/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* ****************** SDIO CARD Interface Functions **************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" #include "bus.h" #include "debug.h" #include "sdio.h" #include "core.h" #include "common.h" #define SDIOH_API_ACCESS_RETRY_LIMIT 2 #define DMA_ALIGN_MASK 0x03 #define SDIO_FUNC1_BLOCKSIZE 64 #define SDIO_FUNC2_BLOCKSIZE 512 /* Maximum milliseconds to wait for F2 to come up */ #define SDIO_WAIT_F2RDY 3000 #define BRCMF_DEFAULT_RXGLOM_SIZE 32 /* max rx frames in glom chain */ struct brcmf_sdiod_freezer { atomic_t freezing; atomic_t thread_count; u32 frozen_count; wait_queue_head_t thread_freeze; struct completion resumed; }; static irqreturn_t brcmf_sdiod_oob_irqhandler(int irq, void *dev_id) { struct brcmf_bus *bus_if = dev_get_drvdata(dev_id); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; brcmf_dbg(INTR, "OOB intr triggered\n"); /* out-of-band interrupt is level-triggered which won't * be cleared until dpc */ if (sdiodev->irq_en) { disable_irq_nosync(irq); sdiodev->irq_en = false; } brcmf_sdio_isr(sdiodev->bus); return IRQ_HANDLED; } static void brcmf_sdiod_ib_irqhandler(struct sdio_func *func) { struct brcmf_bus *bus_if = dev_get_drvdata(&func->dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; brcmf_dbg(INTR, "IB intr triggered\n"); brcmf_sdio_isr(sdiodev->bus); } /* dummy handler for SDIO function 2 interrupt */ static void brcmf_sdiod_dummy_irqhandler(struct sdio_func *func) { } int brcmf_sdiod_intr_register(struct brcmf_sdio_dev *sdiodev) { struct brcmfmac_sdio_pd *pdata; int ret = 0; u8 data; u32 addr, gpiocontrol; unsigned long flags; pdata = &sdiodev->settings->bus.sdio; if (pdata->oob_irq_supported) { brcmf_dbg(SDIO, "Enter, register OOB IRQ %d\n", pdata->oob_irq_nr); ret = request_irq(pdata->oob_irq_nr, brcmf_sdiod_oob_irqhandler, pdata->oob_irq_flags, "brcmf_oob_intr", &sdiodev->func[1]->dev); if (ret != 0) { brcmf_err("request_irq failed %d\n", ret); return ret; } sdiodev->oob_irq_requested = true; spin_lock_init(&sdiodev->irq_en_lock); spin_lock_irqsave(&sdiodev->irq_en_lock, flags); sdiodev->irq_en = true; spin_unlock_irqrestore(&sdiodev->irq_en_lock, flags); ret = enable_irq_wake(pdata->oob_irq_nr); if (ret != 0) { brcmf_err("enable_irq_wake failed %d\n", ret); return ret; } sdiodev->irq_wake = true; sdio_claim_host(sdiodev->func[1]); if (sdiodev->bus_if->chip == BRCM_CC_43362_CHIP_ID) { /* assign GPIO to SDIO core */ addr = CORE_CC_REG(SI_ENUM_BASE, gpiocontrol); gpiocontrol = brcmf_sdiod_regrl(sdiodev, addr, &ret); gpiocontrol |= 0x2; brcmf_sdiod_regwl(sdiodev, addr, gpiocontrol, &ret); brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_SELECT, 0xf, &ret); brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_OUT, 0, &ret); brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_EN, 0x2, &ret); } /* must configure SDIO_CCCR_IENx to enable irq */ data = brcmf_sdiod_regrb(sdiodev, SDIO_CCCR_IENx, &ret); data |= 1 << SDIO_FUNC_1 | 1 << SDIO_FUNC_2 | 1; brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, data, &ret); /* redirect, configure and enable io for interrupt signal */ data = SDIO_SEPINT_MASK | SDIO_SEPINT_OE; if (pdata->oob_irq_flags & IRQF_TRIGGER_HIGH) data |= SDIO_SEPINT_ACT_HI; brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, data, &ret); sdio_release_host(sdiodev->func[1]); } else { brcmf_dbg(SDIO, "Entering\n"); sdio_claim_host(sdiodev->func[1]); sdio_claim_irq(sdiodev->func[1], brcmf_sdiod_ib_irqhandler); sdio_claim_irq(sdiodev->func[2], brcmf_sdiod_dummy_irqhandler); sdio_release_host(sdiodev->func[1]); sdiodev->sd_irq_requested = true; } return 0; } void brcmf_sdiod_intr_unregister(struct brcmf_sdio_dev *sdiodev) { brcmf_dbg(SDIO, "Entering oob=%d sd=%d\n", sdiodev->oob_irq_requested, sdiodev->sd_irq_requested); if (sdiodev->oob_irq_requested) { struct brcmfmac_sdio_pd *pdata; pdata = &sdiodev->settings->bus.sdio; sdio_claim_host(sdiodev->func[1]); brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, 0, NULL); brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, 0, NULL); sdio_release_host(sdiodev->func[1]); sdiodev->oob_irq_requested = false; if (sdiodev->irq_wake) { disable_irq_wake(pdata->oob_irq_nr); sdiodev->irq_wake = false; } free_irq(pdata->oob_irq_nr, &sdiodev->func[1]->dev); sdiodev->irq_en = false; sdiodev->oob_irq_requested = false; } if (sdiodev->sd_irq_requested) { sdio_claim_host(sdiodev->func[1]); sdio_release_irq(sdiodev->func[2]); sdio_release_irq(sdiodev->func[1]); sdio_release_host(sdiodev->func[1]); sdiodev->sd_irq_requested = false; } } void brcmf_sdiod_change_state(struct brcmf_sdio_dev *sdiodev, enum brcmf_sdiod_state state) { if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM || state == sdiodev->state) return; brcmf_dbg(TRACE, "%d -> %d\n", sdiodev->state, state); switch (sdiodev->state) { case BRCMF_SDIOD_DATA: /* any other state means bus interface is down */ brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_DOWN); break; case BRCMF_SDIOD_DOWN: /* transition from DOWN to DATA means bus interface is up */ if (state == BRCMF_SDIOD_DATA) brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_UP); break; default: break; } sdiodev->state = state; } static inline int brcmf_sdiod_f0_writeb(struct sdio_func *func, uint regaddr, u8 byte) { int err_ret; /* * Can only directly write to some F0 registers. * Handle CCCR_IENx and CCCR_ABORT command * as a special case. */ if ((regaddr == SDIO_CCCR_ABORT) || (regaddr == SDIO_CCCR_IENx)) sdio_writeb(func, byte, regaddr, &err_ret); else sdio_f0_writeb(func, byte, regaddr, &err_ret); return err_ret; } static int brcmf_sdiod_request_data(struct brcmf_sdio_dev *sdiodev, u8 fn, u32 addr, u8 regsz, void *data, bool write) { struct sdio_func *func; int ret = -EINVAL; brcmf_dbg(SDIO, "rw=%d, func=%d, addr=0x%05x, nbytes=%d\n", write, fn, addr, regsz); /* only allow byte access on F0 */ if (WARN_ON(regsz > 1 && !fn)) return -EINVAL; func = sdiodev->func[fn]; switch (regsz) { case sizeof(u8): if (write) { if (fn) sdio_writeb(func, *(u8 *)data, addr, &ret); else ret = brcmf_sdiod_f0_writeb(func, addr, *(u8 *)data); } else { if (fn) *(u8 *)data = sdio_readb(func, addr, &ret); else *(u8 *)data = sdio_f0_readb(func, addr, &ret); } break; case sizeof(u16): if (write) sdio_writew(func, *(u16 *)data, addr, &ret); else *(u16 *)data = sdio_readw(func, addr, &ret); break; case sizeof(u32): if (write) sdio_writel(func, *(u32 *)data, addr, &ret); else *(u32 *)data = sdio_readl(func, addr, &ret); break; default: brcmf_err("invalid size: %d\n", regsz); break; } if (ret) brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n", write ? "write" : "read", fn, addr, ret); return ret; } static int brcmf_sdiod_regrw_helper(struct brcmf_sdio_dev *sdiodev, u32 addr, u8 regsz, void *data, bool write) { u8 func; s32 retry = 0; int ret; if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM) return -ENOMEDIUM; /* * figure out how to read the register based on address range * 0x00 ~ 0x7FF: function 0 CCCR and FBR * 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers * The rest: function 1 silicon backplane core registers */ if ((addr & ~REG_F0_REG_MASK) == 0) func = SDIO_FUNC_0; else func = SDIO_FUNC_1; do { if (!write) memset(data, 0, regsz); /* for retry wait for 1 ms till bus get settled down */ if (retry) usleep_range(1000, 2000); ret = brcmf_sdiod_request_data(sdiodev, func, addr, regsz, data, write); } while (ret != 0 && ret != -ENOMEDIUM && retry++ < SDIOH_API_ACCESS_RETRY_LIMIT); if (ret == -ENOMEDIUM) brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM); else if (ret != 0) { /* * SleepCSR register access can fail when * waking up the device so reduce this noise * in the logs. */ if (addr != SBSDIO_FUNC1_SLEEPCSR) brcmf_err("failed to %s data F%d@0x%05x, err: %d\n", write ? "write" : "read", func, addr, ret); else brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n", write ? "write" : "read", func, addr, ret); } return ret; } static int brcmf_sdiod_set_sbaddr_window(struct brcmf_sdio_dev *sdiodev, u32 address) { int err = 0, i; u8 addr[3]; if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM) return -ENOMEDIUM; addr[0] = (address >> 8) & SBSDIO_SBADDRLOW_MASK; addr[1] = (address >> 16) & SBSDIO_SBADDRMID_MASK; addr[2] = (address >> 24) & SBSDIO_SBADDRHIGH_MASK; for (i = 0; i < 3; i++) { err = brcmf_sdiod_regrw_helper(sdiodev, SBSDIO_FUNC1_SBADDRLOW + i, sizeof(u8), &addr[i], true); if (err) { brcmf_err("failed at addr: 0x%0x\n", SBSDIO_FUNC1_SBADDRLOW + i); break; } } return err; } static int brcmf_sdiod_addrprep(struct brcmf_sdio_dev *sdiodev, uint width, u32 *addr) { uint bar0 = *addr & ~SBSDIO_SB_OFT_ADDR_MASK; int err = 0; if (bar0 != sdiodev->sbwad) { err = brcmf_sdiod_set_sbaddr_window(sdiodev, bar0); if (err) return err; sdiodev->sbwad = bar0; } *addr &= SBSDIO_SB_OFT_ADDR_MASK; if (width == 4) *addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; return 0; } u8 brcmf_sdiod_regrb(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret) { u8 data; int retval; brcmf_dbg(SDIO, "addr:0x%08x\n", addr); retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data, false); brcmf_dbg(SDIO, "data:0x%02x\n", data); if (ret) *ret = retval; return data; } u32 brcmf_sdiod_regrl(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret) { u32 data; int retval; brcmf_dbg(SDIO, "addr:0x%08x\n", addr); retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr); if (retval) goto done; retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data, false); brcmf_dbg(SDIO, "data:0x%08x\n", data); done: if (ret) *ret = retval; return data; } void brcmf_sdiod_regwb(struct brcmf_sdio_dev *sdiodev, u32 addr, u8 data, int *ret) { int retval; brcmf_dbg(SDIO, "addr:0x%08x, data:0x%02x\n", addr, data); retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data, true); if (ret) *ret = retval; } void brcmf_sdiod_regwl(struct brcmf_sdio_dev *sdiodev, u32 addr, u32 data, int *ret) { int retval; brcmf_dbg(SDIO, "addr:0x%08x, data:0x%08x\n", addr, data); retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr); if (retval) goto done; retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data, true); done: if (ret) *ret = retval; } static int brcmf_sdiod_buffrw(struct brcmf_sdio_dev *sdiodev, uint fn, bool write, u32 addr, struct sk_buff *pkt) { unsigned int req_sz; int err; /* Single skb use the standard mmc interface */ req_sz = pkt->len + 3; req_sz &= (uint)~3; if (write) err = sdio_memcpy_toio(sdiodev->func[fn], addr, ((u8 *)(pkt->data)), req_sz); else if (fn == 1) err = sdio_memcpy_fromio(sdiodev->func[fn], ((u8 *)(pkt->data)), addr, req_sz); else /* function 2 read is FIFO operation */ err = sdio_readsb(sdiodev->func[fn], ((u8 *)(pkt->data)), addr, req_sz); if (err == -ENOMEDIUM) brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM); return err; } /** * brcmf_sdiod_sglist_rw - SDIO interface function for block data access * @sdiodev: brcmfmac sdio device * @fn: SDIO function number * @write: direction flag * @addr: dongle memory address as source/destination * @pkt: skb pointer * * This function takes the respbonsibility as the interface function to MMC * stack for block data access. It assumes that the skb passed down by the * caller has already been padded and aligned. */ static int brcmf_sdiod_sglist_rw(struct brcmf_sdio_dev *sdiodev, uint fn, bool write, u32 addr, struct sk_buff_head *pktlist) { unsigned int req_sz, func_blk_sz, sg_cnt, sg_data_sz, pkt_offset; unsigned int max_req_sz, orig_offset, dst_offset; unsigned short max_seg_cnt, seg_sz; unsigned char *pkt_data, *orig_data, *dst_data; struct sk_buff *pkt_next = NULL, *local_pkt_next; struct sk_buff_head local_list, *target_list; struct mmc_request mmc_req; struct mmc_command mmc_cmd; struct mmc_data mmc_dat; struct scatterlist *sgl; int ret = 0; if (!pktlist->qlen) return -EINVAL; target_list = pktlist; /* for host with broken sg support, prepare a page aligned list */ __skb_queue_head_init(&local_list); if (!write && sdiodev->settings->bus.sdio.broken_sg_support) { req_sz = 0; skb_queue_walk(pktlist, pkt_next) req_sz += pkt_next->len; req_sz = ALIGN(req_sz, sdiodev->func[fn]->cur_blksize); while (req_sz > PAGE_SIZE) { pkt_next = brcmu_pkt_buf_get_skb(PAGE_SIZE); if (pkt_next == NULL) { ret = -ENOMEM; goto exit; } __skb_queue_tail(&local_list, pkt_next); req_sz -= PAGE_SIZE; } pkt_next = brcmu_pkt_buf_get_skb(req_sz); if (pkt_next == NULL) { ret = -ENOMEM; goto exit; } __skb_queue_tail(&local_list, pkt_next); target_list = &local_list; } func_blk_sz = sdiodev->func[fn]->cur_blksize; max_req_sz = sdiodev->max_request_size; max_seg_cnt = min_t(unsigned short, sdiodev->max_segment_count, target_list->qlen); seg_sz = target_list->qlen; pkt_offset = 0; pkt_next = target_list->next; memset(&mmc_req, 0, sizeof(struct mmc_request)); memset(&mmc_cmd, 0, sizeof(struct mmc_command)); memset(&mmc_dat, 0, sizeof(struct mmc_data)); mmc_dat.sg = sdiodev->sgtable.sgl; mmc_dat.blksz = func_blk_sz; mmc_dat.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ; mmc_cmd.opcode = SD_IO_RW_EXTENDED; mmc_cmd.arg = write ? 1<<31 : 0; /* write flag */ mmc_cmd.arg |= (fn & 0x7) << 28; /* SDIO func num */ mmc_cmd.arg |= 1<<27; /* block mode */ /* for function 1 the addr will be incremented */ mmc_cmd.arg |= (fn == 1) ? 1<<26 : 0; mmc_cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC; mmc_req.cmd = &mmc_cmd; mmc_req.data = &mmc_dat; while (seg_sz) { req_sz = 0; sg_cnt = 0; sgl = sdiodev->sgtable.sgl; /* prep sg table */ while (pkt_next != (struct sk_buff *)target_list) { pkt_data = pkt_next->data + pkt_offset; sg_data_sz = pkt_next->len - pkt_offset; if (sg_data_sz > sdiodev->max_segment_size) sg_data_sz = sdiodev->max_segment_size; if (sg_data_sz > max_req_sz - req_sz) sg_data_sz = max_req_sz - req_sz; sg_set_buf(sgl, pkt_data, sg_data_sz); sg_cnt++; sgl = sg_next(sgl); req_sz += sg_data_sz; pkt_offset += sg_data_sz; if (pkt_offset == pkt_next->len) { pkt_offset = 0; pkt_next = pkt_next->next; } if (req_sz >= max_req_sz || sg_cnt >= max_seg_cnt) break; } seg_sz -= sg_cnt; if (req_sz % func_blk_sz != 0) { brcmf_err("sg request length %u is not %u aligned\n", req_sz, func_blk_sz); ret = -ENOTBLK; goto exit; } mmc_dat.sg_len = sg_cnt; mmc_dat.blocks = req_sz / func_blk_sz; mmc_cmd.arg |= (addr & 0x1FFFF) << 9; /* address */ mmc_cmd.arg |= mmc_dat.blocks & 0x1FF; /* block count */ /* incrementing addr for function 1 */ if (fn == 1) addr += req_sz; mmc_set_data_timeout(&mmc_dat, sdiodev->func[fn]->card); mmc_wait_for_req(sdiodev->func[fn]->card->host, &mmc_req); ret = mmc_cmd.error ? mmc_cmd.error : mmc_dat.error; if (ret == -ENOMEDIUM) { brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM); break; } else if (ret != 0) { brcmf_err("CMD53 sg block %s failed %d\n", write ? "write" : "read", ret); ret = -EIO; break; } } if (!write && sdiodev->settings->bus.sdio.broken_sg_support) { local_pkt_next = local_list.next; orig_offset = 0; skb_queue_walk(pktlist, pkt_next) { dst_offset = 0; do { req_sz = local_pkt_next->len - orig_offset; req_sz = min_t(uint, pkt_next->len - dst_offset, req_sz); orig_data = local_pkt_next->data + orig_offset; dst_data = pkt_next->data + dst_offset; memcpy(dst_data, orig_data, req_sz); orig_offset += req_sz; dst_offset += req_sz; if (orig_offset == local_pkt_next->len) { orig_offset = 0; local_pkt_next = local_pkt_next->next; } if (dst_offset == pkt_next->len) break; } while (!skb_queue_empty(&local_list)); } } exit: sg_init_table(sdiodev->sgtable.sgl, sdiodev->sgtable.orig_nents); while ((pkt_next = __skb_dequeue(&local_list)) != NULL) brcmu_pkt_buf_free_skb(pkt_next); return ret; } int brcmf_sdiod_recv_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes) { struct sk_buff *mypkt; int err; mypkt = brcmu_pkt_buf_get_skb(nbytes); if (!mypkt) { brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n", nbytes); return -EIO; } err = brcmf_sdiod_recv_pkt(sdiodev, mypkt); if (!err) memcpy(buf, mypkt->data, nbytes); brcmu_pkt_buf_free_skb(mypkt); return err; } int brcmf_sdiod_recv_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff *pkt) { u32 addr = sdiodev->sbwad; int err = 0; brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pkt->len); err = brcmf_sdiod_addrprep(sdiodev, 4, &addr); if (err) goto done; err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr, pkt); done: return err; } int brcmf_sdiod_recv_chain(struct brcmf_sdio_dev *sdiodev, struct sk_buff_head *pktq, uint totlen) { struct sk_buff *glom_skb; struct sk_buff *skb; u32 addr = sdiodev->sbwad; int err = 0; brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen); err = brcmf_sdiod_addrprep(sdiodev, 4, &addr); if (err) goto done; if (pktq->qlen == 1) err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr, pktq->next); else if (!sdiodev->sg_support) { glom_skb = brcmu_pkt_buf_get_skb(totlen); if (!glom_skb) return -ENOMEM; err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr, glom_skb); if (err) { brcmu_pkt_buf_free_skb(glom_skb); goto done; } skb_queue_walk(pktq, skb) { memcpy(skb->data, glom_skb->data, skb->len); skb_pull(glom_skb, skb->len); } } else err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, false, addr, pktq); done: return err; } int brcmf_sdiod_send_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes) { struct sk_buff *mypkt; u32 addr = sdiodev->sbwad; int err; mypkt = brcmu_pkt_buf_get_skb(nbytes); if (!mypkt) { brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n", nbytes); return -EIO; } memcpy(mypkt->data, buf, nbytes); err = brcmf_sdiod_addrprep(sdiodev, 4, &addr); if (!err) err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true, addr, mypkt); brcmu_pkt_buf_free_skb(mypkt); return err; } int brcmf_sdiod_send_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff_head *pktq) { struct sk_buff *skb; u32 addr = sdiodev->sbwad; int err; brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen); err = brcmf_sdiod_addrprep(sdiodev, 4, &addr); if (err) return err; if (pktq->qlen == 1 || !sdiodev->sg_support) skb_queue_walk(pktq, skb) { err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true, addr, skb); if (err) break; } else err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, true, addr, pktq); return err; } int brcmf_sdiod_ramrw(struct brcmf_sdio_dev *sdiodev, bool write, u32 address, u8 *data, uint size) { int bcmerror = 0; struct sk_buff *pkt; u32 sdaddr; uint dsize; dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size); pkt = dev_alloc_skb(dsize); if (!pkt) { brcmf_err("dev_alloc_skb failed: len %d\n", dsize); return -EIO; } pkt->priority = 0; /* Determine initial transfer parameters */ sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK; if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK) dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr); else dsize = size; sdio_claim_host(sdiodev->func[1]); /* Do the transfer(s) */ while (size) { /* Set the backplane window to include the start address */ bcmerror = brcmf_sdiod_set_sbaddr_window(sdiodev, address); if (bcmerror) break; brcmf_dbg(SDIO, "%s %d bytes at offset 0x%08x in window 0x%08x\n", write ? "write" : "read", dsize, sdaddr, address & SBSDIO_SBWINDOW_MASK); sdaddr &= SBSDIO_SB_OFT_ADDR_MASK; sdaddr |= SBSDIO_SB_ACCESS_2_4B_FLAG; skb_put(pkt, dsize); if (write) memcpy(pkt->data, data, dsize); bcmerror = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_1, write, sdaddr, pkt); if (bcmerror) { brcmf_err("membytes transfer failed\n"); break; } if (!write) memcpy(data, pkt->data, dsize); skb_trim(pkt, 0); /* Adjust for next transfer (if any) */ size -= dsize; if (size) { data += dsize; address += dsize; sdaddr = 0; dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size); } } dev_kfree_skb(pkt); /* Return the window to backplane enumeration space for core access */ if (brcmf_sdiod_set_sbaddr_window(sdiodev, sdiodev->sbwad)) brcmf_err("FAILED to set window back to 0x%x\n", sdiodev->sbwad); sdio_release_host(sdiodev->func[1]); return bcmerror; } int brcmf_sdiod_abort(struct brcmf_sdio_dev *sdiodev, uint fn) { char t_func = (char)fn; brcmf_dbg(SDIO, "Enter\n"); /* issue abort cmd52 command through F0 */ brcmf_sdiod_request_data(sdiodev, SDIO_FUNC_0, SDIO_CCCR_ABORT, sizeof(t_func), &t_func, true); brcmf_dbg(SDIO, "Exit\n"); return 0; } void brcmf_sdiod_sgtable_alloc(struct brcmf_sdio_dev *sdiodev) { struct sdio_func *func; struct mmc_host *host; uint max_blocks; uint nents; int err; func = sdiodev->func[2]; host = func->card->host; sdiodev->sg_support = host->max_segs > 1; max_blocks = min_t(uint, host->max_blk_count, 511u); sdiodev->max_request_size = min_t(uint, host->max_req_size, max_blocks * func->cur_blksize); sdiodev->max_segment_count = min_t(uint, host->max_segs, SG_MAX_SINGLE_ALLOC); sdiodev->max_segment_size = host->max_seg_size; if (!sdiodev->sg_support) return; nents = max_t(uint, BRCMF_DEFAULT_RXGLOM_SIZE, sdiodev->settings->bus.sdio.txglomsz); nents += (nents >> 4) + 1; WARN_ON(nents > sdiodev->max_segment_count); brcmf_dbg(TRACE, "nents=%d\n", nents); err = sg_alloc_table(&sdiodev->sgtable, nents, GFP_KERNEL); if (err < 0) { brcmf_err("allocation failed: disable scatter-gather"); sdiodev->sg_support = false; } sdiodev->txglomsz = sdiodev->settings->bus.sdio.txglomsz; } #ifdef CONFIG_PM_SLEEP static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev) { sdiodev->freezer = kzalloc(sizeof(*sdiodev->freezer), GFP_KERNEL); if (!sdiodev->freezer) return -ENOMEM; atomic_set(&sdiodev->freezer->thread_count, 0); atomic_set(&sdiodev->freezer->freezing, 0); init_waitqueue_head(&sdiodev->freezer->thread_freeze); init_completion(&sdiodev->freezer->resumed); return 0; } static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev) { if (sdiodev->freezer) { WARN_ON(atomic_read(&sdiodev->freezer->freezing)); kfree(sdiodev->freezer); } } static int brcmf_sdiod_freezer_on(struct brcmf_sdio_dev *sdiodev) { atomic_t *expect = &sdiodev->freezer->thread_count; int res = 0; sdiodev->freezer->frozen_count = 0; reinit_completion(&sdiodev->freezer->resumed); atomic_set(&sdiodev->freezer->freezing, 1); brcmf_sdio_trigger_dpc(sdiodev->bus); wait_event(sdiodev->freezer->thread_freeze, atomic_read(expect) == sdiodev->freezer->frozen_count); sdio_claim_host(sdiodev->func[1]); res = brcmf_sdio_sleep(sdiodev->bus, true); sdio_release_host(sdiodev->func[1]); return res; } static void brcmf_sdiod_freezer_off(struct brcmf_sdio_dev *sdiodev) { sdio_claim_host(sdiodev->func[1]); brcmf_sdio_sleep(sdiodev->bus, false); sdio_release_host(sdiodev->func[1]); atomic_set(&sdiodev->freezer->freezing, 0); complete_all(&sdiodev->freezer->resumed); } bool brcmf_sdiod_freezing(struct brcmf_sdio_dev *sdiodev) { return atomic_read(&sdiodev->freezer->freezing); } void brcmf_sdiod_try_freeze(struct brcmf_sdio_dev *sdiodev) { if (!brcmf_sdiod_freezing(sdiodev)) return; sdiodev->freezer->frozen_count++; wake_up(&sdiodev->freezer->thread_freeze); wait_for_completion(&sdiodev->freezer->resumed); } void brcmf_sdiod_freezer_count(struct brcmf_sdio_dev *sdiodev) { atomic_inc(&sdiodev->freezer->thread_count); } void brcmf_sdiod_freezer_uncount(struct brcmf_sdio_dev *sdiodev) { atomic_dec(&sdiodev->freezer->thread_count); } #else static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev) { return 0; } static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev) { } #endif /* CONFIG_PM_SLEEP */ static int brcmf_sdiod_remove(struct brcmf_sdio_dev *sdiodev) { sdiodev->state = BRCMF_SDIOD_DOWN; if (sdiodev->bus) { brcmf_sdio_remove(sdiodev->bus); sdiodev->bus = NULL; } brcmf_sdiod_freezer_detach(sdiodev); /* Disable Function 2 */ sdio_claim_host(sdiodev->func[2]); sdio_disable_func(sdiodev->func[2]); sdio_release_host(sdiodev->func[2]); /* Disable Function 1 */ sdio_claim_host(sdiodev->func[1]); sdio_disable_func(sdiodev->func[1]); sdio_release_host(sdiodev->func[1]); sg_free_table(&sdiodev->sgtable); sdiodev->sbwad = 0; pm_runtime_allow(sdiodev->func[1]->card->host->parent); return 0; } static void brcmf_sdiod_host_fixup(struct mmc_host *host) { /* runtime-pm powers off the device */ pm_runtime_forbid(host->parent); /* avoid removal detection upon resume */ host->caps |= MMC_CAP_NONREMOVABLE; } static int brcmf_sdiod_probe(struct brcmf_sdio_dev *sdiodev) { int ret = 0; sdiodev->num_funcs = 2; sdio_claim_host(sdiodev->func[1]); ret = sdio_set_block_size(sdiodev->func[1], SDIO_FUNC1_BLOCKSIZE); if (ret) { brcmf_err("Failed to set F1 blocksize\n"); sdio_release_host(sdiodev->func[1]); goto out; } ret = sdio_set_block_size(sdiodev->func[2], SDIO_FUNC2_BLOCKSIZE); if (ret) { brcmf_err("Failed to set F2 blocksize\n"); sdio_release_host(sdiodev->func[1]); goto out; } /* increase F2 timeout */ sdiodev->func[2]->enable_timeout = SDIO_WAIT_F2RDY; /* Enable Function 1 */ ret = sdio_enable_func(sdiodev->func[1]); sdio_release_host(sdiodev->func[1]); if (ret) { brcmf_err("Failed to enable F1: err=%d\n", ret); goto out; } ret = brcmf_sdiod_freezer_attach(sdiodev); if (ret) goto out; /* try to attach to the target device */ sdiodev->bus = brcmf_sdio_probe(sdiodev); if (!sdiodev->bus) { ret = -ENODEV; goto out; } brcmf_sdiod_host_fixup(sdiodev->func[2]->card->host); out: if (ret) brcmf_sdiod_remove(sdiodev); return ret; } #define BRCMF_SDIO_DEVICE(dev_id) \ {SDIO_DEVICE(SDIO_VENDOR_ID_BROADCOM, dev_id)} /* devices we support, null terminated */ static const struct sdio_device_id brcmf_sdmmc_ids[] = { BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43143), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43241), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4329), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4330), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4334), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43340), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43341), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43362), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4335_4339), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4339), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43430), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4345), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4354), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4356), { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(sdio, brcmf_sdmmc_ids); static void brcmf_sdiod_acpi_set_power_manageable(struct device *dev, int val) { #if IS_ENABLED(CONFIG_ACPI) struct acpi_device *adev; adev = ACPI_COMPANION(dev); if (adev) adev->flags.power_manageable = 0; #endif } static int brcmf_ops_sdio_probe(struct sdio_func *func, const struct sdio_device_id *id) { int err; struct brcmf_sdio_dev *sdiodev; struct brcmf_bus *bus_if; struct device *dev; brcmf_dbg(SDIO, "Enter\n"); brcmf_dbg(SDIO, "Class=%x\n", func->class); brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor); brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device); brcmf_dbg(SDIO, "Function#: %d\n", func->num); dev = &func->dev; /* prohibit ACPI power management for this device */ brcmf_sdiod_acpi_set_power_manageable(dev, 0); /* Consume func num 1 but dont do anything with it. */ if (func->num == 1) return 0; /* Ignore anything but func 2 */ if (func->num != 2) return -ENODEV; bus_if = kzalloc(sizeof(struct brcmf_bus), GFP_KERNEL); if (!bus_if) return -ENOMEM; sdiodev = kzalloc(sizeof(struct brcmf_sdio_dev), GFP_KERNEL); if (!sdiodev) { kfree(bus_if); return -ENOMEM; } /* store refs to functions used. mmc_card does * not hold the F0 function pointer. */ sdiodev->func[0] = kmemdup(func, sizeof(*func), GFP_KERNEL); sdiodev->func[0]->num = 0; sdiodev->func[1] = func->card->sdio_func[0]; sdiodev->func[2] = func; sdiodev->bus_if = bus_if; bus_if->bus_priv.sdio = sdiodev; bus_if->proto_type = BRCMF_PROTO_BCDC; dev_set_drvdata(&func->dev, bus_if); dev_set_drvdata(&sdiodev->func[1]->dev, bus_if); sdiodev->dev = &sdiodev->func[1]->dev; brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_DOWN); brcmf_dbg(SDIO, "F2 found, calling brcmf_sdiod_probe...\n"); err = brcmf_sdiod_probe(sdiodev); if (err) { brcmf_err("F2 error, probe failed %d...\n", err); goto fail; } brcmf_dbg(SDIO, "F2 init completed...\n"); return 0; fail: dev_set_drvdata(&func->dev, NULL); dev_set_drvdata(&sdiodev->func[1]->dev, NULL); kfree(sdiodev->func[0]); kfree(sdiodev); kfree(bus_if); return err; } static void brcmf_ops_sdio_remove(struct sdio_func *func) { struct brcmf_bus *bus_if; struct brcmf_sdio_dev *sdiodev; brcmf_dbg(SDIO, "Enter\n"); brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor); brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device); brcmf_dbg(SDIO, "Function: %d\n", func->num); bus_if = dev_get_drvdata(&func->dev); if (bus_if) { sdiodev = bus_if->bus_priv.sdio; /* start by unregistering irqs */ brcmf_sdiod_intr_unregister(sdiodev); if (func->num != 1) return; /* only proceed with rest of cleanup if func 1 */ brcmf_sdiod_remove(sdiodev); dev_set_drvdata(&sdiodev->func[1]->dev, NULL); dev_set_drvdata(&sdiodev->func[2]->dev, NULL); kfree(bus_if); kfree(sdiodev->func[0]); kfree(sdiodev); } brcmf_dbg(SDIO, "Exit\n"); } void brcmf_sdio_wowl_config(struct device *dev, bool enabled) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; brcmf_dbg(SDIO, "Configuring WOWL, enabled=%d\n", enabled); sdiodev->wowl_enabled = enabled; } #ifdef CONFIG_PM_SLEEP static int brcmf_ops_sdio_suspend(struct device *dev) { struct sdio_func *func; struct brcmf_bus *bus_if; struct brcmf_sdio_dev *sdiodev; mmc_pm_flag_t sdio_flags; func = container_of(dev, struct sdio_func, dev); brcmf_dbg(SDIO, "Enter: F%d\n", func->num); if (func->num != SDIO_FUNC_1) return 0; bus_if = dev_get_drvdata(dev); sdiodev = bus_if->bus_priv.sdio; brcmf_sdiod_freezer_on(sdiodev); brcmf_sdio_wd_timer(sdiodev->bus, 0); sdio_flags = MMC_PM_KEEP_POWER; if (sdiodev->wowl_enabled) { if (sdiodev->settings->bus.sdio.oob_irq_supported) enable_irq_wake(sdiodev->settings->bus.sdio.oob_irq_nr); else sdio_flags |= MMC_PM_WAKE_SDIO_IRQ; } if (sdio_set_host_pm_flags(sdiodev->func[1], sdio_flags)) brcmf_err("Failed to set pm_flags %x\n", sdio_flags); return 0; } static int brcmf_ops_sdio_resume(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct sdio_func *func = container_of(dev, struct sdio_func, dev); brcmf_dbg(SDIO, "Enter: F%d\n", func->num); if (func->num != SDIO_FUNC_2) return 0; brcmf_sdiod_freezer_off(sdiodev); return 0; } static const struct dev_pm_ops brcmf_sdio_pm_ops = { .suspend = brcmf_ops_sdio_suspend, .resume = brcmf_ops_sdio_resume, }; #endif /* CONFIG_PM_SLEEP */ static struct sdio_driver brcmf_sdmmc_driver = { .probe = brcmf_ops_sdio_probe, .remove = brcmf_ops_sdio_remove, .name = KBUILD_MODNAME, .id_table = brcmf_sdmmc_ids, .drv = { .owner = THIS_MODULE, #ifdef CONFIG_PM_SLEEP .pm = &brcmf_sdio_pm_ops, #endif /* CONFIG_PM_SLEEP */ }, }; void brcmf_sdio_register(void) { int ret; ret = sdio_register_driver(&brcmf_sdmmc_driver); if (ret) brcmf_err("sdio_register_driver failed: %d\n", ret); } void brcmf_sdio_exit(void) { brcmf_dbg(SDIO, "Enter\n"); sdio_unregister_driver(&brcmf_sdmmc_driver); }