/* * Performance counter x86 architecture code * * Copyright(C) 2008 Thomas Gleixner * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar * * For licencing details see kernel-base/COPYING */ #include #include #include #include #include #include #include #include #include #include static bool perf_counters_initialized __read_mostly; /* * Number of (generic) HW counters: */ static int nr_hw_counters __read_mostly; static u32 perf_counter_mask __read_mostly; /* No support for fixed function counters yet */ #define MAX_HW_COUNTERS 8 struct cpu_hw_counters { struct perf_counter *counters[MAX_HW_COUNTERS]; unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)]; }; /* * Intel PerfMon v3. Used on Core2 and later. */ static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); const int intel_perfmon_event_map[] = { [PERF_COUNT_CYCLES] = 0x003c, [PERF_COUNT_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_CACHE_MISSES] = 0x412e, [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_BRANCH_MISSES] = 0x00c5, }; const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map); /* * Setup the hardware configuration for a given hw_event_type */ static int __hw_perf_counter_init(struct perf_counter *counter) { struct perf_counter_hw_event *hw_event = &counter->hw_event; struct hw_perf_counter *hwc = &counter->hw; if (unlikely(!perf_counters_initialized)) return -EINVAL; /* * Count user events, and generate PMC IRQs: * (keep 'enabled' bit clear for now) */ hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT; /* * If privileged enough, count OS events too, and allow * NMI events as well: */ hwc->nmi = 0; if (capable(CAP_SYS_ADMIN)) { hwc->config |= ARCH_PERFMON_EVENTSEL_OS; if (hw_event->nmi) hwc->nmi = 1; } hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0; hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0; hwc->irq_period = hw_event->irq_period; /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic counter period: */ if (!hwc->irq_period) hwc->irq_period = 0x7FFFFFFF; hwc->next_count = -(s32)hwc->irq_period; /* * Raw event type provide the config in the event structure */ if (hw_event->raw) { hwc->config |= hw_event->type; } else { if (hw_event->type >= max_intel_perfmon_events) return -EINVAL; /* * The generic map: */ hwc->config |= intel_perfmon_event_map[hw_event->type]; } counter->wakeup_pending = 0; return 0; } void hw_perf_enable_all(void) { wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0); } void hw_perf_restore_ctrl(u64 ctrl) { wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0); } EXPORT_SYMBOL_GPL(hw_perf_restore_ctrl); u64 hw_perf_disable_all(void) { u64 ctrl; rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0); return ctrl; } EXPORT_SYMBOL_GPL(hw_perf_disable_all); static inline void __x86_perf_counter_disable(struct hw_perf_counter *hwc, unsigned int idx) { wrmsr(hwc->config_base + idx, hwc->config, 0); } static DEFINE_PER_CPU(u64, prev_next_count[MAX_HW_COUNTERS]); static void __hw_perf_counter_set_period(struct hw_perf_counter *hwc, int idx) { per_cpu(prev_next_count[idx], smp_processor_id()) = hwc->next_count; wrmsr(hwc->counter_base + idx, hwc->next_count, 0); } static void __x86_perf_counter_enable(struct hw_perf_counter *hwc, int idx) { wrmsr(hwc->config_base + idx, hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0); } static void x86_perf_counter_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; /* Try to get the previous counter again */ if (test_and_set_bit(idx, cpuc->used)) { idx = find_first_zero_bit(cpuc->used, nr_hw_counters); set_bit(idx, cpuc->used); hwc->idx = idx; } perf_counters_lapic_init(hwc->nmi); __x86_perf_counter_disable(hwc, idx); cpuc->counters[idx] = counter; __hw_perf_counter_set_period(hwc, idx); __x86_perf_counter_enable(hwc, idx); } #ifdef CONFIG_X86_64 static inline void atomic64_counter_set(struct perf_counter *counter, u64 val) { atomic64_set(&counter->count, val); } static inline u64 atomic64_counter_read(struct perf_counter *counter) { return atomic64_read(&counter->count); } #else /* * Todo: add proper atomic64_t support to 32-bit x86: */ static inline void atomic64_counter_set(struct perf_counter *counter, u64 val64) { u32 *val32 = (void *)&val64; atomic_set(counter->count32 + 0, *(val32 + 0)); atomic_set(counter->count32 + 1, *(val32 + 1)); } static inline u64 atomic64_counter_read(struct perf_counter *counter) { return atomic_read(counter->count32 + 0) | (u64) atomic_read(counter->count32 + 1) << 32; } #endif static void __hw_perf_save_counter(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { s64 raw = -1; s64 delta; /* * Get the raw hw counter value: */ rdmsrl(hwc->counter_base + idx, raw); /* * Rebase it to zero (it started counting at -irq_period), * to see the delta since ->prev_count: */ delta = (s64)hwc->irq_period + (s64)(s32)raw; atomic64_counter_set(counter, hwc->prev_count + delta); /* * Adjust the ->prev_count offset - if we went beyond * irq_period of units, then we got an IRQ and the counter * was set back to -irq_period: */ while (delta >= (s64)hwc->irq_period) { hwc->prev_count += hwc->irq_period; delta -= (s64)hwc->irq_period; } /* * Calculate the next raw counter value we'll write into * the counter at the next sched-in time: */ delta -= (s64)hwc->irq_period; hwc->next_count = (s32)delta; } void perf_counter_print_debug(void) { u64 ctrl, status, overflow, pmc_ctrl, pmc_count, next_count; int cpu, idx; if (!nr_hw_counters) return; local_irq_disable(); cpu = smp_processor_id(); rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); printk(KERN_INFO "\n"); printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl); printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status); printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow); for (idx = 0; idx < nr_hw_counters; idx++) { rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count); next_count = per_cpu(prev_next_count[idx], cpu); printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n", cpu, idx, pmc_ctrl); printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n", cpu, idx, pmc_count); printk(KERN_INFO "CPU#%d: PMC%d next: %016llx\n", cpu, idx, next_count); } local_irq_enable(); } static void x86_perf_counter_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; unsigned int idx = hwc->idx; __x86_perf_counter_disable(hwc, idx); clear_bit(idx, cpuc->used); cpuc->counters[idx] = NULL; __hw_perf_save_counter(counter, hwc, idx); } static void x86_perf_counter_read(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; unsigned long addr = hwc->counter_base + hwc->idx; s64 offs, val = -1LL; s32 val32; /* Careful: NMI might modify the counter offset */ do { offs = hwc->prev_count; rdmsrl(addr, val); } while (offs != hwc->prev_count); val32 = (s32) val; val = (s64)hwc->irq_period + (s64)val32; atomic64_counter_set(counter, hwc->prev_count + val); } static void perf_store_irq_data(struct perf_counter *counter, u64 data) { struct perf_data *irqdata = counter->irqdata; if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { irqdata->overrun++; } else { u64 *p = (u64 *) &irqdata->data[irqdata->len]; *p = data; irqdata->len += sizeof(u64); } } /* * NMI-safe enable method: */ static void perf_save_and_restart(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; u64 pmc_ctrl; rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); __hw_perf_save_counter(counter, hwc, idx); __hw_perf_counter_set_period(hwc, idx); if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE) __x86_perf_counter_enable(hwc, idx); } static void perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown) { struct perf_counter *counter, *group_leader = sibling->group_leader; int bit; /* * Store the counter's own timestamp first: */ perf_store_irq_data(sibling, sibling->hw_event.type); perf_store_irq_data(sibling, atomic64_counter_read(sibling)); /* * Then store sibling timestamps (if any): */ list_for_each_entry(counter, &group_leader->sibling_list, list_entry) { if (!counter->active) { /* * When counter was not in the overflow mask, we have to * read it from hardware. We read it as well, when it * has not been read yet and clear the bit in the * status mask. */ bit = counter->hw.idx; if (!test_bit(bit, (unsigned long *) overflown) || test_bit(bit, (unsigned long *) status)) { clear_bit(bit, (unsigned long *) status); perf_save_and_restart(counter); } } perf_store_irq_data(sibling, counter->hw_event.type); perf_store_irq_data(sibling, atomic64_counter_read(counter)); } } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi) { int bit, cpu = smp_processor_id(); u64 ack, status, saved_global; struct cpu_hw_counters *cpuc; rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global); /* Disable counters globally */ wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0); ack_APIC_irq(); cpuc = &per_cpu(cpu_hw_counters, cpu); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); if (!status) goto out; again: ack = status; for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) { struct perf_counter *counter = cpuc->counters[bit]; clear_bit(bit, (unsigned long *) &status); if (!counter) continue; perf_save_and_restart(counter); switch (counter->hw_event.record_type) { case PERF_RECORD_SIMPLE: continue; case PERF_RECORD_IRQ: perf_store_irq_data(counter, instruction_pointer(regs)); break; case PERF_RECORD_GROUP: perf_handle_group(counter, &status, &ack); break; } /* * From NMI context we cannot call into the scheduler to * do a task wakeup - but we mark these counters as * wakeup_pending and initate a wakeup callback: */ if (nmi) { counter->wakeup_pending = 1; set_tsk_thread_flag(current, TIF_PERF_COUNTERS); } else { wake_up(&counter->waitq); } } wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0); /* * Repeat if there is more work to be done: */ rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); if (status) goto again; out: /* * Restore - do not reenable when global enable is off: */ wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0); } void smp_perf_counter_interrupt(struct pt_regs *regs) { irq_enter(); #ifdef CONFIG_X86_64 add_pda(apic_perf_irqs, 1); #else per_cpu(irq_stat, smp_processor_id()).apic_perf_irqs++; #endif apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); __smp_perf_counter_interrupt(regs, 0); irq_exit(); } /* * This handler is triggered by NMI contexts: */ void perf_counter_notify(struct pt_regs *regs) { struct cpu_hw_counters *cpuc; unsigned long flags; int bit, cpu; local_irq_save(flags); cpu = smp_processor_id(); cpuc = &per_cpu(cpu_hw_counters, cpu); for_each_bit(bit, cpuc->used, nr_hw_counters) { struct perf_counter *counter = cpuc->counters[bit]; if (!counter) continue; if (counter->wakeup_pending) { counter->wakeup_pending = 0; wake_up(&counter->waitq); } } local_irq_restore(flags); } void __cpuinit perf_counters_lapic_init(int nmi) { u32 apic_val; if (!perf_counters_initialized) return; /* * Enable the performance counter vector in the APIC LVT: */ apic_val = apic_read(APIC_LVTERR); apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED); if (nmi) apic_write(APIC_LVTPC, APIC_DM_NMI); else apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); apic_write(APIC_LVTERR, apic_val); } static int __kprobes perf_counter_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct pt_regs *regs; if (likely(cmd != DIE_NMI_IPI)) return NOTIFY_DONE; regs = args->regs; apic_write(APIC_LVTPC, APIC_DM_NMI); __smp_perf_counter_interrupt(regs, 1); return NOTIFY_STOP; } static __read_mostly struct notifier_block perf_counter_nmi_notifier = { .notifier_call = perf_counter_nmi_handler }; void __init init_hw_perf_counters(void) { union cpuid10_eax eax; unsigned int unused; unsigned int ebx; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) return; /* * Check whether the Architectural PerfMon supports * Branch Misses Retired Event or not. */ cpuid(10, &(eax.full), &ebx, &unused, &unused); if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) return; printk(KERN_INFO "Intel Performance Monitoring support detected.\n"); printk(KERN_INFO "... version: %d\n", eax.split.version_id); printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters); nr_hw_counters = eax.split.num_counters; if (nr_hw_counters > MAX_HW_COUNTERS) { nr_hw_counters = MAX_HW_COUNTERS; WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!", nr_hw_counters, MAX_HW_COUNTERS); } perf_counter_mask = (1 << nr_hw_counters) - 1; perf_max_counters = nr_hw_counters; printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width); printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length); perf_counters_lapic_init(0); register_die_notifier(&perf_counter_nmi_notifier); perf_counters_initialized = true; } static struct hw_perf_counter_ops x86_perf_counter_ops = { .hw_perf_counter_enable = x86_perf_counter_enable, .hw_perf_counter_disable = x86_perf_counter_disable, .hw_perf_counter_read = x86_perf_counter_read, }; struct hw_perf_counter_ops *hw_perf_counter_init(struct perf_counter *counter) { int err; err = __hw_perf_counter_init(counter); if (err) return NULL; return &x86_perf_counter_ops; }