/* * Copyright (c) 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * Mika Kuoppala * */ #include #include "i915_drv.h" static const char *engine_str(int engine) { switch (engine) { case RCS: return "render"; case VCS: return "bsd"; case BCS: return "blt"; case VECS: return "vebox"; case VCS2: return "bsd2"; default: return ""; } } static const char *pin_flag(int pinned) { if (pinned > 0) return " P"; else if (pinned < 0) return " p"; else return ""; } static const char *tiling_flag(int tiling) { switch (tiling) { default: case I915_TILING_NONE: return ""; case I915_TILING_X: return " X"; case I915_TILING_Y: return " Y"; } } static const char *dirty_flag(int dirty) { return dirty ? " dirty" : ""; } static const char *purgeable_flag(int purgeable) { return purgeable ? " purgeable" : ""; } static bool __i915_error_ok(struct drm_i915_error_state_buf *e) { if (!e->err && WARN(e->bytes > (e->size - 1), "overflow")) { e->err = -ENOSPC; return false; } if (e->bytes == e->size - 1 || e->err) return false; return true; } static bool __i915_error_seek(struct drm_i915_error_state_buf *e, unsigned len) { if (e->pos + len <= e->start) { e->pos += len; return false; } /* First vsnprintf needs to fit in its entirety for memmove */ if (len >= e->size) { e->err = -EIO; return false; } return true; } static void __i915_error_advance(struct drm_i915_error_state_buf *e, unsigned len) { /* If this is first printf in this window, adjust it so that * start position matches start of the buffer */ if (e->pos < e->start) { const size_t off = e->start - e->pos; /* Should not happen but be paranoid */ if (off > len || e->bytes) { e->err = -EIO; return; } memmove(e->buf, e->buf + off, len - off); e->bytes = len - off; e->pos = e->start; return; } e->bytes += len; e->pos += len; } static void i915_error_vprintf(struct drm_i915_error_state_buf *e, const char *f, va_list args) { unsigned len; if (!__i915_error_ok(e)) return; /* Seek the first printf which is hits start position */ if (e->pos < e->start) { va_list tmp; va_copy(tmp, args); len = vsnprintf(NULL, 0, f, tmp); va_end(tmp); if (!__i915_error_seek(e, len)) return; } len = vsnprintf(e->buf + e->bytes, e->size - e->bytes, f, args); if (len >= e->size - e->bytes) len = e->size - e->bytes - 1; __i915_error_advance(e, len); } static void i915_error_puts(struct drm_i915_error_state_buf *e, const char *str) { unsigned len; if (!__i915_error_ok(e)) return; len = strlen(str); /* Seek the first printf which is hits start position */ if (e->pos < e->start) { if (!__i915_error_seek(e, len)) return; } if (len >= e->size - e->bytes) len = e->size - e->bytes - 1; memcpy(e->buf + e->bytes, str, len); __i915_error_advance(e, len); } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) #define err_puts(e, s) i915_error_puts(e, s) static void print_error_buffers(struct drm_i915_error_state_buf *m, const char *name, struct drm_i915_error_buffer *err, int count) { int i; err_printf(m, " %s [%d]:\n", name, count); while (count--) { err_printf(m, " %08x_%08x %8u %02x %02x [ ", upper_32_bits(err->gtt_offset), lower_32_bits(err->gtt_offset), err->size, err->read_domains, err->write_domain); for (i = 0; i < I915_NUM_ENGINES; i++) err_printf(m, "%02x ", err->rseqno[i]); err_printf(m, "] %02x", err->wseqno); err_puts(m, pin_flag(err->pinned)); err_puts(m, tiling_flag(err->tiling)); err_puts(m, dirty_flag(err->dirty)); err_puts(m, purgeable_flag(err->purgeable)); err_puts(m, err->userptr ? " userptr" : ""); err_puts(m, err->engine != -1 ? " " : ""); err_puts(m, engine_str(err->engine)); err_puts(m, i915_cache_level_str(m->i915, err->cache_level)); if (err->name) err_printf(m, " (name: %d)", err->name); if (err->fence_reg != I915_FENCE_REG_NONE) err_printf(m, " (fence: %d)", err->fence_reg); err_puts(m, "\n"); err++; } } static const char *hangcheck_action_to_str(enum intel_ring_hangcheck_action a) { switch (a) { case HANGCHECK_IDLE: return "idle"; case HANGCHECK_WAIT: return "wait"; case HANGCHECK_ACTIVE: return "active"; case HANGCHECK_KICK: return "kick"; case HANGCHECK_HUNG: return "hung"; } return "unknown"; } static void error_print_engine(struct drm_i915_error_state_buf *m, struct drm_i915_error_engine *ee) { err_printf(m, "%s command stream:\n", engine_str(ee->engine_id)); err_printf(m, " START: 0x%08x\n", ee->start); err_printf(m, " HEAD: 0x%08x\n", ee->head); err_printf(m, " TAIL: 0x%08x\n", ee->tail); err_printf(m, " CTL: 0x%08x\n", ee->ctl); err_printf(m, " HWS: 0x%08x\n", ee->hws); err_printf(m, " ACTHD: 0x%08x %08x\n", (u32)(ee->acthd>>32), (u32)ee->acthd); err_printf(m, " IPEIR: 0x%08x\n", ee->ipeir); err_printf(m, " IPEHR: 0x%08x\n", ee->ipehr); err_printf(m, " INSTDONE: 0x%08x\n", ee->instdone); if (INTEL_GEN(m->i915) >= 4) { err_printf(m, " BBADDR: 0x%08x %08x\n", (u32)(ee->bbaddr>>32), (u32)ee->bbaddr); err_printf(m, " BB_STATE: 0x%08x\n", ee->bbstate); err_printf(m, " INSTPS: 0x%08x\n", ee->instps); } err_printf(m, " INSTPM: 0x%08x\n", ee->instpm); err_printf(m, " FADDR: 0x%08x %08x\n", upper_32_bits(ee->faddr), lower_32_bits(ee->faddr)); if (INTEL_GEN(m->i915) >= 6) { err_printf(m, " RC PSMI: 0x%08x\n", ee->rc_psmi); err_printf(m, " FAULT_REG: 0x%08x\n", ee->fault_reg); err_printf(m, " SYNC_0: 0x%08x [last synced 0x%08x]\n", ee->semaphore_mboxes[0], ee->semaphore_seqno[0]); err_printf(m, " SYNC_1: 0x%08x [last synced 0x%08x]\n", ee->semaphore_mboxes[1], ee->semaphore_seqno[1]); if (HAS_VEBOX(m->i915)) { err_printf(m, " SYNC_2: 0x%08x [last synced 0x%08x]\n", ee->semaphore_mboxes[2], ee->semaphore_seqno[2]); } } if (USES_PPGTT(m->i915)) { err_printf(m, " GFX_MODE: 0x%08x\n", ee->vm_info.gfx_mode); if (INTEL_GEN(m->i915) >= 8) { int i; for (i = 0; i < 4; i++) err_printf(m, " PDP%d: 0x%016llx\n", i, ee->vm_info.pdp[i]); } else { err_printf(m, " PP_DIR_BASE: 0x%08x\n", ee->vm_info.pp_dir_base); } } err_printf(m, " seqno: 0x%08x\n", ee->seqno); err_printf(m, " last_seqno: 0x%08x\n", ee->last_seqno); err_printf(m, " waiting: %s\n", yesno(ee->waiting)); err_printf(m, " ring->head: 0x%08x\n", ee->cpu_ring_head); err_printf(m, " ring->tail: 0x%08x\n", ee->cpu_ring_tail); err_printf(m, " hangcheck: %s [%d]\n", hangcheck_action_to_str(ee->hangcheck_action), ee->hangcheck_score); } void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...) { va_list args; va_start(args, f); i915_error_vprintf(e, f, args); va_end(args); } static void print_error_obj(struct drm_i915_error_state_buf *m, struct drm_i915_error_object *obj) { int page, offset, elt; for (page = offset = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { err_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } int i915_error_state_to_str(struct drm_i915_error_state_buf *m, const struct i915_error_state_file_priv *error_priv) { struct drm_device *dev = error_priv->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_error_state *error = error_priv->error; struct drm_i915_error_object *obj; int i, j, offset, elt; int max_hangcheck_score; if (!error) { err_printf(m, "no error state collected\n"); goto out; } err_printf(m, "%s\n", error->error_msg); err_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec, error->time.tv_usec); err_printf(m, "Kernel: " UTS_RELEASE "\n"); max_hangcheck_score = 0; for (i = 0; i < ARRAY_SIZE(error->engine); i++) { if (error->engine[i].hangcheck_score > max_hangcheck_score) max_hangcheck_score = error->engine[i].hangcheck_score; } for (i = 0; i < ARRAY_SIZE(error->engine); i++) { if (error->engine[i].hangcheck_score == max_hangcheck_score && error->engine[i].pid != -1) { err_printf(m, "Active process (on ring %s): %s [%d]\n", engine_str(i), error->engine[i].comm, error->engine[i].pid); } } err_printf(m, "Reset count: %u\n", error->reset_count); err_printf(m, "Suspend count: %u\n", error->suspend_count); err_printf(m, "PCI ID: 0x%04x\n", dev->pdev->device); err_printf(m, "PCI Revision: 0x%02x\n", dev->pdev->revision); err_printf(m, "PCI Subsystem: %04x:%04x\n", dev->pdev->subsystem_vendor, dev->pdev->subsystem_device); err_printf(m, "IOMMU enabled?: %d\n", error->iommu); if (HAS_CSR(dev)) { struct intel_csr *csr = &dev_priv->csr; err_printf(m, "DMC loaded: %s\n", yesno(csr->dmc_payload != NULL)); err_printf(m, "DMC fw version: %d.%d\n", CSR_VERSION_MAJOR(csr->version), CSR_VERSION_MINOR(csr->version)); } err_printf(m, "EIR: 0x%08x\n", error->eir); err_printf(m, "IER: 0x%08x\n", error->ier); if (INTEL_INFO(dev)->gen >= 8) { for (i = 0; i < 4; i++) err_printf(m, "GTIER gt %d: 0x%08x\n", i, error->gtier[i]); } else if (HAS_PCH_SPLIT(dev) || IS_VALLEYVIEW(dev)) err_printf(m, "GTIER: 0x%08x\n", error->gtier[0]); err_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er); err_printf(m, "FORCEWAKE: 0x%08x\n", error->forcewake); err_printf(m, "DERRMR: 0x%08x\n", error->derrmr); err_printf(m, "CCID: 0x%08x\n", error->ccid); err_printf(m, "Missed interrupts: 0x%08lx\n", dev_priv->gpu_error.missed_irq_rings); for (i = 0; i < dev_priv->num_fence_regs; i++) err_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]); for (i = 0; i < ARRAY_SIZE(error->extra_instdone); i++) err_printf(m, " INSTDONE_%d: 0x%08x\n", i, error->extra_instdone[i]); if (INTEL_INFO(dev)->gen >= 6) { err_printf(m, "ERROR: 0x%08x\n", error->error); if (INTEL_INFO(dev)->gen >= 8) err_printf(m, "FAULT_TLB_DATA: 0x%08x 0x%08x\n", error->fault_data1, error->fault_data0); err_printf(m, "DONE_REG: 0x%08x\n", error->done_reg); } if (IS_GEN7(dev)) err_printf(m, "ERR_INT: 0x%08x\n", error->err_int); for (i = 0; i < ARRAY_SIZE(error->engine); i++) { if (error->engine[i].engine_id != -1) error_print_engine(m, &error->engine[i]); } for (i = 0; i < error->vm_count; i++) { err_printf(m, "vm[%d]\n", i); print_error_buffers(m, "Active", error->active_bo[i], error->active_bo_count[i]); print_error_buffers(m, "Pinned", error->pinned_bo[i], error->pinned_bo_count[i]); } for (i = 0; i < ARRAY_SIZE(error->engine); i++) { struct drm_i915_error_engine *ee = &error->engine[i]; obj = ee->batchbuffer; if (obj) { err_puts(m, dev_priv->engine[i].name); if (ee->pid != -1) err_printf(m, " (submitted by %s [%d])", ee->comm, ee->pid); err_printf(m, " --- gtt_offset = 0x%08x %08x\n", upper_32_bits(obj->gtt_offset), lower_32_bits(obj->gtt_offset)); print_error_obj(m, obj); } obj = ee->wa_batchbuffer; if (obj) { err_printf(m, "%s (w/a) --- gtt_offset = 0x%08x\n", dev_priv->engine[i].name, lower_32_bits(obj->gtt_offset)); print_error_obj(m, obj); } if (ee->num_requests) { err_printf(m, "%s --- %d requests\n", dev_priv->engine[i].name, ee->num_requests); for (j = 0; j < ee->num_requests; j++) { err_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n", ee->requests[j].seqno, ee->requests[j].jiffies, ee->requests[j].tail); } } if (ee->num_waiters) { err_printf(m, "%s --- %d waiters\n", dev_priv->engine[i].name, ee->num_waiters); for (j = 0; j < ee->num_waiters; j++) { err_printf(m, " seqno 0x%08x for %s [%d]\n", ee->waiters[j].seqno, ee->waiters[j].comm, ee->waiters[j].pid); } } if ((obj = ee->ringbuffer)) { err_printf(m, "%s --- ringbuffer = 0x%08x\n", dev_priv->engine[i].name, lower_32_bits(obj->gtt_offset)); print_error_obj(m, obj); } if ((obj = ee->hws_page)) { u64 hws_offset = obj->gtt_offset; u32 *hws_page = &obj->pages[0][0]; if (i915.enable_execlists) { hws_offset += LRC_PPHWSP_PN * PAGE_SIZE; hws_page = &obj->pages[LRC_PPHWSP_PN][0]; } err_printf(m, "%s --- HW Status = 0x%08llx\n", dev_priv->engine[i].name, hws_offset); offset = 0; for (elt = 0; elt < PAGE_SIZE/16; elt += 4) { err_printf(m, "[%04x] %08x %08x %08x %08x\n", offset, hws_page[elt], hws_page[elt+1], hws_page[elt+2], hws_page[elt+3]); offset += 16; } } obj = ee->wa_ctx; if (obj) { u64 wa_ctx_offset = obj->gtt_offset; u32 *wa_ctx_page = &obj->pages[0][0]; struct intel_engine_cs *engine = &dev_priv->engine[RCS]; u32 wa_ctx_size = (engine->wa_ctx.indirect_ctx.size + engine->wa_ctx.per_ctx.size); err_printf(m, "%s --- WA ctx batch buffer = 0x%08llx\n", dev_priv->engine[i].name, wa_ctx_offset); offset = 0; for (elt = 0; elt < wa_ctx_size; elt += 4) { err_printf(m, "[%04x] %08x %08x %08x %08x\n", offset, wa_ctx_page[elt + 0], wa_ctx_page[elt + 1], wa_ctx_page[elt + 2], wa_ctx_page[elt + 3]); offset += 16; } } if ((obj = ee->ctx)) { err_printf(m, "%s --- HW Context = 0x%08x\n", dev_priv->engine[i].name, lower_32_bits(obj->gtt_offset)); print_error_obj(m, obj); } } if ((obj = error->semaphore_obj)) { err_printf(m, "Semaphore page = 0x%08x\n", lower_32_bits(obj->gtt_offset)); for (elt = 0; elt < PAGE_SIZE/16; elt += 4) { err_printf(m, "[%04x] %08x %08x %08x %08x\n", elt * 4, obj->pages[0][elt], obj->pages[0][elt+1], obj->pages[0][elt+2], obj->pages[0][elt+3]); } } if (error->overlay) intel_overlay_print_error_state(m, error->overlay); if (error->display) intel_display_print_error_state(m, dev, error->display); out: if (m->bytes == 0 && m->err) return m->err; return 0; } int i915_error_state_buf_init(struct drm_i915_error_state_buf *ebuf, struct drm_i915_private *i915, size_t count, loff_t pos) { memset(ebuf, 0, sizeof(*ebuf)); ebuf->i915 = i915; /* We need to have enough room to store any i915_error_state printf * so that we can move it to start position. */ ebuf->size = count + 1 > PAGE_SIZE ? count + 1 : PAGE_SIZE; ebuf->buf = kmalloc(ebuf->size, GFP_TEMPORARY | __GFP_NORETRY | __GFP_NOWARN); if (ebuf->buf == NULL) { ebuf->size = PAGE_SIZE; ebuf->buf = kmalloc(ebuf->size, GFP_TEMPORARY); } if (ebuf->buf == NULL) { ebuf->size = 128; ebuf->buf = kmalloc(ebuf->size, GFP_TEMPORARY); } if (ebuf->buf == NULL) return -ENOMEM; ebuf->start = pos; return 0; } static void i915_error_object_free(struct drm_i915_error_object *obj) { int page; if (obj == NULL) return; for (page = 0; page < obj->page_count; page++) kfree(obj->pages[page]); kfree(obj); } static void i915_error_state_free(struct kref *error_ref) { struct drm_i915_error_state *error = container_of(error_ref, typeof(*error), ref); int i; for (i = 0; i < ARRAY_SIZE(error->engine); i++) { struct drm_i915_error_engine *ee = &error->engine[i]; i915_error_object_free(ee->batchbuffer); i915_error_object_free(ee->wa_batchbuffer); i915_error_object_free(ee->ringbuffer); i915_error_object_free(ee->hws_page); i915_error_object_free(ee->ctx); i915_error_object_free(ee->wa_ctx); kfree(ee->requests); kfree(ee->waiters); } i915_error_object_free(error->semaphore_obj); for (i = 0; i < error->vm_count; i++) kfree(error->active_bo[i]); kfree(error->active_bo); kfree(error->active_bo_count); kfree(error->pinned_bo); kfree(error->pinned_bo_count); kfree(error->overlay); kfree(error->display); kfree(error); } static struct drm_i915_error_object * i915_error_object_create(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *src, struct i915_address_space *vm) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct drm_i915_error_object *dst; struct i915_vma *vma = NULL; int num_pages; bool use_ggtt; int i = 0; u64 reloc_offset; if (src == NULL || src->pages == NULL) return NULL; num_pages = src->base.size >> PAGE_SHIFT; dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC); if (dst == NULL) return NULL; if (i915_gem_obj_bound(src, vm)) dst->gtt_offset = i915_gem_obj_offset(src, vm); else dst->gtt_offset = -1; reloc_offset = dst->gtt_offset; if (i915_is_ggtt(vm)) vma = i915_gem_obj_to_ggtt(src); use_ggtt = (src->cache_level == I915_CACHE_NONE && vma && (vma->bound & GLOBAL_BIND) && reloc_offset + num_pages * PAGE_SIZE <= ggtt->mappable_end); /* Cannot access stolen address directly, try to use the aperture */ if (src->stolen) { use_ggtt = true; if (!(vma && vma->bound & GLOBAL_BIND)) goto unwind; reloc_offset = i915_gem_obj_ggtt_offset(src); if (reloc_offset + num_pages * PAGE_SIZE > ggtt->mappable_end) goto unwind; } /* Cannot access snooped pages through the aperture */ if (use_ggtt && src->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) goto unwind; dst->page_count = num_pages; while (num_pages--) { unsigned long flags; void *d; d = kmalloc(PAGE_SIZE, GFP_ATOMIC); if (d == NULL) goto unwind; local_irq_save(flags); if (use_ggtt) { void __iomem *s; /* Simply ignore tiling or any overlapping fence. * It's part of the error state, and this hopefully * captures what the GPU read. */ s = io_mapping_map_atomic_wc(ggtt->mappable, reloc_offset); memcpy_fromio(d, s, PAGE_SIZE); io_mapping_unmap_atomic(s); } else { struct page *page; void *s; page = i915_gem_object_get_page(src, i); drm_clflush_pages(&page, 1); s = kmap_atomic(page); memcpy(d, s, PAGE_SIZE); kunmap_atomic(s); drm_clflush_pages(&page, 1); } local_irq_restore(flags); dst->pages[i++] = d; reloc_offset += PAGE_SIZE; } return dst; unwind: while (i--) kfree(dst->pages[i]); kfree(dst); return NULL; } #define i915_error_ggtt_object_create(dev_priv, src) \ i915_error_object_create((dev_priv), (src), &(dev_priv)->ggtt.base) static void capture_bo(struct drm_i915_error_buffer *err, struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; int i; err->size = obj->base.size; err->name = obj->base.name; for (i = 0; i < I915_NUM_ENGINES; i++) err->rseqno[i] = i915_gem_request_get_seqno(obj->last_read_req[i]); err->wseqno = i915_gem_request_get_seqno(obj->last_write_req); err->gtt_offset = vma->node.start; err->read_domains = obj->base.read_domains; err->write_domain = obj->base.write_domain; err->fence_reg = obj->fence_reg; err->pinned = 0; if (i915_gem_obj_is_pinned(obj)) err->pinned = 1; err->tiling = obj->tiling_mode; err->dirty = obj->dirty; err->purgeable = obj->madv != I915_MADV_WILLNEED; err->userptr = obj->userptr.mm != NULL; err->engine = obj->last_write_req ? i915_gem_request_get_engine(obj->last_write_req)->id : -1; err->cache_level = obj->cache_level; } static u32 capture_active_bo(struct drm_i915_error_buffer *err, int count, struct list_head *head) { struct i915_vma *vma; int i = 0; list_for_each_entry(vma, head, vm_link) { capture_bo(err++, vma); if (++i == count) break; } return i; } static u32 capture_pinned_bo(struct drm_i915_error_buffer *err, int count, struct list_head *head, struct i915_address_space *vm) { struct drm_i915_gem_object *obj; struct drm_i915_error_buffer * const first = err; struct drm_i915_error_buffer * const last = err + count; list_for_each_entry(obj, head, global_list) { struct i915_vma *vma; if (err == last) break; list_for_each_entry(vma, &obj->vma_list, obj_link) if (vma->vm == vm && vma->pin_count > 0) capture_bo(err++, vma); } return err - first; } /* Generate a semi-unique error code. The code is not meant to have meaning, The * code's only purpose is to try to prevent false duplicated bug reports by * grossly estimating a GPU error state. * * TODO Ideally, hashing the batchbuffer would be a very nice way to determine * the hang if we could strip the GTT offset information from it. * * It's only a small step better than a random number in its current form. */ static uint32_t i915_error_generate_code(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error, int *engine_id) { uint32_t error_code = 0; int i; /* IPEHR would be an ideal way to detect errors, as it's the gross * measure of "the command that hung." However, has some very common * synchronization commands which almost always appear in the case * strictly a client bug. Use instdone to differentiate those some. */ for (i = 0; i < I915_NUM_ENGINES; i++) { if (error->engine[i].hangcheck_action == HANGCHECK_HUNG) { if (engine_id) *engine_id = i; return error->engine[i].ipehr ^ error->engine[i].instdone; } } return error_code; } static void i915_gem_record_fences(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { int i; if (IS_GEN3(dev_priv) || IS_GEN2(dev_priv)) { for (i = 0; i < dev_priv->num_fence_regs; i++) error->fence[i] = I915_READ(FENCE_REG(i)); } else if (IS_GEN5(dev_priv) || IS_GEN4(dev_priv)) { for (i = 0; i < dev_priv->num_fence_regs; i++) error->fence[i] = I915_READ64(FENCE_REG_965_LO(i)); } else if (INTEL_GEN(dev_priv) >= 6) { for (i = 0; i < dev_priv->num_fence_regs; i++) error->fence[i] = I915_READ64(FENCE_REG_GEN6_LO(i)); } } static void gen8_record_semaphore_state(struct drm_i915_error_state *error, struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; struct intel_engine_cs *to; enum intel_engine_id id; if (!error->semaphore_obj) return; for_each_engine_id(to, dev_priv, id) { int idx; u16 signal_offset; u32 *tmp; if (engine == to) continue; signal_offset = (GEN8_SIGNAL_OFFSET(engine, id) & (PAGE_SIZE - 1)) / 4; tmp = error->semaphore_obj->pages[0]; idx = intel_ring_sync_index(engine, to); ee->semaphore_mboxes[idx] = tmp[signal_offset]; ee->semaphore_seqno[idx] = engine->semaphore.sync_seqno[idx]; } } static void gen6_record_semaphore_state(struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; ee->semaphore_mboxes[0] = I915_READ(RING_SYNC_0(engine->mmio_base)); ee->semaphore_mboxes[1] = I915_READ(RING_SYNC_1(engine->mmio_base)); ee->semaphore_seqno[0] = engine->semaphore.sync_seqno[0]; ee->semaphore_seqno[1] = engine->semaphore.sync_seqno[1]; if (HAS_VEBOX(dev_priv)) { ee->semaphore_mboxes[2] = I915_READ(RING_SYNC_2(engine->mmio_base)); ee->semaphore_seqno[2] = engine->semaphore.sync_seqno[2]; } } static void error_record_engine_waiters(struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct intel_breadcrumbs *b = &engine->breadcrumbs; struct drm_i915_error_waiter *waiter; struct rb_node *rb; int count; ee->num_waiters = 0; ee->waiters = NULL; spin_lock(&b->lock); count = 0; for (rb = rb_first(&b->waiters); rb != NULL; rb = rb_next(rb)) count++; spin_unlock(&b->lock); waiter = NULL; if (count) waiter = kmalloc_array(count, sizeof(struct drm_i915_error_waiter), GFP_ATOMIC); if (!waiter) return; ee->waiters = waiter; spin_lock(&b->lock); for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) { struct intel_wait *w = container_of(rb, typeof(*w), node); strcpy(waiter->comm, w->tsk->comm); waiter->pid = w->tsk->pid; waiter->seqno = w->seqno; waiter++; if (++ee->num_waiters == count) break; } spin_unlock(&b->lock); } static void error_record_engine_registers(struct drm_i915_error_state *error, struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; if (INTEL_GEN(dev_priv) >= 6) { ee->rc_psmi = I915_READ(RING_PSMI_CTL(engine->mmio_base)); ee->fault_reg = I915_READ(RING_FAULT_REG(engine)); if (INTEL_GEN(dev_priv) >= 8) gen8_record_semaphore_state(error, engine, ee); else gen6_record_semaphore_state(engine, ee); } if (INTEL_GEN(dev_priv) >= 4) { ee->faddr = I915_READ(RING_DMA_FADD(engine->mmio_base)); ee->ipeir = I915_READ(RING_IPEIR(engine->mmio_base)); ee->ipehr = I915_READ(RING_IPEHR(engine->mmio_base)); ee->instdone = I915_READ(RING_INSTDONE(engine->mmio_base)); ee->instps = I915_READ(RING_INSTPS(engine->mmio_base)); ee->bbaddr = I915_READ(RING_BBADDR(engine->mmio_base)); if (INTEL_GEN(dev_priv) >= 8) { ee->faddr |= (u64) I915_READ(RING_DMA_FADD_UDW(engine->mmio_base)) << 32; ee->bbaddr |= (u64) I915_READ(RING_BBADDR_UDW(engine->mmio_base)) << 32; } ee->bbstate = I915_READ(RING_BBSTATE(engine->mmio_base)); } else { ee->faddr = I915_READ(DMA_FADD_I8XX); ee->ipeir = I915_READ(IPEIR); ee->ipehr = I915_READ(IPEHR); ee->instdone = I915_READ(GEN2_INSTDONE); } ee->waiting = intel_engine_has_waiter(engine); ee->instpm = I915_READ(RING_INSTPM(engine->mmio_base)); ee->acthd = intel_ring_get_active_head(engine); ee->seqno = intel_engine_get_seqno(engine); ee->last_seqno = engine->last_submitted_seqno; ee->start = I915_READ_START(engine); ee->head = I915_READ_HEAD(engine); ee->tail = I915_READ_TAIL(engine); ee->ctl = I915_READ_CTL(engine); if (I915_NEED_GFX_HWS(dev_priv)) { i915_reg_t mmio; if (IS_GEN7(dev_priv)) { switch (engine->id) { default: case RCS: mmio = RENDER_HWS_PGA_GEN7; break; case BCS: mmio = BLT_HWS_PGA_GEN7; break; case VCS: mmio = BSD_HWS_PGA_GEN7; break; case VECS: mmio = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN6(engine->i915)) { mmio = RING_HWS_PGA_GEN6(engine->mmio_base); } else { /* XXX: gen8 returns to sanity */ mmio = RING_HWS_PGA(engine->mmio_base); } ee->hws = I915_READ(mmio); } ee->hangcheck_score = engine->hangcheck.score; ee->hangcheck_action = engine->hangcheck.action; if (USES_PPGTT(dev_priv)) { int i; ee->vm_info.gfx_mode = I915_READ(RING_MODE_GEN7(engine)); if (IS_GEN6(dev_priv)) ee->vm_info.pp_dir_base = I915_READ(RING_PP_DIR_BASE_READ(engine)); else if (IS_GEN7(dev_priv)) ee->vm_info.pp_dir_base = I915_READ(RING_PP_DIR_BASE(engine)); else if (INTEL_GEN(dev_priv) >= 8) for (i = 0; i < 4; i++) { ee->vm_info.pdp[i] = I915_READ(GEN8_RING_PDP_UDW(engine, i)); ee->vm_info.pdp[i] <<= 32; ee->vm_info.pdp[i] |= I915_READ(GEN8_RING_PDP_LDW(engine, i)); } } } static void i915_gem_record_active_context(struct intel_engine_cs *engine, struct drm_i915_error_state *error, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; struct drm_i915_gem_object *obj; /* Currently render ring is the only HW context user */ if (engine->id != RCS || !error->ccid) return; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (!i915_gem_obj_ggtt_bound(obj)) continue; if ((error->ccid & PAGE_MASK) == i915_gem_obj_ggtt_offset(obj)) { ee->ctx = i915_error_ggtt_object_create(dev_priv, obj); break; } } } static void i915_gem_record_rings(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct drm_i915_gem_request *request; int i, count; if (dev_priv->semaphore_obj) { error->semaphore_obj = i915_error_ggtt_object_create(dev_priv, dev_priv->semaphore_obj); } for (i = 0; i < I915_NUM_ENGINES; i++) { struct intel_engine_cs *engine = &dev_priv->engine[i]; struct drm_i915_error_engine *ee = &error->engine[i]; ee->pid = -1; ee->engine_id = -1; if (!intel_engine_initialized(engine)) continue; ee->engine_id = i; error_record_engine_registers(error, engine, ee); error_record_engine_waiters(engine, ee); request = i915_gem_find_active_request(engine); if (request) { struct i915_address_space *vm; struct intel_ringbuffer *rb; vm = request->ctx->ppgtt ? &request->ctx->ppgtt->base : &ggtt->base; /* We need to copy these to an anonymous buffer * as the simplest method to avoid being overwritten * by userspace. */ ee->batchbuffer = i915_error_object_create(dev_priv, request->batch_obj, vm); if (HAS_BROKEN_CS_TLB(dev_priv)) ee->wa_batchbuffer = i915_error_ggtt_object_create(dev_priv, engine->scratch.obj); if (request->pid) { struct task_struct *task; rcu_read_lock(); task = pid_task(request->pid, PIDTYPE_PID); if (task) { strcpy(ee->comm, task->comm); ee->pid = task->pid; } rcu_read_unlock(); } error->simulated |= request->ctx->flags & CONTEXT_NO_ERROR_CAPTURE; rb = request->ringbuf; ee->cpu_ring_head = rb->head; ee->cpu_ring_tail = rb->tail; ee->ringbuffer = i915_error_ggtt_object_create(dev_priv, rb->obj); } ee->hws_page = i915_error_ggtt_object_create(dev_priv, engine->status_page.obj); if (engine->wa_ctx.obj) { ee->wa_ctx = i915_error_ggtt_object_create(dev_priv, engine->wa_ctx.obj); } i915_gem_record_active_context(engine, error, ee); count = 0; list_for_each_entry(request, &engine->request_list, list) count++; ee->num_requests = count; ee->requests = kcalloc(count, sizeof(*ee->requests), GFP_ATOMIC); if (!ee->requests) { ee->num_requests = 0; continue; } count = 0; list_for_each_entry(request, &engine->request_list, list) { struct drm_i915_error_request *erq; if (count >= ee->num_requests) { /* * If the ring request list was changed in * between the point where the error request * list was created and dimensioned and this * point then just exit early to avoid crashes. * * We don't need to communicate that the * request list changed state during error * state capture and that the error state is * slightly incorrect as a consequence since we * are typically only interested in the request * list state at the point of error state * capture, not in any changes happening during * the capture. */ break; } erq = &ee->requests[count++]; erq->seqno = request->fence.seqno; erq->jiffies = request->emitted_jiffies; erq->tail = request->postfix; } } } /* FIXME: Since pin count/bound list is global, we duplicate what we capture per * VM. */ static void i915_gem_capture_vm(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error, struct i915_address_space *vm, const int ndx) { struct drm_i915_error_buffer *active_bo = NULL, *pinned_bo = NULL; struct drm_i915_gem_object *obj; struct i915_vma *vma; int i; i = 0; list_for_each_entry(vma, &vm->active_list, vm_link) i++; error->active_bo_count[ndx] = i; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { list_for_each_entry(vma, &obj->vma_list, obj_link) if (vma->vm == vm && vma->pin_count > 0) i++; } error->pinned_bo_count[ndx] = i - error->active_bo_count[ndx]; if (i) { active_bo = kcalloc(i, sizeof(*active_bo), GFP_ATOMIC); if (active_bo) pinned_bo = active_bo + error->active_bo_count[ndx]; } if (active_bo) error->active_bo_count[ndx] = capture_active_bo(active_bo, error->active_bo_count[ndx], &vm->active_list); if (pinned_bo) error->pinned_bo_count[ndx] = capture_pinned_bo(pinned_bo, error->pinned_bo_count[ndx], &dev_priv->mm.bound_list, vm); error->active_bo[ndx] = active_bo; error->pinned_bo[ndx] = pinned_bo; } static void i915_gem_capture_buffers(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { struct i915_address_space *vm; int cnt = 0, i = 0; list_for_each_entry(vm, &dev_priv->vm_list, global_link) cnt++; error->active_bo = kcalloc(cnt, sizeof(*error->active_bo), GFP_ATOMIC); error->pinned_bo = kcalloc(cnt, sizeof(*error->pinned_bo), GFP_ATOMIC); error->active_bo_count = kcalloc(cnt, sizeof(*error->active_bo_count), GFP_ATOMIC); error->pinned_bo_count = kcalloc(cnt, sizeof(*error->pinned_bo_count), GFP_ATOMIC); if (error->active_bo == NULL || error->pinned_bo == NULL || error->active_bo_count == NULL || error->pinned_bo_count == NULL) { kfree(error->active_bo); kfree(error->active_bo_count); kfree(error->pinned_bo); kfree(error->pinned_bo_count); error->active_bo = NULL; error->active_bo_count = NULL; error->pinned_bo = NULL; error->pinned_bo_count = NULL; } else { list_for_each_entry(vm, &dev_priv->vm_list, global_link) i915_gem_capture_vm(dev_priv, error, vm, i++); error->vm_count = cnt; } } /* Capture all registers which don't fit into another category. */ static void i915_capture_reg_state(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { struct drm_device *dev = &dev_priv->drm; int i; /* General organization * 1. Registers specific to a single generation * 2. Registers which belong to multiple generations * 3. Feature specific registers. * 4. Everything else * Please try to follow the order. */ /* 1: Registers specific to a single generation */ if (IS_VALLEYVIEW(dev)) { error->gtier[0] = I915_READ(GTIER); error->ier = I915_READ(VLV_IER); error->forcewake = I915_READ_FW(FORCEWAKE_VLV); } if (IS_GEN7(dev)) error->err_int = I915_READ(GEN7_ERR_INT); if (INTEL_INFO(dev)->gen >= 8) { error->fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); error->fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); } if (IS_GEN6(dev)) { error->forcewake = I915_READ_FW(FORCEWAKE); error->gab_ctl = I915_READ(GAB_CTL); error->gfx_mode = I915_READ(GFX_MODE); } /* 2: Registers which belong to multiple generations */ if (INTEL_INFO(dev)->gen >= 7) error->forcewake = I915_READ_FW(FORCEWAKE_MT); if (INTEL_INFO(dev)->gen >= 6) { error->derrmr = I915_READ(DERRMR); error->error = I915_READ(ERROR_GEN6); error->done_reg = I915_READ(DONE_REG); } /* 3: Feature specific registers */ if (IS_GEN6(dev) || IS_GEN7(dev)) { error->gam_ecochk = I915_READ(GAM_ECOCHK); error->gac_eco = I915_READ(GAC_ECO_BITS); } /* 4: Everything else */ if (HAS_HW_CONTEXTS(dev)) error->ccid = I915_READ(CCID); if (INTEL_INFO(dev)->gen >= 8) { error->ier = I915_READ(GEN8_DE_MISC_IER); for (i = 0; i < 4; i++) error->gtier[i] = I915_READ(GEN8_GT_IER(i)); } else if (HAS_PCH_SPLIT(dev)) { error->ier = I915_READ(DEIER); error->gtier[0] = I915_READ(GTIER); } else if (IS_GEN2(dev)) { error->ier = I915_READ16(IER); } else if (!IS_VALLEYVIEW(dev)) { error->ier = I915_READ(IER); } error->eir = I915_READ(EIR); error->pgtbl_er = I915_READ(PGTBL_ER); i915_get_extra_instdone(dev_priv, error->extra_instdone); } static void i915_error_capture_msg(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error, u32 engine_mask, const char *error_msg) { u32 ecode; int engine_id = -1, len; ecode = i915_error_generate_code(dev_priv, error, &engine_id); len = scnprintf(error->error_msg, sizeof(error->error_msg), "GPU HANG: ecode %d:%d:0x%08x", INTEL_GEN(dev_priv), engine_id, ecode); if (engine_id != -1 && error->engine[engine_id].pid != -1) len += scnprintf(error->error_msg + len, sizeof(error->error_msg) - len, ", in %s [%d]", error->engine[engine_id].comm, error->engine[engine_id].pid); scnprintf(error->error_msg + len, sizeof(error->error_msg) - len, ", reason: %s, action: %s", error_msg, engine_mask ? "reset" : "continue"); } static void i915_capture_gen_state(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { error->iommu = -1; #ifdef CONFIG_INTEL_IOMMU error->iommu = intel_iommu_gfx_mapped; #endif error->reset_count = i915_reset_count(&dev_priv->gpu_error); error->suspend_count = dev_priv->suspend_count; } /** * i915_capture_error_state - capture an error record for later analysis * @dev: drm device * * Should be called when an error is detected (either a hang or an error * interrupt) to capture error state from the time of the error. Fills * out a structure which becomes available in debugfs for user level tools * to pick up. */ void i915_capture_error_state(struct drm_i915_private *dev_priv, u32 engine_mask, const char *error_msg) { static bool warned; struct drm_i915_error_state *error; unsigned long flags; if (READ_ONCE(dev_priv->gpu_error.first_error)) return; /* Account for pipe specific data like PIPE*STAT */ error = kzalloc(sizeof(*error), GFP_ATOMIC); if (!error) { DRM_DEBUG_DRIVER("out of memory, not capturing error state\n"); return; } kref_init(&error->ref); i915_capture_gen_state(dev_priv, error); i915_capture_reg_state(dev_priv, error); i915_gem_capture_buffers(dev_priv, error); i915_gem_record_fences(dev_priv, error); i915_gem_record_rings(dev_priv, error); do_gettimeofday(&error->time); error->overlay = intel_overlay_capture_error_state(dev_priv); error->display = intel_display_capture_error_state(dev_priv); i915_error_capture_msg(dev_priv, error, engine_mask, error_msg); DRM_INFO("%s\n", error->error_msg); if (!error->simulated) { spin_lock_irqsave(&dev_priv->gpu_error.lock, flags); if (!dev_priv->gpu_error.first_error) { dev_priv->gpu_error.first_error = error; error = NULL; } spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags); } if (error) { i915_error_state_free(&error->ref); return; } if (!warned) { DRM_INFO("GPU hangs can indicate a bug anywhere in the entire gfx stack, including userspace.\n"); DRM_INFO("Please file a _new_ bug report on bugs.freedesktop.org against DRI -> DRM/Intel\n"); DRM_INFO("drm/i915 developers can then reassign to the right component if it's not a kernel issue.\n"); DRM_INFO("The gpu crash dump is required to analyze gpu hangs, so please always attach it.\n"); DRM_INFO("GPU crash dump saved to /sys/class/drm/card%d/error\n", dev_priv->drm.primary->index); warned = true; } } void i915_error_state_get(struct drm_device *dev, struct i915_error_state_file_priv *error_priv) { struct drm_i915_private *dev_priv = to_i915(dev); spin_lock_irq(&dev_priv->gpu_error.lock); error_priv->error = dev_priv->gpu_error.first_error; if (error_priv->error) kref_get(&error_priv->error->ref); spin_unlock_irq(&dev_priv->gpu_error.lock); } void i915_error_state_put(struct i915_error_state_file_priv *error_priv) { if (error_priv->error) kref_put(&error_priv->error->ref, i915_error_state_free); } void i915_destroy_error_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_error_state *error; spin_lock_irq(&dev_priv->gpu_error.lock); error = dev_priv->gpu_error.first_error; dev_priv->gpu_error.first_error = NULL; spin_unlock_irq(&dev_priv->gpu_error.lock); if (error) kref_put(&error->ref, i915_error_state_free); } const char *i915_cache_level_str(struct drm_i915_private *i915, int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; case I915_CACHE_L3_LLC: return " L3+LLC"; case I915_CACHE_WT: return " WT"; default: return ""; } } /* NB: please notice the memset */ void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone) { memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG); if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv)) instdone[0] = I915_READ(GEN2_INSTDONE); else if (IS_GEN4(dev_priv) || IS_GEN5(dev_priv) || IS_GEN6(dev_priv)) { instdone[0] = I915_READ(RING_INSTDONE(RENDER_RING_BASE)); instdone[1] = I915_READ(GEN4_INSTDONE1); } else if (INTEL_GEN(dev_priv) >= 7) { instdone[0] = I915_READ(RING_INSTDONE(RENDER_RING_BASE)); instdone[1] = I915_READ(GEN7_SC_INSTDONE); instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE); instdone[3] = I915_READ(GEN7_ROW_INSTDONE); } }