/* -*- linux-c -*- * INET 802.1Q VLAN * Ethernet-type device handling. * * Authors: Ben Greear * Please send support related email to: netdev@vger.kernel.org * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html * * Fixes: Mar 22 2001: Martin Bokaemper * - reset skb->pkt_type on incoming packets when MAC was changed * - see that changed MAC is saddr for outgoing packets * Oct 20, 2001: Ard van Breeman: * - Fix MC-list, finally. * - Flush MC-list on VLAN destroy. * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include "vlan.h" #include "vlanproc.h" #include /* * Rebuild the Ethernet MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. * * This routine CANNOT use cached dst->neigh! * Really, it is used only when dst->neigh is wrong. * * TODO: This needs a checkup, I'm ignorant here. --BLG */ static int vlan_dev_rebuild_header(struct sk_buff *skb) { struct net_device *dev = skb->dev; struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); switch (veth->h_vlan_encapsulated_proto) { #ifdef CONFIG_INET case htons(ETH_P_IP): /* TODO: Confirm this will work with VLAN headers... */ return arp_find(veth->h_dest, skb); #endif default: pr_debug("%s: unable to resolve type %X addresses.\n", dev->name, ntohs(veth->h_vlan_encapsulated_proto)); memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); break; } return 0; } static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) { if (vlan_dev_info(skb->dev)->flags & VLAN_FLAG_REORDER_HDR) { if (skb_cow(skb, skb_headroom(skb)) < 0) skb = NULL; if (skb) { /* Lifted from Gleb's VLAN code... */ memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 12); skb->mac_header += VLAN_HLEN; } } return skb; } static inline void vlan_set_encap_proto(struct sk_buff *skb, struct vlan_hdr *vhdr) { __be16 proto; unsigned char *rawp; /* * Was a VLAN packet, grab the encapsulated protocol, which the layer * three protocols care about. */ proto = vhdr->h_vlan_encapsulated_proto; if (ntohs(proto) >= 1536) { skb->protocol = proto; return; } rawp = skb->data; if (*(unsigned short *)rawp == 0xFFFF) /* * This is a magic hack to spot IPX packets. Older Novell * breaks the protocol design and runs IPX over 802.3 without * an 802.2 LLC layer. We look for FFFF which isn't a used * 802.2 SSAP/DSAP. This won't work for fault tolerant netware * but does for the rest. */ skb->protocol = htons(ETH_P_802_3); else /* * Real 802.2 LLC */ skb->protocol = htons(ETH_P_802_2); } /* * Determine the packet's protocol ID. The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. * * Also, at this point we assume that we ARE dealing exclusively with * VLAN packets, or packets that should be made into VLAN packets based * on a default VLAN ID. * * NOTE: Should be similar to ethernet/eth.c. * * SANITY NOTE: This method is called when a packet is moving up the stack * towards userland. To get here, it would have already passed * through the ethernet/eth.c eth_type_trans() method. * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be * stored UNALIGNED in the memory. RISC systems don't like * such cases very much... * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be * aligned, so there doesn't need to be any of the unaligned * stuff. It has been commented out now... --Ben * */ int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype, struct net_device *orig_dev) { struct vlan_hdr *vhdr; struct net_device_stats *stats; u16 vlan_id; u16 vlan_tci; skb = skb_share_check(skb, GFP_ATOMIC); if (skb == NULL) goto err_free; if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) goto err_free; vhdr = (struct vlan_hdr *)skb->data; vlan_tci = ntohs(vhdr->h_vlan_TCI); vlan_id = vlan_tci & VLAN_VID_MASK; rcu_read_lock(); skb->dev = __find_vlan_dev(dev, vlan_id); if (!skb->dev) { pr_debug("%s: ERROR: No net_device for VID: %u on dev: %s\n", __func__, vlan_id, dev->name); goto err_unlock; } stats = &skb->dev->stats; stats->rx_packets++; stats->rx_bytes += skb->len; skb_pull_rcsum(skb, VLAN_HLEN); skb->priority = vlan_get_ingress_priority(skb->dev, vlan_tci); pr_debug("%s: priority: %u for TCI: %hu\n", __func__, skb->priority, vlan_tci); switch (skb->pkt_type) { case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ /* stats->broadcast ++; // no such counter :-( */ break; case PACKET_MULTICAST: stats->multicast++; break; case PACKET_OTHERHOST: /* Our lower layer thinks this is not local, let's make sure. * This allows the VLAN to have a different MAC than the * underlying device, and still route correctly. */ if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) skb->pkt_type = PACKET_HOST; break; default: break; } vlan_set_encap_proto(skb, vhdr); skb = vlan_check_reorder_header(skb); if (!skb) { stats->rx_errors++; goto err_unlock; } netif_rx(skb); rcu_read_unlock(); return NET_RX_SUCCESS; err_unlock: rcu_read_unlock(); err_free: kfree_skb(skb); return NET_RX_DROP; } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, struct sk_buff *skb) { struct vlan_priority_tci_mapping *mp; mp = vlan_dev_info(dev)->egress_priority_map[(skb->priority & 0xF)]; while (mp) { if (mp->priority == skb->priority) { return mp->vlan_qos; /* This should already be shifted * to mask correctly with the * VLAN's TCI */ } mp = mp->next; } return 0; } /* * Create the VLAN header for an arbitrary protocol layer * * saddr=NULL means use device source address * daddr=NULL means leave destination address (eg unresolved arp) * * This is called when the SKB is moving down the stack towards the * physical devices. */ static int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct vlan_hdr *vhdr; unsigned int vhdrlen = 0; u16 vlan_tci = 0; int rc; if (WARN_ON(skb_headroom(skb) < dev->hard_header_len)) return -ENOSPC; if (!(vlan_dev_info(dev)->flags & VLAN_FLAG_REORDER_HDR)) { vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); vlan_tci = vlan_dev_info(dev)->vlan_id; vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb); vhdr->h_vlan_TCI = htons(vlan_tci); /* * Set the protocol type. For a packet of type ETH_P_802_3 we * put the length in here instead. It is up to the 802.2 * layer to carry protocol information. */ if (type != ETH_P_802_3) vhdr->h_vlan_encapsulated_proto = htons(type); else vhdr->h_vlan_encapsulated_proto = htons(len); skb->protocol = htons(ETH_P_8021Q); type = ETH_P_8021Q; vhdrlen = VLAN_HLEN; } /* Before delegating work to the lower layer, enter our MAC-address */ if (saddr == NULL) saddr = dev->dev_addr; /* Now make the underlying real hard header */ dev = vlan_dev_info(dev)->real_dev; rc = dev_hard_header(skb, dev, type, daddr, saddr, len + vhdrlen); if (rc > 0) rc += vhdrlen; return rc; } static netdev_tx_t vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { int i = skb_get_queue_mapping(skb); struct netdev_queue *txq = netdev_get_tx_queue(dev, i); struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); unsigned int len; int ret; /* Handle non-VLAN frames if they are sent to us, for example by DHCP. * * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... */ if (veth->h_vlan_proto != htons(ETH_P_8021Q) || vlan_dev_info(dev)->flags & VLAN_FLAG_REORDER_HDR) { unsigned int orig_headroom = skb_headroom(skb); u16 vlan_tci; vlan_dev_info(dev)->cnt_encap_on_xmit++; vlan_tci = vlan_dev_info(dev)->vlan_id; vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb); skb = __vlan_put_tag(skb, vlan_tci); if (!skb) { txq->tx_dropped++; return NETDEV_TX_OK; } if (orig_headroom < VLAN_HLEN) vlan_dev_info(dev)->cnt_inc_headroom_on_tx++; } skb->dev = vlan_dev_info(dev)->real_dev; len = skb->len; ret = dev_queue_xmit(skb); if (likely(ret == NET_XMIT_SUCCESS)) { txq->tx_packets++; txq->tx_bytes += len; } else txq->tx_dropped++; return NETDEV_TX_OK; } static netdev_tx_t vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { int i = skb_get_queue_mapping(skb); struct netdev_queue *txq = netdev_get_tx_queue(dev, i); u16 vlan_tci; unsigned int len; int ret; vlan_tci = vlan_dev_info(dev)->vlan_id; vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb); skb = __vlan_hwaccel_put_tag(skb, vlan_tci); skb->dev = vlan_dev_info(dev)->real_dev; len = skb->len; ret = dev_queue_xmit(skb); if (likely(ret == NET_XMIT_SUCCESS)) { txq->tx_packets++; txq->tx_bytes += len; } else txq->tx_dropped++; return NETDEV_TX_OK; } static int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) { /* TODO: gotta make sure the underlying layer can handle it, * maybe an IFF_VLAN_CAPABLE flag for devices? */ if (vlan_dev_info(dev)->real_dev->mtu < new_mtu) return -ERANGE; dev->mtu = new_mtu; return 0; } void vlan_dev_set_ingress_priority(const struct net_device *dev, u32 skb_prio, u16 vlan_prio) { struct vlan_dev_info *vlan = vlan_dev_info(dev); if (vlan->ingress_priority_map[vlan_prio & 0x7] && !skb_prio) vlan->nr_ingress_mappings--; else if (!vlan->ingress_priority_map[vlan_prio & 0x7] && skb_prio) vlan->nr_ingress_mappings++; vlan->ingress_priority_map[vlan_prio & 0x7] = skb_prio; } int vlan_dev_set_egress_priority(const struct net_device *dev, u32 skb_prio, u16 vlan_prio) { struct vlan_dev_info *vlan = vlan_dev_info(dev); struct vlan_priority_tci_mapping *mp = NULL; struct vlan_priority_tci_mapping *np; u32 vlan_qos = (vlan_prio << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK; /* See if a priority mapping exists.. */ mp = vlan->egress_priority_map[skb_prio & 0xF]; while (mp) { if (mp->priority == skb_prio) { if (mp->vlan_qos && !vlan_qos) vlan->nr_egress_mappings--; else if (!mp->vlan_qos && vlan_qos) vlan->nr_egress_mappings++; mp->vlan_qos = vlan_qos; return 0; } mp = mp->next; } /* Create a new mapping then. */ mp = vlan->egress_priority_map[skb_prio & 0xF]; np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); if (!np) return -ENOBUFS; np->next = mp; np->priority = skb_prio; np->vlan_qos = vlan_qos; vlan->egress_priority_map[skb_prio & 0xF] = np; if (vlan_qos) vlan->nr_egress_mappings++; return 0; } /* Flags are defined in the vlan_flags enum in include/linux/if_vlan.h file. */ int vlan_dev_change_flags(const struct net_device *dev, u32 flags, u32 mask) { struct vlan_dev_info *vlan = vlan_dev_info(dev); u32 old_flags = vlan->flags; if (mask & ~(VLAN_FLAG_REORDER_HDR | VLAN_FLAG_GVRP)) return -EINVAL; vlan->flags = (old_flags & ~mask) | (flags & mask); if (netif_running(dev) && (vlan->flags ^ old_flags) & VLAN_FLAG_GVRP) { if (vlan->flags & VLAN_FLAG_GVRP) vlan_gvrp_request_join(dev); else vlan_gvrp_request_leave(dev); } return 0; } void vlan_dev_get_realdev_name(const struct net_device *dev, char *result) { strncpy(result, vlan_dev_info(dev)->real_dev->name, 23); } static int vlan_dev_open(struct net_device *dev) { struct vlan_dev_info *vlan = vlan_dev_info(dev); struct net_device *real_dev = vlan->real_dev; int err; if (!(real_dev->flags & IFF_UP)) return -ENETDOWN; if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) { err = dev_unicast_add(real_dev, dev->dev_addr); if (err < 0) goto out; } if (dev->flags & IFF_ALLMULTI) { err = dev_set_allmulti(real_dev, 1); if (err < 0) goto del_unicast; } if (dev->flags & IFF_PROMISC) { err = dev_set_promiscuity(real_dev, 1); if (err < 0) goto clear_allmulti; } memcpy(vlan->real_dev_addr, real_dev->dev_addr, ETH_ALEN); if (vlan->flags & VLAN_FLAG_GVRP) vlan_gvrp_request_join(dev); netif_carrier_on(dev); return 0; clear_allmulti: if (dev->flags & IFF_ALLMULTI) dev_set_allmulti(real_dev, -1); del_unicast: if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) dev_unicast_delete(real_dev, dev->dev_addr); out: netif_carrier_off(dev); return err; } static int vlan_dev_stop(struct net_device *dev) { struct vlan_dev_info *vlan = vlan_dev_info(dev); struct net_device *real_dev = vlan->real_dev; if (vlan->flags & VLAN_FLAG_GVRP) vlan_gvrp_request_leave(dev); dev_mc_unsync(real_dev, dev); dev_unicast_unsync(real_dev, dev); if (dev->flags & IFF_ALLMULTI) dev_set_allmulti(real_dev, -1); if (dev->flags & IFF_PROMISC) dev_set_promiscuity(real_dev, -1); if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) dev_unicast_delete(real_dev, dev->dev_addr); netif_carrier_off(dev); return 0; } static int vlan_dev_set_mac_address(struct net_device *dev, void *p) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; struct sockaddr *addr = p; int err; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (!(dev->flags & IFF_UP)) goto out; if (compare_ether_addr(addr->sa_data, real_dev->dev_addr)) { err = dev_unicast_add(real_dev, addr->sa_data); if (err < 0) return err; } if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) dev_unicast_delete(real_dev, dev->dev_addr); out: memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); return 0; } static int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; const struct net_device_ops *ops = real_dev->netdev_ops; struct ifreq ifrr; int err = -EOPNOTSUPP; strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); ifrr.ifr_ifru = ifr->ifr_ifru; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: if (netif_device_present(real_dev) && ops->ndo_do_ioctl) err = ops->ndo_do_ioctl(real_dev, &ifrr, cmd); break; } if (!err) ifr->ifr_ifru = ifrr.ifr_ifru; return err; } static int vlan_dev_neigh_setup(struct net_device *dev, struct neigh_parms *pa) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; const struct net_device_ops *ops = real_dev->netdev_ops; int err = 0; if (netif_device_present(real_dev) && ops->ndo_neigh_setup) err = ops->ndo_neigh_setup(real_dev, pa); return err; } #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) static int vlan_dev_fcoe_ddp_setup(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; const struct net_device_ops *ops = real_dev->netdev_ops; int rc = 0; if (ops->ndo_fcoe_ddp_setup) rc = ops->ndo_fcoe_ddp_setup(real_dev, xid, sgl, sgc); return rc; } static int vlan_dev_fcoe_ddp_done(struct net_device *dev, u16 xid) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; const struct net_device_ops *ops = real_dev->netdev_ops; int len = 0; if (ops->ndo_fcoe_ddp_done) len = ops->ndo_fcoe_ddp_done(real_dev, xid); return len; } static int vlan_dev_fcoe_enable(struct net_device *dev) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; const struct net_device_ops *ops = real_dev->netdev_ops; int rc = -EINVAL; if (ops->ndo_fcoe_enable) rc = ops->ndo_fcoe_enable(real_dev); return rc; } static int vlan_dev_fcoe_disable(struct net_device *dev) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; const struct net_device_ops *ops = real_dev->netdev_ops; int rc = -EINVAL; if (ops->ndo_fcoe_disable) rc = ops->ndo_fcoe_disable(real_dev); return rc; } #endif static void vlan_dev_change_rx_flags(struct net_device *dev, int change) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; if (change & IFF_ALLMULTI) dev_set_allmulti(real_dev, dev->flags & IFF_ALLMULTI ? 1 : -1); if (change & IFF_PROMISC) dev_set_promiscuity(real_dev, dev->flags & IFF_PROMISC ? 1 : -1); } static void vlan_dev_set_rx_mode(struct net_device *vlan_dev) { dev_mc_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev); dev_unicast_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev); } /* * vlan network devices have devices nesting below it, and are a special * "super class" of normal network devices; split their locks off into a * separate class since they always nest. */ static struct lock_class_key vlan_netdev_xmit_lock_key; static struct lock_class_key vlan_netdev_addr_lock_key; static void vlan_dev_set_lockdep_one(struct net_device *dev, struct netdev_queue *txq, void *_subclass) { lockdep_set_class_and_subclass(&txq->_xmit_lock, &vlan_netdev_xmit_lock_key, *(int *)_subclass); } static void vlan_dev_set_lockdep_class(struct net_device *dev, int subclass) { lockdep_set_class_and_subclass(&dev->addr_list_lock, &vlan_netdev_addr_lock_key, subclass); netdev_for_each_tx_queue(dev, vlan_dev_set_lockdep_one, &subclass); } static const struct header_ops vlan_header_ops = { .create = vlan_dev_hard_header, .rebuild = vlan_dev_rebuild_header, .parse = eth_header_parse, }; static const struct net_device_ops vlan_netdev_ops, vlan_netdev_accel_ops; static int vlan_dev_init(struct net_device *dev) { struct net_device *real_dev = vlan_dev_info(dev)->real_dev; int subclass = 0; netif_carrier_off(dev); /* IFF_BROADCAST|IFF_MULTICAST; ??? */ dev->flags = real_dev->flags & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI); dev->iflink = real_dev->ifindex; dev->state = (real_dev->state & ((1<<__LINK_STATE_NOCARRIER) | (1<<__LINK_STATE_DORMANT))) | (1<<__LINK_STATE_PRESENT); dev->features |= real_dev->features & real_dev->vlan_features; dev->gso_max_size = real_dev->gso_max_size; /* ipv6 shared card related stuff */ dev->dev_id = real_dev->dev_id; if (is_zero_ether_addr(dev->dev_addr)) memcpy(dev->dev_addr, real_dev->dev_addr, dev->addr_len); if (is_zero_ether_addr(dev->broadcast)) memcpy(dev->broadcast, real_dev->broadcast, dev->addr_len); #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) dev->fcoe_ddp_xid = real_dev->fcoe_ddp_xid; #endif if (real_dev->features & NETIF_F_HW_VLAN_TX) { dev->header_ops = real_dev->header_ops; dev->hard_header_len = real_dev->hard_header_len; dev->netdev_ops = &vlan_netdev_accel_ops; } else { dev->header_ops = &vlan_header_ops; dev->hard_header_len = real_dev->hard_header_len + VLAN_HLEN; dev->netdev_ops = &vlan_netdev_ops; } if (is_vlan_dev(real_dev)) subclass = 1; vlan_dev_set_lockdep_class(dev, subclass); return 0; } static void vlan_dev_uninit(struct net_device *dev) { struct vlan_priority_tci_mapping *pm; struct vlan_dev_info *vlan = vlan_dev_info(dev); int i; for (i = 0; i < ARRAY_SIZE(vlan->egress_priority_map); i++) { while ((pm = vlan->egress_priority_map[i]) != NULL) { vlan->egress_priority_map[i] = pm->next; kfree(pm); } } } static int vlan_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { const struct vlan_dev_info *vlan = vlan_dev_info(dev); return dev_ethtool_get_settings(vlan->real_dev, cmd); } static void vlan_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, vlan_fullname); strcpy(info->version, vlan_version); strcpy(info->fw_version, "N/A"); } static u32 vlan_ethtool_get_rx_csum(struct net_device *dev) { const struct vlan_dev_info *vlan = vlan_dev_info(dev); return dev_ethtool_get_rx_csum(vlan->real_dev); } static u32 vlan_ethtool_get_flags(struct net_device *dev) { const struct vlan_dev_info *vlan = vlan_dev_info(dev); return dev_ethtool_get_flags(vlan->real_dev); } static const struct ethtool_ops vlan_ethtool_ops = { .get_settings = vlan_ethtool_get_settings, .get_drvinfo = vlan_ethtool_get_drvinfo, .get_link = ethtool_op_get_link, .get_rx_csum = vlan_ethtool_get_rx_csum, .get_flags = vlan_ethtool_get_flags, }; static const struct net_device_ops vlan_netdev_ops = { .ndo_change_mtu = vlan_dev_change_mtu, .ndo_init = vlan_dev_init, .ndo_uninit = vlan_dev_uninit, .ndo_open = vlan_dev_open, .ndo_stop = vlan_dev_stop, .ndo_start_xmit = vlan_dev_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = vlan_dev_set_mac_address, .ndo_set_rx_mode = vlan_dev_set_rx_mode, .ndo_set_multicast_list = vlan_dev_set_rx_mode, .ndo_change_rx_flags = vlan_dev_change_rx_flags, .ndo_do_ioctl = vlan_dev_ioctl, .ndo_neigh_setup = vlan_dev_neigh_setup, #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) .ndo_fcoe_ddp_setup = vlan_dev_fcoe_ddp_setup, .ndo_fcoe_ddp_done = vlan_dev_fcoe_ddp_done, .ndo_fcoe_enable = vlan_dev_fcoe_enable, .ndo_fcoe_disable = vlan_dev_fcoe_disable, #endif }; static const struct net_device_ops vlan_netdev_accel_ops = { .ndo_change_mtu = vlan_dev_change_mtu, .ndo_init = vlan_dev_init, .ndo_uninit = vlan_dev_uninit, .ndo_open = vlan_dev_open, .ndo_stop = vlan_dev_stop, .ndo_start_xmit = vlan_dev_hwaccel_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = vlan_dev_set_mac_address, .ndo_set_rx_mode = vlan_dev_set_rx_mode, .ndo_set_multicast_list = vlan_dev_set_rx_mode, .ndo_change_rx_flags = vlan_dev_change_rx_flags, .ndo_do_ioctl = vlan_dev_ioctl, .ndo_neigh_setup = vlan_dev_neigh_setup, #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) .ndo_fcoe_ddp_setup = vlan_dev_fcoe_ddp_setup, .ndo_fcoe_ddp_done = vlan_dev_fcoe_ddp_done, .ndo_fcoe_enable = vlan_dev_fcoe_enable, .ndo_fcoe_disable = vlan_dev_fcoe_disable, #endif }; void vlan_setup(struct net_device *dev) { ether_setup(dev); dev->priv_flags |= IFF_802_1Q_VLAN; dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; dev->tx_queue_len = 0; dev->netdev_ops = &vlan_netdev_ops; dev->destructor = free_netdev; dev->ethtool_ops = &vlan_ethtool_ops; memset(dev->broadcast, 0, ETH_ALEN); }