DCMD_WIDTH1 | DCMD_FLOWSRC | DCMD_INCTRGADDR; #endif } DCMD(ep->dma) = dcmd; DCSR(ep->dma) = DCSR_RUN | DCSR_NODESC | (unlikely(is_in) ? DCSR_STOPIRQEN /* use dma_nodesc_handler() */ : 0); /* use handle_ep() */ } static void kick_dma(struct pxa2xx_ep *ep, struct pxa2xx_request *req) { int is_in = ep->bEndpointAddress & USB_DIR_IN; if (is_in) { /* unaligned tx buffers and zlps only work with PIO */ if ((req->req.dma & 0x0f) != 0 || unlikely((req->req.length - req->req.actual) == 0)) { pio_irq_enable(ep->bEndpointAddress); if ((*ep->reg_udccs & UDCCS_BI_TFS) != 0) (void) write_fifo(ep, req); } else { start_dma_nodesc(ep, req, USB_DIR_IN); } } else { if ((req->req.length - req->req.actual) < ep->ep.maxpacket) { DMSG("%s short dma read...\n", ep->ep.name); /* we're always set up for pio out */ read_fifo (ep, req); } else { *ep->reg_udccs = UDCCS_BO_DME | (*ep->reg_udccs & UDCCS_BO_FST); start_dma_nodesc(ep, req, USB_DIR_OUT); } } } static void cancel_dma(struct pxa2xx_ep *ep) { struct pxa2xx_request *req; u32 tmp; if (DCSR(ep->dma) == 0 || list_empty(&ep->queue)) return; DCSR(ep->dma) = 0; while ((DCSR(ep->dma) & DCSR_STOPSTATE) == 0) cpu_relax(); req = list_entry(ep->queue.next, struct pxa2xx_request, queue); tmp = DCMD(ep->dma) & DCMD_LENGTH; req->req.actual = req->req.length - (tmp & DCMD_LENGTH); /* the last tx packet may be incomplete, so flush the fifo. * FIXME correct req.actual if we can */ if (ep->bEndpointAddress & USB_DIR_IN) *ep->reg_udccs = UDCCS_BI_FTF; } /* dma channel stopped ... normal tx end (IN), or on error (IN/OUT) */ static void dma_nodesc_handler(int dmach, void *_ep, struct pt_regs *r) { struct pxa2xx_ep *ep = _ep; struct pxa2xx_request *req; u32 tmp, completed; local_irq_disable(); req = list_entry(ep->queue.next, struct pxa2xx_request, queue); ep->dma_irqs++; ep->dev->stats.irqs++; HEX_DISPLAY(ep->dev->stats.irqs); /* ack/clear */ tmp = DCSR(ep->dma); DCSR(ep->dma) = tmp; if ((tmp & DCSR_STOPSTATE) == 0 || (DDADR(ep->dma) & DDADR_STOP) != 0) { DBG(DBG_VERBOSE, "%s, dcsr %08x ddadr %08x\n", ep->ep.name, DCSR(ep->dma), DDADR(ep->dma)); goto done; } DCSR(ep->dma) = 0; /* clear DCSR_STOPSTATE */ /* update transfer status */ completed = tmp & DCSR_BUSERR; if (ep->bEndpointAddress & USB_DIR_IN) tmp = DSADR(ep->dma); else tmp = DTADR(ep->dma); req->req.actual = tmp - req->req.dma; /* FIXME seems we sometimes see partial transfers... */ if (unlikely(completed != 0)) req->req.status = -EIO; else if (req->req.actual) { /* these registers have zeroes in low bits; they miscount * some (end-of-transfer) short packets: tx 14 as tx 12 */ if (ep->dma_fixup) req->req.actual = min(req->req.actual + 3, req->req.length); tmp = (req->req.length - req->req.actual); completed = (tmp == 0); if (completed && (ep->bEndpointAddress & USB_DIR_IN)) { /* maybe validate final short packet ... */ if ((req->req.actual % ep->ep.maxpacket) != 0) *ep->reg_udccs = UDCCS_BI_TSP/*|UDCCS_BI_TPC*/; /* ... or zlp, using pio fallback */ else if (ep->bmAttributes == USB_ENDPOINT_XFER_BULK && req->req.zero) { DMSG("%s zlp terminate ...\n", ep->ep.name); completed = 0; } } } if (likely(completed)) { done(ep, req, 0); /* maybe re-activate after completion */ if (ep->stopped || list_empty(&ep->queue)) goto done; req = list_entry(ep->queue.next, struct pxa2xx_request, queue); } kick_dma(ep, req); done: local_irq_enable(); } #endif /*-------------------------------------------------------------------------*/ static int pxa2xx_ep_queue(struct usb_ep *_ep, struct usb_request *_req, unsigned gfp_flags) { struct pxa2xx_request *req; struct pxa2xx_ep *ep; struct pxa2xx_udc *dev; unsigned long flags; req = container_of(_req, struct pxa2xx_request, req); if (unlikely (!_req || !_req->complete || !_req->buf || !list_empty(&req->queue))) { DMSG("%s, bad params\n", __FUNCTION__); return -EINVAL; } ep = container_of(_ep, struct pxa2xx_ep, ep); if (unlikely (!_ep || (!ep->desc && ep->ep.name != ep0name))) { DMSG("%s, bad ep\n", __FUNCTION__); return -EINVAL; } dev = ep->dev; if (unlikely (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { DMSG("%s, bogus device state\n", __FUNCTION__); return -ESHUTDOWN; } /* iso is always one packet per request, that's the only way * we can report per-packet status. that also helps with dma. */ if (unlikely (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC && req->req.length > le16_to_cpu (ep->desc->wMaxPacketSize))) return -EMSGSIZE; #ifdef USE_DMA // FIXME caller may already have done the dma mapping if (ep->dma >= 0) { _req->dma = dma_map_single(dev->dev, _req->buf, _req->length, ((ep->bEndpointAddress & USB_DIR_IN) != 0) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); } #endif DBG(DBG_NOISY, "%s queue req %p, len %d buf %p\n", _ep->name, _req, _req->length, _req->buf); local_irq_save(flags); _req->status = -EINPROGRESS; _req->actual = 0; /* kickstart this i/o queue? */ if (list_empty(&ep->queue) && !ep->stopped) { if (ep->desc == 0 /* ep0 */) { unsigned length = _req->length; switch (dev->ep0state) { case EP0_IN_DATA_PHASE: dev->stats.write.ops++; if (write_ep0_fifo(ep, req)) req = NULL; break; case EP0_OUT_DATA_PHASE: dev->stats.read.ops++; /* messy ... */ if (dev->req_config) { DBG(DBG_VERBOSE, "ep0 config ack%s\n", dev->has_cfr ? "" : " raced"); if (dev->has_cfr) UDCCFR = UDCCFR_AREN|UDCCFR_ACM |UDCCFR_MB1; done(ep, req, 0); dev->ep0state = EP0_END_XFER; local_irq_restore (flags); return 0; } if (dev->req_pending) ep0start(dev, UDCCS0_IPR, "OUT"); if (length == 0 || ((UDCCS0 & UDCCS0_RNE) != 0 && read_ep0_fifo(ep, req))) { ep0_idle(dev); done(ep, req, 0); req = NULL; } break; default: DMSG("ep0 i/o, odd state %d\n", dev->ep0state); local_irq_restore (flags); return -EL2HLT; } #ifdef USE_DMA /* either start dma or prime pio pump */ } else if (ep->dma >= 0) { kick_dma(ep, req); #endif /* can the FIFO can satisfy the request immediately? */ } else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) { if ((*ep->reg_udccs & UDCCS_BI_TFS) != 0 && write_fifo(ep, req)) req = NULL; } else if ((*ep->reg_udccs & UDCCS_BO_RFS) != 0 && read_fifo(ep, req)) { req = NULL; } if (likely (req && ep->desc) && ep->dma < 0) pio_irq_enable(ep->bEndpointAddress); } /* pio or dma irq handler advances the queue. */ if (likely (req != 0)) list_add_tail(&req->queue, &ep->queue); local_irq_restore(flags); return 0; } /* * nuke - dequeue ALL requests */ static void nuke(struct pxa2xx_ep *ep, int status) { struct pxa2xx_request *req; /* called with irqs blocked */ #ifdef USE_DMA if (ep->dma >= 0 && !ep->stopped) cancel_dma(ep); #endif while (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct pxa2xx_request, queue); done(ep, req, status); } if (ep->desc) pio_irq_disable (ep->bEndpointAddress); } /* dequeue JUST ONE request */ static int pxa2xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct pxa2xx_ep *ep; struct pxa2xx_request *req; unsigned long flags; ep = container_of(_ep, struct pxa2xx_ep, ep); if (!_ep || ep->ep.name == ep0name) return -EINVAL; local_irq_save(flags); /* make sure it's actually queued on this endpoint */ list_for_each_entry (req, &ep->queue, queue) { if (&req->req == _req) break; } if (&req->req != _req) { local_irq_restore(flags); return -EINVAL; } #ifdef USE_DMA if (ep->dma >= 0 && ep->queue.next == &req->queue && !ep->stopped) { cancel_dma(ep); done(ep, req, -ECONNRESET); /* restart i/o */ if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct pxa2xx_request, queue); kick_dma(ep, req); } } else #endif done(ep, req, -ECONNRESET); local_irq_restore(flags); return 0; } /*-------------------------------------------------------------------------*/ static int pxa2xx_ep_set_halt(struct usb_ep *_ep, int value) { struct pxa2xx_ep *ep; unsigned long flags; ep = container_of(_ep, struct pxa2xx_ep, ep); if (unlikely (!_ep || (!ep->desc && ep->ep.name != ep0name)) || ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) { DMSG("%s, bad ep\n", __FUNCTION__); return -EINVAL; } if (value == 0) { /* this path (reset toggle+halt) is needed to implement * SET_INTERFACE on normal hardware. but it can't be * done from software on the PXA UDC, and the hardware * forgets to do it as part of SET_INTERFACE automagic. */ DMSG("only host can clear %s halt\n", _ep->name); return -EROFS; } local_irq_save(flags); if ((ep->bEndpointAddress & USB_DIR_IN) != 0 && ((*ep->reg_udccs & UDCCS_BI_TFS) == 0 || !list_empty(&ep->queue))) { local_irq_restore(flags); return -EAGAIN; } /* FST bit is the same for control, bulk in, bulk out, interrupt in */ *ep->reg_udccs = UDCCS_BI_FST|UDCCS_BI_FTF; /* ep0 needs special care */ if (!ep->desc) { start_watchdog(ep->dev); ep->dev->req_pending = 0; ep->dev->ep0state = EP0_STALL; /* and bulk/intr endpoints like dropping stalls too */ } else { unsigned i; for (i = 0; i < 1000; i += 20) { if (*ep->reg_udccs & UDCCS_BI_SST) break; udelay(20); } } local_irq_restore(flags); DBG(DBG_VERBOSE, "%s halt\n", _ep->name); return 0; } static int pxa2xx_ep_fifo_status(struct usb_ep *_ep) { struct pxa2xx_ep *ep; ep = container_of(_ep, struct pxa2xx_ep, ep); if (!_ep) { DMSG("%s, bad ep\n", __FUNCTION__); return -ENODEV; } /* pxa can't report unclaimed bytes from IN fifos */ if ((ep->bEndpointAddress & USB_DIR_IN) != 0) return -EOPNOTSUPP; if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || (*ep->reg_udccs & UDCCS_BO_RFS) == 0) return 0; else return (*ep->reg_ubcr & 0xfff) + 1; } static void pxa2xx_ep_fifo_flush(struct usb_ep *_ep) { struct pxa2xx_ep *ep; ep = container_of(_ep, struct pxa2xx_ep, ep); if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) { DMSG("%s, bad ep\n", __FUNCTION__); return; } /* toggle and halt bits stay unchanged */ /* for OUT, just read and discard the FIFO contents. */ if ((ep->bEndpointAddress & USB_DIR_IN) == 0) { while (((*ep->reg_udccs) & UDCCS_BO_RNE) != 0) (void) *ep->reg_uddr; return; } /* most IN status is the same, but ISO can't stall */ *ep->reg_udccs = UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR | (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) ? 0 : UDCCS_BI_SST; } static struct usb_ep_ops pxa2xx_ep_ops = { .enable = pxa2xx_ep_enable, .disable = pxa2xx_ep_disable, .alloc_request = pxa2xx_ep_alloc_request, .free_request = pxa2xx_ep_free_request, .alloc_buffer = pxa2xx_ep_alloc_buffer, .free_buffer = pxa2xx_ep_free_buffer, .queue = pxa2xx_ep_queue, .dequeue = pxa2xx_ep_dequeue, .set_halt = pxa2xx_ep_set_halt, .fifo_status = pxa2xx_ep_fifo_status, .fifo_flush = pxa2xx_ep_fifo_flush, }; /* --------------------------------------------------------------------------- * device-scoped parts of the api to the usb controller hardware * --------------------------------------------------------------------------- */ static int pxa2xx_udc_get_frame(struct usb_gadget *_gadget) { return ((UFNRH & 0x07) << 8) | (UFNRL & 0xff); } static int pxa2xx_udc_wakeup(struct usb_gadget *_gadget) { /* host may not have enabled remote wakeup */ if ((UDCCS0 & UDCCS0_DRWF) == 0) return -EHOSTUNREACH; udc_set_mask_UDCCR(UDCCR_RSM); return 0; } static void stop_activity(struct pxa2xx_udc *, struct usb_gadget_driver *); static void udc_enable (struct pxa2xx_udc *); static void udc_disable(struct pxa2xx_udc *); /* We disable the UDC -- and its 48 MHz clock -- whenever it's not * in active use. */ static int pullup(struct pxa2xx_udc *udc, int is_active) { is_active = is_active && udc->vbus && udc->pullup; DMSG("%s\n", is_active ? "active" : "inactive"); if (is_active) udc_enable(udc); else { if (udc->gadget.speed != USB_SPEED_UNKNOWN) { DMSG("disconnect %s\n", udc->driver ? udc->driver->driver.name : "(no driver)"); stop_activity(udc, udc->driver); } udc_disable(udc); } return 0; } /* VBUS reporting logically comes from a transceiver */ static int pxa2xx_udc_vbus_session(struct usb_gadget *_gadget, int is_active) { struct pxa2xx_udc *udc; udc = container_of(_gadget, struct pxa2xx_udc, gadget); udc->vbus = is_active = (is_active != 0); DMSG("vbus %s\n", is_active ? "supplied" : "inactive"); pullup(udc, is_active); return 0; } /* drivers may have software control over D+ pullup */ static int pxa2xx_udc_pullup(struct usb_gadget *_gadget, int is_active) { struct pxa2xx_udc *udc; udc = container_of(_gadget, struct pxa2xx_udc, gadget); /* not all boards support pullup control */ if (!udc->mach->udc_command) return -EOPNOTSUPP; is_active = (is_active != 0); udc->pullup = is_active; pullup(udc, is_active); return 0; } static const struct usb_gadget_ops pxa2xx_udc_ops = { .get_frame = pxa2xx_udc_get_frame, .wakeup = pxa2xx_udc_wakeup, .vbus_session = pxa2xx_udc_vbus_session, .pullup = pxa2xx_udc_pullup, // .vbus_draw ... boards may consume current from VBUS, up to // 100-500mA based on config. the 500uA suspend ceiling means // that exclusively vbus-powered PXA designs violate USB specs. }; /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_GADGET_DEBUG_FILES static const char proc_node_name [] = "driver/udc"; static int udc_proc_read(char *page, char **start, off_t off, int count, int *eof, void *_dev) { char *buf = page; struct pxa2xx_udc *dev = _dev; char *next = buf; unsigned size = count; unsigned long flags; int i, t; u32 tmp; if (off != 0) return 0; local_irq_save(flags); /* basic device status */ t = scnprintf(next, size, DRIVER_DESC "\n" "%s version: %s\nGadget driver: %s\nHost %s\n\n", driver_name, DRIVER_VERSION SIZE_STR DMASTR, dev->driver ? dev->driver->driver.name : "(none)", is_vbus_present() ? "full speed" : "disconnected"); size -= t; next += t; /* registers for device and ep0 */ t = scnprintf(next, size, "uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n", UICR1, UICR0, USIR1, USIR0, UFNRH, UFNRL); size -= t; next += t; tmp = UDCCR; t = scnprintf(next, size, "udccr %02X =%s%s%s%s%s%s%s%s\n", tmp, (tmp & UDCCR_REM) ? " rem" : "", (tmp & UDCCR_RSTIR) ? " rstir" : "", (tmp & UDCCR_SRM) ? " srm" : "", (tmp & UDCCR_SUSIR) ? " susir" : "", (tmp & UDCCR_RESIR) ? " resir" : "", (tmp & UDCCR_RSM) ? " rsm" : "", (tmp & UDCCR_UDA) ? " uda" : "", (tmp & UDCCR_UDE) ? " ude" : ""); size -= t; next += t; tmp = UDCCS0; t = scnprintf(next, size, "udccs0 %02X =%s%s%s%s%s%s%s%s\n", tmp, (tmp & UDCCS0_SA) ? " sa" : "", (tmp & UDCCS0_RNE) ? " rne" : "", (tmp & UDCCS0_FST) ? " fst" : "", (tmp & UDCCS0_SST) ? " sst" : "", (tmp & UDCCS0_DRWF) ? " dwrf" : "", (tmp & UDCCS0_FTF) ? " ftf" : "", (tmp & UDCCS0_IPR) ? " ipr" : "", (tmp & UDCCS0_OPR) ? " opr" : ""); size -= t; next += t; if (dev->has_cfr) { tmp = UDCCFR; t = scnprintf(next, size, "udccfr %02X =%s%s\n", tmp, (tmp & UDCCFR_AREN) ? " aren" : "", (tmp & UDCCFR_ACM) ? " acm" : ""); size -= t; next += t; } if (!is_vbus_present() || !dev->driver) goto done; t = scnprintf(next, size, "ep0 IN %lu/%lu, OUT %lu/%lu\nirqs %lu\n\n", dev->stats.write.bytes, dev->stats.write.ops, dev->stats.read.bytes, dev->stats.read.ops, dev->stats.irqs); size -= t; next += t; /* dump endpoint queues */ for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { struct pxa2xx_ep *ep = &dev->ep [i]; struct pxa2xx_request *req; int t; if (i != 0) { const struct usb_endpoint_descriptor *d; d = ep->desc; if (!d) continue; tmp = *dev->ep [i].reg_udccs; t = scnprintf(next, size, "%s max %d %s udccs %02x irqs %lu/%lu\n", ep->ep.name, le16_to_cpu (d->wMaxPacketSize), (ep->dma >= 0) ? "dma" : "pio", tmp, ep->pio_irqs, ep->dma_irqs); /* TODO translate all five groups of udccs bits! */ } else /* ep0 should only have one transfer queued */ t = scnprintf(next, size, "ep0 max 16 pio irqs %lu\n", ep->pio_irqs); if (t <= 0 || t > size) goto done; size -= t; next += t; if (list_empty(&ep->queue)) { t = scnprintf(next, size, "\t(nothing queued)\n"); if (t <= 0 || t > size) goto done; size -= t; next += t; continue; } list_for_each_entry(req, &ep->queue, queue) { #ifdef USE_DMA if (ep->dma >= 0 && req->queue.prev == &ep->queue) t = scnprintf(next, size, "\treq %p len %d/%d " "buf %p (dma%d dcmd %08x)\n", &req->req, req->req.actual, req->req.length, req->req.buf, ep->dma, DCMD(ep->dma) // low 13 bits == bytes-to-go ); else #endif t = scnprintf(next, size, "\treq %p len %d/%d buf %p\n", &req->req, req->req.actual, req->req.length, req->req.buf); if (t <= 0 || t > size) goto done; size -= t; next += t; } } done: local_irq_restore(flags); *eof = 1; return count - size; } #define create_proc_files() \ create_proc_read_entry(proc_node_name, 0, NULL, udc_proc_read, dev) #define remove_proc_files() \ remove_proc_entry(proc_node_name, NULL) #else /* !CONFIG_USB_GADGET_DEBUG_FILES */ #define create_proc_files() do {} while (0) #define remove_proc_files() do {} while (0) #endif /* CONFIG_USB_GADGET_DEBUG_FILES */ /* "function" sysfs attribute */ static ssize_t show_function (struct device *_dev, struct device_attribute *attr, char *buf) { struct pxa2xx_udc *dev = dev_get_drvdata (_dev); if (!dev->driver || !dev->driver->function || strlen (dev->driver->function) > PAGE_SIZE) return 0; return scnprintf (buf, PAGE_SIZE, "%s\n", dev->driver->function); } static DEVICE_ATTR (function, S_IRUGO, show_function, NULL); /*-------------------------------------------------------------------------*/ /* * udc_disable - disable USB device controller */ static void udc_disable(struct pxa2xx_udc *dev) { /* block all irqs */ udc_set_mask_UDCCR(UDCCR_SRM|UDCCR_REM); UICR0 = UICR1 = 0xff; UFNRH = UFNRH_SIM; /* if hardware supports it, disconnect from usb */ pullup_off(); udc_clear_mask_UDCCR(UDCCR_UDE); #ifdef CONFIG_ARCH_PXA /* Disable clock for USB device */ pxa_set_cken(CKEN11_USB, 0); #endif ep0_idle (dev); dev->gadget.speed = USB_SPEED_UNKNOWN; LED_CONNECTED_OFF; } /* * udc_reinit - initialize software state */ static void udc_reinit(struct pxa2xx_udc *dev) { u32 i; /* device/ep0 records init */ INIT_LIST_HEAD (&dev->gadget.ep_list); INIT_LIST_HEAD (&dev->gadget.ep0->ep_list); dev->ep0state = EP0_IDLE; /* basic endpoint records init */ for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { struct pxa2xx_ep *ep = &dev->ep[i]; if (i != 0) list_add_tail (&ep->ep.ep_list, &dev->gadget.ep_list); ep->desc = NULL; ep->stopped = 0; INIT_LIST_HEAD (&ep->queue); ep->pio_irqs = ep->dma_irqs = 0; } /* the rest was statically initialized, and is read-only */ } /* until it's enabled, this UDC should be completely invisible * to any USB host. */ static void udc_enable (struct pxa2xx_udc *dev) { udc_clear_mask_UDCCR(UDCCR_UDE); #ifdef CONFIG_ARCH_PXA /* Enable clock for USB device */ pxa_set_cken(CKEN11_USB, 1); udelay(5); #endif /* try to clear these bits before we enable the udc */ udc_ack_int_UDCCR(UDCCR_SUSIR|/*UDCCR_RSTIR|*/UDCCR_RESIR); ep0_idle(dev); dev->gadget.speed = USB_SPEED_UNKNOWN; dev->stats.irqs = 0; /* * sequence taken from chapter 12.5.10, PXA250 AppProcDevManual: * - enable UDC * - if RESET is already in progress, ack interrupt * - unmask reset interrupt */ udc_set_mask_UDCCR(UDCCR_UDE); if (!(UDCCR & UDCCR_UDA)) udc_ack_int_UDCCR(UDCCR_RSTIR); if (dev->has_cfr /* UDC_RES2 is defined */) { /* pxa255 (a0+) can avoid a set_config race that could * prevent gadget drivers from configuring correctly */ UDCCFR = UDCCFR_ACM | UDCCFR_MB1; } else { /* "USB test mode" for pxa250 errata 40-42 (stepping a0, a1) * which could result in missing packets and interrupts. * supposedly one bit per endpoint, controlling whether it * double buffers or not; ACM/AREN bits fit into the holes. * zero bits (like USIR0_IRx) disable double buffering. */ UDC_RES1 = 0x00; UDC_RES2 = 0x00; } #ifdef DISABLE_TEST_MODE /* "test mode" seems to have become the default in later chip * revs, preventing double buffering (and invalidating docs). * this EXPERIMENT enables it for bulk endpoints by tweaking * undefined/reserved register bits (that other drivers clear). * Belcarra code comments noted this usage. */ if (fifo_mode & 1) { /* IN endpoints */ UDC_RES1 |= USIR0_IR1|USIR0_IR6; UDC_RES2 |= USIR1_IR11; } if (fifo_mode & 2) { /* OUT endpoints */ UDC_RES1 |= USIR0_IR2|USIR0_IR7; UDC_RES2 |= USIR1_IR12; } #endif /* enable suspend/resume and reset irqs */ udc_clear_mask_UDCCR(UDCCR_SRM | UDCCR_REM); /* enable ep0 irqs */ UICR0 &= ~UICR0_IM0; /* if hardware supports it, pullup D+ and wait for reset */ pullup_on(); } /* when a driver is successfully registered, it will receive * control requests including set_configuration(), which enables * non-control requests. then usb traffic follows until a * disconnect is reported. then a host may connect again, or * the driver might get unbound. */ int usb_gadget_register_driver(struct usb_gadget_driver *driver) { struct pxa2xx_udc *dev = the_controller; int retval; if (!driver || driver->speed != USB_SPEED_FULL || !driver->bind || !driver->unbind || !driver->disconnect || !driver->setup) return -EINVAL; if (!dev) return -ENODEV; if (dev->driver) return -EBUSY; /* first hook up the driver ... */ dev->driver = driver; dev->gadget.dev.driver = &driver->driver; dev->pullup = 1; device_add (&dev->gadget.dev); retval = driver->bind(&dev->gadget); if (retval) { DMSG("bind to driver %s --> error %d\n", driver->driver.name, retval); device_del (&dev->gadget.dev); dev->driver = NULL; dev->gadget.dev.driver = NULL; return retval; } device_create_file(dev->dev, &dev_attr_function); /* ... then enable host detection and ep0; and we're ready * for set_configuration as well as eventual disconnect. */ DMSG("registered gadget driver '%s'\n", driver->driver.name); pullup(dev, 1); dump_state(dev); return 0; } EXPORT_SYMBOL(usb_gadget_register_driver); static void stop_activity(struct pxa2xx_udc *dev, struct usb_gadget_driver *driver) { int i; /* don't disconnect drivers more than once */ if (dev->gadget.speed == USB_SPEED_UNKNOWN) driver = NULL; dev->gadget.speed = USB_SPEED_UNKNOWN; /* prevent new request submissions, kill any outstanding requests */ for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { struct pxa2xx_ep *ep = &dev->ep[i]; ep->stopped = 1; nuke(ep, -ESHUTDOWN); } del_timer_sync(&dev->timer); /* report disconnect; the driver is already quiesced */ LED_CONNECTED_OFF; if (driver) driver->disconnect(&dev->gadget); /* re-init driver-visible data structures */ udc_reinit(dev); } int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) { struct pxa2xx_udc *dev = the_controller; if (!dev) return -ENODEV; if (!driver || driver != dev->driver) return -EINVAL; local_irq_disable(); pullup(dev, 0); stop_activity(dev, driver); local_irq_enable(); driver->unbind(&dev->gadget); dev->driver = NULL; device_del (&dev->gadget.dev); device_remove_file(dev->dev, &dev_attr_function); DMSG("unregistered gadget driver '%s'\n", driver->driver.name); dump_state(dev); return 0; } EXPORT_SYMBOL(usb_gadget_unregister_driver); /*-------------------------------------------------------------------------*/ #ifdef CONFIG_ARCH_LUBBOCK /* Lubbock has separate connect and disconnect irqs. More typical designs * use one GPIO as the VBUS IRQ, and another to control the D+ pullup. */ static irqreturn_t lubbock_vbus_irq(int irq, void *_dev, struct pt_regs *r) { struct pxa2xx_udc *dev = _dev; int vbus; dev->stats.irqs++; HEX_DISPLAY(dev->stats.irqs); switch (irq) { case LUBBOCK_USB_IRQ: LED_CONNECTED_ON; vbus = 1; disable_irq(LUBBOCK_USB_IRQ); enable_irq(LUBBOCK_USB_DISC_IRQ); break; case LUBBOCK_USB_DISC_IRQ: LED_CONNECTED_OFF; vbus = 0; disable_irq(LUBBOCK_USB_DISC_IRQ); enable_irq(LUBBOCK_USB_IRQ); break; default: return IRQ_NONE; } pxa2xx_udc_vbus_session(&dev->gadget, vbus); return IRQ_HANDLED; } #endif /*-------------------------------------------------------------------------*/ static inline void clear_ep_state (struct pxa2xx_udc *dev) { unsigned i; /* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint * fifos, and pending transactions mustn't be continued in any case. */ for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++) nuke(&dev->ep[i], -ECONNABORTED); } static void udc_watchdog(unsigned long _dev) { struct pxa2xx_udc *dev = (void *)_dev; local_irq_disable(); if (dev->ep0state == EP0_STALL && (UDCCS0 & UDCCS0_FST) == 0 && (UDCCS0 & UDCCS0_SST) == 0) { UDCCS0 = UDCCS0_FST|UDCCS0_FTF; DBG(DBG_VERBOSE, "ep0 re-stall\n"); start_watchdog(dev); } local_irq_enable(); } static void handle_ep0 (struct pxa2xx_udc *dev) { u32 udccs0 = UDCCS0; struct pxa2xx_ep *ep = &dev->ep [0]; struct pxa2xx_request *req; union { struct usb_ctrlrequest r; u8 raw [8]; u32 word [2]; } u; if (list_empty(&ep->queue)) req = NULL; else req = list_entry(ep->queue.next, struct pxa2xx_request, queue); /* clear stall status */ if (udccs0 & UDCCS0_SST) { nuke(ep, -EPIPE); UDCCS0 = UDCCS0_SST; del_timer(&dev->timer); ep0_idle(dev); } /* previous request unfinished? non-error iff back-to-back ... */ if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) { nuke(ep, 0); del_timer(&dev->timer); ep0_idle(dev); } switch (dev->ep0state) { case EP0_IDLE: /* late-breaking status? */ udccs0 = UDCCS0; /* start control request? */ if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE)) == (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) { int i; nuke (ep, -EPROTO); /* read SETUP packet */ for (i = 0; i < 8; i++) { if (unlikely(!(UDCCS0 & UDCCS0_RNE))) { bad_setup: DMSG("SETUP %d!\n", i); goto stall; } u.raw [i] = (u8) UDDR0; } if (unlikely((UDCCS0 & UDCCS0_RNE) != 0)) goto bad_setup; got_setup: DBG(DBG_VERBOSE, "SETUP %02x.%02x v%04x i%04x l%04x\n", u.r.bRequestType, u.r.bRequest, le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), le16_to_cpu(u.r.wLength)); /* cope with automagic for some standard requests. */ dev->req_std = (u.r.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD; dev->req_config = 0; dev->req_pending = 1; switch (u.r.bRequest) { /* hardware restricts gadget drivers here! */ case USB_REQ_SET_CONFIGURATION: if (u.r.bRequestType == USB_RECIP_DEVICE) { /* reflect hardware's automagic * up to the gadget driver. */ config_change: dev->req_config = 1; clear_ep_state(dev); /* if !has_cfr, there's no synch * else use AREN (later) not SA|OPR * USIR0_IR0 acts edge sensitive */ } break; /* ... and here, even more ... */ case USB_REQ_SET_INTERFACE: if (u.r.bRequestType == USB_RECIP_INTERFACE) { /* udc hardware is broken by design: * - altsetting may only be zero; * - hw resets all interfaces' eps; * - ep reset doesn't include halt(?). */ DMSG("broken set_interface (%d/%d)\n", le16_to_cpu(u.r.wIndex), le16_to_cpu(u.r.wValue)); goto config_change; } break; /* hardware was supposed to hide this */ case USB_REQ_SET_ADDRESS: if (u.r.bRequestType == USB_RECIP_DEVICE) { ep0start(dev, 0, "address"); return; } break; } if (u.r.bRequestType & USB_DIR_IN) dev->ep0state = EP0_IN_DATA_PHASE; else dev->ep0state = EP0_OUT_DATA_PHASE; i = dev->driver->setup(&dev->gadget, &u.r); if (i < 0) { /* hardware automagic preventing STALL... */ if (dev->req_config) { /* hardware sometimes neglects to tell * tell us about config change events, * so later ones may fail... */ WARN("config change %02x fail %d?\n", u.r.bRequest, i); return; /* TODO experiment: if has_cfr, * hardware didn't ACK; maybe we * could actually STALL! */ } DBG(DBG_VERBOSE, "protocol STALL, " "%02x err %d\n", UDCCS0, i); stall: /* the watchdog timer helps deal with cases * where udc seems to clear FST wrongly, and * then NAKs instead of STALLing. */ ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall"); start_watchdog(dev); dev->ep0state = EP0_STALL; /* deferred i/o == no response yet */ } else if (dev->req_pending) { if (likely(dev->ep0state == EP0_IN_DATA_PHASE || dev->req_std || u.r.wLength)) ep0start(dev, 0, "defer"); else ep0start(dev, UDCCS0_IPR, "defer/IPR"); } /* expect at least one data or status stage irq */ return; } else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA)) == (UDCCS0_OPR|UDCCS0_SA))) { unsigned i; /* pxa210/250 erratum 131 for B0/B1 says RNE lies. * still observed on a pxa255 a0. */ DBG(DBG_VERBOSE, "e131\n"); nuke(ep, -EPROTO); /* read SETUP data, but don't trust it too much */ for (i = 0; i < 8; i++) u.raw [i] = (u8) UDDR0; if ((u.r.bRequestType & USB_RECIP_MASK) > USB_RECIP_OTHER) goto stall; if (u.word [0] == 0 && u.word [1] == 0) goto stall; goto got_setup; } else { /* some random early IRQ: * - we acked FST * - IPR cleared * - OPR got set, without SA (likely status stage) */ UDCCS0 = udccs0 & (UDCCS0_SA|UDCCS0_OPR); } break; case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */ if (udccs0 & UDCCS0_OPR) { UDCCS0 = UDCCS0_OPR|UDCCS0_FTF; DBG(DBG_VERBOSE, "ep0in premature status\n"); if (req) done(ep, req, 0); ep0_idle(dev); } else /* irq was IPR clearing */ { if (req) { /* this IN packet might finish the request */ (void) write_ep0_fifo(ep, req); } /* else IN token before response was written */ } break; case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */ if (udccs0 & UDCCS0_OPR) { if (req) { /* this OUT packet might finish the request */ if (read_ep0_fifo(ep, req)) done(ep, req, 0); /* else more OUT packets expected */ } /* else OUT token before read was issued */ } else /* irq was IPR clearing */ { DBG(DBG_VERBOSE, "ep0out premature status\n"); if (req) done(ep, req, 0); ep0_idle(dev); } break; case EP0_END_XFER: if (req) done(ep, req, 0); /* ack control-IN status (maybe in-zlp was skipped) * also appears after some config change events. */ if (udccs0 & UDCCS0_OPR) UDCCS0 = UDCCS0_OPR; ep0_idle(dev); break; case EP0_STALL: UDCCS0 = UDCCS0_FST; break; } USIR0 = USIR0_IR0; } static void handle_ep(struct pxa2xx_ep *ep) { struct pxa2xx_request *req; int is_in = ep->bEndpointAddress & USB_DIR_IN; int completed; u32 udccs, tmp; do { completed = 0; if (likely (!list_empty(&ep->queue))) req = list_entry(ep->queue.next, struct pxa2xx_request, queue); else req = NULL; // TODO check FST handling udccs = *ep->reg_udccs; if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */ tmp = UDCCS_BI_TUR; if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK)) tmp |= UDCCS_BI_SST; tmp &= udccs; if (likely (tmp)) *ep->reg_udccs = tmp; if (req && likely ((udccs & UDCCS_BI_TFS) != 0)) completed = write_fifo(ep, req); } else { /* irq from RPC (or for ISO, ROF) */ if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK)) tmp = UDCCS_BO_SST | UDCCS_BO_DME; else tmp = UDCCS_IO_ROF | UDCCS_IO_DME; tmp &= udccs; if (likely(tmp)) *ep->reg_udccs = tmp; /* fifos can hold packets, ready for reading... */ if (likely(req)) { #ifdef USE_OUT_DMA // TODO didn't yet debug out-dma. this approach assumes // the worst about short packets and RPC; it might be better. if (likely(ep->dma >= 0)) { if (!(udccs & UDCCS_BO_RSP)) { *ep->reg_udccs = UDCCS_BO_RPC; ep->dma_irqs++; return; } } #endif completed = read_fifo(ep, req); } else pio_irq_disable (ep->bEndpointAddress); } ep->pio_irqs++; } while (completed); } /* * pxa2xx_udc_irq - interrupt handler * * avoid delays in ep0 processing. the control handshaking isn't always * under software control (pxa250c0 and the pxa255 are better), and delays * could cause usb protocol errors. */ static irqreturn_t pxa2xx_udc_irq(int irq, void *_dev, struct pt_regs *r) { struct pxa2xx_udc *dev = _dev; int handled; dev->stats.irqs++; HEX_DISPLAY(dev->stats.irqs); do { u32 udccr = UDCCR; handled = 0; /* SUSpend Interrupt Request */ if (unlikely(udccr & UDCCR_SUSIR)) { udc_ack_int_UDCCR(UDCCR_SUSIR); handled = 1; DBG(DBG_VERBOSE, "USB suspend%s\n", is_vbus_present() ? "" : "+disconnect"); if (!is_vbus_present()) stop_activity(dev, dev->driver); else if (dev->gadget.speed != USB_SPEED_UNKNOWN && dev->driver && dev->driver->suspend) dev->driver->suspend(&dev->gadget); ep0_idle (dev); } /* RESume Interrupt Request */ if (unlikely(udccr & UDCCR_RESIR)) { udc_ack_int_UDCCR(UDCCR_RESIR); handled = 1; DBG(DBG_VERBOSE, "USB resume\n"); if (dev->gadget.speed != USB_SPEED_UNKNOWN && dev->driver && dev->driver->resume && is_vbus_present()) dev->driver->resume(&dev->gadget); } /* ReSeT Interrupt Request - USB reset */ if (unlikely(udccr & UDCCR_RSTIR)) { udc_ack_int_UDCCR(UDCCR_RSTIR); handled = 1; if ((UDCCR & UDCCR_UDA) == 0) { DBG(DBG_VERBOSE, "USB reset start\n"); /* reset driver and endpoints, * in case that's not yet done */ stop_activity (dev, dev->driver); } else { DBG(DBG_VERBOSE, "USB reset end\n"); dev->gadget.speed = USB_SPEED_FULL; LED_CONNECTED_ON; memset(&dev->stats, 0, sizeof dev->stats); /* driver and endpoints are still reset */ } } else { u32 usir0 = USIR0 & ~UICR0; u32 usir1 = USIR1 & ~UICR1; int i; if (unlikely (!usir0 && !usir1)) continue; DBG(DBG_VERY_NOISY, "irq %02x.%02x\n", usir1, usir0); /* control traffic */ if (usir0 & USIR0_IR0) { dev->ep[0].pio_irqs++; handle_ep0(dev); handled = 1; } /* endpoint data transfers */ for (i = 0; i < 8; i++) { u32 tmp = 1 << i; if (i && (usir0 & tmp)) { handle_ep(&dev->ep[i]); USIR0 |= tmp; handled = 1; } if (usir1 & tmp) { handle_ep(&dev->ep[i+8]); USIR1 |= tmp; handled = 1; } } } /* we could also ask for 1 msec SOF (SIR) interrupts */ } while (handled); return IRQ_HANDLED; } /*-------------------------------------------------------------------------*/ static void nop_release (struct device *dev) { DMSG("%s %s\n", __FUNCTION__, dev->bus_id); } /* this uses load-time allocation and initialization (instead of * doing it at run-time) to save code, eliminate fault paths, and * be more obviously correct. */ static struct pxa2xx_udc memory = { .gadget = { .ops = &pxa2xx_udc_ops, .ep0 = &memory.ep[0].ep, .name = driver_name, .dev = { .bus_id = "gadget", .release = nop_release, }, }, /* control endpoint */ .ep[0] = { .ep = { .name = ep0name, .ops = &pxa2xx_ep_ops, .maxpacket = EP0_FIFO_SIZE, }, .dev = &memory, .reg_udccs = &UDCCS0, .reg_uddr = &UDDR0, }, /* first group of endpoints */ .ep[1] = { .ep = { .name = "ep1in-bulk", .ops = &pxa2xx_ep_ops, .maxpacket = BULK_FIFO_SIZE, }, .dev = &memory, .fifo_size = BULK_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 1, .bmAttributes = USB_ENDPOINT_XFER_BULK, .reg_udccs = &UDCCS1, .reg_uddr = &UDDR1, drcmr (25) }, .ep[2] = { .ep = { .name = "ep2out-bulk", .ops = &pxa2xx_ep_ops, .maxpacket = BULK_FIFO_SIZE, }, .dev = &memory, .fifo_size = BULK_FIFO_SIZE, .bEndpointAddress = 2, .bmAttributes = USB_ENDPOINT_XFER_BULK, .reg_udccs = &UDCCS2, .reg_ubcr = &UBCR2, .reg_uddr = &UDDR2, drcmr (26) }, #ifndef CONFIG_USB_PXA2XX_SMALL .ep[3] = { .ep = { .name = "ep3in-iso", .ops = &pxa2xx_ep_ops, .maxpacket = ISO_FIFO_SIZE, }, .dev = &memory, .fifo_size = ISO_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 3, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .reg_udccs = &UDCCS3, .reg_uddr = &UDDR3, drcmr (27) }, .ep[4] = { .ep = { .name = "ep4out-iso", .ops = &pxa2xx_ep_ops, .maxpacket = ISO_FIFO_SIZE, }, .dev = &memory, .fifo_size = ISO_FIFO_SIZE, .bEndpointAddress = 4, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .reg_udccs = &UDCCS4, .reg_ubcr = &UBCR4, .reg_uddr = &UDDR4, drcmr (28) }, .ep[5] = { .ep = { .name = "ep5in-int", .ops = &pxa2xx_ep_ops, .maxpacket = INT_FIFO_SIZE, }, .dev = &memory, .fifo_size = INT_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 5, .bmAttributes = USB_ENDPOINT_XFER_INT, .reg_udccs = &UDCCS5, .reg_uddr = &UDDR5, }, /* second group of endpoints */ .ep[6] = { .ep = { .name = "ep6in-bulk", .ops = &pxa2xx_ep_ops, .maxpacket = BULK_FIFO_SIZE, }, .dev = &memory, .fifo_size = BULK_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 6, .bmAttributes = USB_ENDPOINT_XFER_BULK, .reg_udccs = &UDCCS6, .reg_uddr = &UDDR6, drcmr (30) }, .ep[7] = { .ep = { .name = "ep7out-bulk", .ops = &pxa2xx_ep_ops, .maxpacket = BULK_FIFO_SIZE, }, .dev = &memory, .fifo_size = BULK_FIFO_SIZE, .bEndpointAddress = 7, .bmAttributes = USB_ENDPOINT_XFER_BULK, .reg_udccs = &UDCCS7, .reg_ubcr = &UBCR7, .reg_uddr = &UDDR7, drcmr (31) }, .ep[8] = { .ep = { .name = "ep8in-iso", .ops = &pxa2xx_ep_ops, .maxpacket = ISO_FIFO_SIZE, }, .dev = &memory, .fifo_size = ISO_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 8, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .reg_udccs = &UDCCS8, .reg_uddr = &UDDR8, drcmr (32) }, .ep[9] = { .ep = { .name = "ep9out-iso", .ops = &pxa2xx_ep_ops, .maxpacket = ISO_FIFO_SIZE, }, .dev = &memory, .fifo_size = ISO_FIFO_SIZE, .bEndpointAddress = 9, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .reg_udccs = &UDCCS9, .reg_ubcr = &UBCR9, .reg_uddr = &UDDR9, drcmr (33) }, .ep[10] = { .ep = { .name = "ep10in-int", .ops = &pxa2xx_ep_ops, .maxpacket = INT_FIFO_SIZE, }, .dev = &memory, .fifo_size = INT_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 10, .bmAttributes = USB_ENDPOINT_XFER_INT, .reg_udccs = &UDCCS10, .reg_uddr = &UDDR10, }, /* third group of endpoints */ .ep[11] = { .ep = { .name = "ep11in-bulk", .ops = &pxa2xx_ep_ops, .maxpacket = BULK_FIFO_SIZE, }, .dev = &memory, .fifo_size = BULK_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 11, .bmAttributes = USB_ENDPOINT_XFER_BULK, .reg_udccs = &UDCCS11, .reg_uddr = &UDDR11, drcmr (35) }, .ep[12] = { .ep = { .name = "ep12out-bulk", .ops = &pxa2xx_ep_ops, .maxpacket = BULK_FIFO_SIZE, }, .dev = &memory, .fifo_size = BULK_FIFO_SIZE, .bEndpointAddress = 12, .bmAttributes = USB_ENDPOINT_XFER_BULK, .reg_udccs = &UDCCS12, .reg_ubcr = &UBCR12, .reg_uddr = &UDDR12, drcmr (36) }, .ep[13] = { .ep = { .name = "ep13in-iso", .ops = &pxa2xx_ep_ops, .maxpacket = ISO_FIFO_SIZE, }, .dev = &memory, .fifo_size = ISO_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 13, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .reg_udccs = &UDCCS13, .reg_uddr = &UDDR13, drcmr (37) }, .ep[14] = { .ep = { .name = "ep14out-iso", .ops = &pxa2xx_ep_ops, .maxpacket = ISO_FIFO_SIZE, }, .dev = &memory, .fifo_size = ISO_FIFO_SIZE, .bEndpointAddress = 14, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .reg_udccs = &UDCCS14, .reg_ubcr = &UBCR14, .reg_uddr = &UDDR14, drcmr (38) }, .ep[15] = { .ep = { .name = "ep15in-int", .ops = &pxa2xx_ep_ops, .maxpacket = INT_FIFO_SIZE, }, .dev = &memory, .fifo_size = INT_FIFO_SIZE, .bEndpointAddress = USB_DIR_IN | 15, .bmAttributes = USB_ENDPOINT_XFER_INT, .reg_udccs = &UDCCS15, .reg_uddr = &UDDR15, }, #endif /* !CONFIG_USB_PXA2XX_SMALL */ }; #define CP15R0_VENDOR_MASK 0xffffe000 #if defined(CONFIG_ARCH_PXA) #define CP15R0_XSCALE_VALUE 0x69052000 /* intel/arm/xscale */ #elif defined(CONFIG_ARCH_IXP4XX) #define CP15R0_XSCALE_VALUE 0x69054000 /* intel/arm/ixp4xx */ #endif #define CP15R0_PROD_MASK 0x000003f0 #define PXA25x 0x00000100 /* and PXA26x */ #define PXA210 0x00000120 #define CP15R0_REV_MASK 0x0000000f #define CP15R0_PRODREV_MASK (CP15R0_PROD_MASK | CP15R0_REV_MASK) #define PXA255_A0 0x00000106 /* or PXA260_B1 */ #define PXA250_C0 0x00000105 /* or PXA26x_B0 */ #define PXA250_B2 0x00000104 #define PXA250_B1 0x00000103 /* or PXA260_A0 */ #define PXA250_B0 0x00000102 #define PXA250_A1 0x00000101 #define PXA250_A0 0x00000100 #define PXA210_C0 0x00000125 #define PXA210_B2 0x00000124 #define PXA210_B1 0x00000123 #define PXA210_B0 0x00000122 #define IXP425_A0 0x000001c1 /* * probe - binds to the platform device */ static int __init pxa2xx_udc_probe(struct device *_dev) { struct pxa2xx_udc *dev = &memory; int retval, out_dma = 1; u32 chiprev; /* insist on Intel/ARM/XScale */ asm("mrc%? p15, 0, %0, c0, c0" : "=r" (chiprev)); if ((chiprev & CP15R0_VENDOR_MASK) != CP15R0_XSCALE_VALUE) { printk(KERN_ERR "%s: not XScale!\n", driver_name); return -ENODEV; } /* trigger chiprev-specific logic */ switch (chiprev & CP15R0_PRODREV_MASK) { #if defined(CONFIG_ARCH_PXA) case PXA255_A0: dev->has_cfr = 1; break; case PXA250_A0: case PXA250_A1: /* A0/A1 "not released"; ep 13, 15 unusable */ /* fall through */ case PXA250_B2: case PXA210_B2: case PXA250_B1: case PXA210_B1: case PXA250_B0: case PXA210_B0: out_dma = 0; /* fall through */ case PXA250_C0: case PXA210_C0: break; #elif defined(CONFIG_ARCH_IXP4XX) case IXP425_A0: out_dma = 0; break; #endif default: out_dma = 0; printk(KERN_ERR "%s: unrecognized processor: %08x\n", driver_name, chiprev); /* iop3xx, ixp4xx, ... */ return -ENODEV; } pr_debug("%s: IRQ %d%s%s%s\n", driver_name, IRQ_USB, dev->has_cfr ? "" : " (!cfr)", out_dma ? "" : " (broken dma-out)", SIZE_STR DMASTR ); #ifdef USE_DMA #ifndef USE_OUT_DMA out_dma = 0; #endif /* pxa 250 erratum 130 prevents using OUT dma (fixed C0) */ if (!out_dma) { DMSG("disabled OUT dma\n"); dev->ep[ 2].reg_drcmr = dev->ep[ 4].reg_drcmr = 0; dev->ep[ 7].reg_drcmr = dev->ep[ 9].reg_drcmr = 0; dev->ep[12].reg_drcmr = dev->ep[14].reg_drcmr = 0; } #endif /* other non-static parts of init */ dev->dev = _dev; dev->mach = _dev->platform_data; init_timer(&dev->timer); dev->timer.function = udc_watchdog; dev->timer.data = (unsigned long) dev; device_initialize(&dev->gadget.dev); dev->gadget.dev.parent = _dev; dev->gadget.dev.dma_mask = _dev->dma_mask; the_controller = dev; dev_set_drvdata(_dev, dev); udc_disable(dev); udc_reinit(dev); dev->vbus = is_vbus_present(); /* irq setup after old hardware state is cleaned up */ retval = request_irq(IRQ_USB, pxa2xx_udc_irq, SA_INTERRUPT, driver_name, dev); if (retval != 0) { printk(KERN_ERR "%s: can't get irq %i, err %d\n", driver_name, IRQ_USB, retval); return -EBUSY; } dev->got_irq = 1; #ifdef CONFIG_ARCH_LUBBOCK if (machine_is_lubbock()) { retval = request_irq(LUBBOCK_USB_DISC_IRQ, lubbock_vbus_irq, SA_INTERRUPT | SA_SAMPLE_RANDOM, driver_name, dev); if (retval != 0) { printk(KERN_ERR "%s: can't get irq %i, err %d\n", driver_name, LUBBOCK_USB_DISC_IRQ, retval); lubbock_fail0: free_irq(IRQ_USB, dev); return -EBUSY; } retval = request_irq(LUBBOCK_USB_IRQ, lubbock_vbus_irq, SA_INTERRUPT | SA_SAMPLE_RANDOM, driver_name, dev); if (retval != 0) { printk(KERN_ERR "%s: can't get irq %i, err %d\n", driver_name, LUBBOCK_USB_IRQ, retval); free_irq(LUBBOCK_USB_DISC_IRQ, dev); goto lubbock_fail0; } #ifdef DEBUG /* with U-Boot (but not BLOB), hex is off by default */ HEX_DISPLAY(dev->stats.irqs); LUB_DISC_BLNK_LED &= 0xff; #endif } #endif create_proc_files(); return 0; } static void pxa2xx_udc_shutdown(struct device *_dev) { pullup_off(); } static int __exit pxa2xx_udc_remove(struct device *_dev) { struct pxa2xx_udc *dev = dev_get_drvdata(_dev); udc_disable(dev); remove_proc_files(); usb_gadget_unregister_driver(dev->driver); if (dev->got_irq) { free_irq(IRQ_USB, dev); dev->got_irq = 0; } if (machine_is_lubbock()) { free_irq(LUBBOCK_USB_DISC_IRQ, dev); free_irq(LUBBOCK_USB_IRQ, dev); } dev_set_drvdata(_dev, NULL); the_controller = NULL; return 0; } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_PM /* USB suspend (controlled by the host) and system suspend (controlled * by the PXA) don't necessarily work well together. If USB is active, * the 48 MHz clock is required; so the system can't enter 33 MHz idle * mode, or any deeper PM saving state. * * For now, we punt and forcibly disconnect from the USB host when PXA * enters any suspend state. While we're disconnected, we always disable * the 48MHz USB clock ... allowing PXA sleep and/or 33 MHz idle states. * Boards without software pullup control shouldn't use those states. * VBUS IRQs should probably be ignored so that the PXA device just acts * "dead" to USB hosts until system resume. */ static int pxa2xx_udc_suspend(struct device *dev, pm_message_t state, u32 level) { struct pxa2xx_udc *udc = dev_get_drvdata(dev); if (level == SUSPEND_POWER_DOWN) { if (!udc->mach->udc_command) WARN("USB host won't detect disconnect!\n"); pullup(udc, 0); } return 0; } static int pxa2xx_udc_resume(struct device *dev, u32 level) { struct pxa2xx_udc *udc = dev_get_drvdata(dev); if (level == RESUME_POWER_ON) pullup(udc, 1); return 0; } #else #define pxa2xx_udc_suspend NULL #define pxa2xx_udc_resume NULL #endif /*-------------------------------------------------------------------------*/ static struct device_driver udc_driver = { .name = "pxa2xx-udc", .bus = &platform_bus_type, .probe = pxa2xx_udc_probe, .shutdown = pxa2xx_udc_shutdown, .remove = __exit_p(pxa2xx_udc_remove), .suspend = pxa2xx_udc_suspend, .resume = pxa2xx_udc_resume, }; static int __init udc_init(void) { printk(KERN_INFO "%s: version %s\n", driver_name, DRIVER_VERSION); return driver_register(&udc_driver); } module_init(udc_init); static void __exit udc_exit(void) { driver_unregister(&udc_driver); } module_exit(udc_exit); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell"); MODULE_LICENSE("GPL");