/* * linux/arch/arm/mach-at91/at91rm9200_time.c * * Copyright (C) 2003 SAN People * Copyright (C) 2003 ATMEL * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include static unsigned long last_crtr; static u32 irqmask; static struct clock_event_device clkevt; #define RM9200_TIMER_LATCH ((AT91_SLOW_CLOCK + HZ/2) / HZ) /* * The ST_CRTR is updated asynchronously to the master clock ... but * the updates as seen by the CPU don't seem to be strictly monotonic. * Waiting until we read the same value twice avoids glitching. */ static inline unsigned long read_CRTR(void) { unsigned long x1, x2; x1 = at91_st_read(AT91_ST_CRTR); do { x2 = at91_st_read(AT91_ST_CRTR); if (x1 == x2) break; x1 = x2; } while (1); return x1; } /* * IRQ handler for the timer. */ static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id) { u32 sr = at91_st_read(AT91_ST_SR) & irqmask; /* * irqs should be disabled here, but as the irq is shared they are only * guaranteed to be off if the timer irq is registered first. */ WARN_ON_ONCE(!irqs_disabled()); /* simulate "oneshot" timer with alarm */ if (sr & AT91_ST_ALMS) { clkevt.event_handler(&clkevt); return IRQ_HANDLED; } /* periodic mode should handle delayed ticks */ if (sr & AT91_ST_PITS) { u32 crtr = read_CRTR(); while (((crtr - last_crtr) & AT91_ST_CRTV) >= RM9200_TIMER_LATCH) { last_crtr += RM9200_TIMER_LATCH; clkevt.event_handler(&clkevt); } return IRQ_HANDLED; } /* this irq is shared ... */ return IRQ_NONE; } static struct irqaction at91rm9200_timer_irq = { .name = "at91_tick", .flags = IRQF_SHARED | IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = at91rm9200_timer_interrupt }; static cycle_t read_clk32k(struct clocksource *cs) { return read_CRTR(); } static struct clocksource clk32k = { .name = "32k_counter", .rating = 150, .read = read_clk32k, .mask = CLOCKSOURCE_MASK(20), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void clkevt32k_mode(enum clock_event_mode mode, struct clock_event_device *dev) { /* Disable and flush pending timer interrupts */ at91_st_write(AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS); (void) at91_st_read(AT91_ST_SR); last_crtr = read_CRTR(); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: /* PIT for periodic irqs; fixed rate of 1/HZ */ irqmask = AT91_ST_PITS; at91_st_write(AT91_ST_PIMR, RM9200_TIMER_LATCH); break; case CLOCK_EVT_MODE_ONESHOT: /* ALM for oneshot irqs, set by next_event() * before 32 seconds have passed */ irqmask = AT91_ST_ALMS; at91_st_write(AT91_ST_RTAR, last_crtr); break; case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_RESUME: irqmask = 0; break; } at91_st_write(AT91_ST_IER, irqmask); } static int clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev) { u32 alm; int status = 0; BUG_ON(delta < 2); /* The alarm IRQ uses absolute time (now+delta), not the relative * time (delta) in our calling convention. Like all clockevents * using such "match" hardware, we have a race to defend against. * * Our defense here is to have set up the clockevent device so the * delta is at least two. That way we never end up writing RTAR * with the value then held in CRTR ... which would mean the match * wouldn't trigger until 32 seconds later, after CRTR wraps. */ alm = read_CRTR(); /* Cancel any pending alarm; flush any pending IRQ */ at91_st_write(AT91_ST_RTAR, alm); (void) at91_st_read(AT91_ST_SR); /* Schedule alarm by writing RTAR. */ alm += delta; at91_st_write(AT91_ST_RTAR, alm); return status; } static struct clock_event_device clkevt = { .name = "at91_tick", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .shift = 32, .rating = 150, .set_next_event = clkevt32k_next_event, .set_mode = clkevt32k_mode, }; void __iomem *at91_st_base; void __init at91rm9200_ioremap_st(u32 addr) { at91_st_base = ioremap(addr, 256); if (!at91_st_base) panic("Impossible to ioremap ST\n"); } /* * ST (system timer) module supports both clockevents and clocksource. */ void __init at91rm9200_timer_init(void) { /* Disable all timer interrupts, and clear any pending ones */ at91_st_write(AT91_ST_IDR, AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS); (void) at91_st_read(AT91_ST_SR); /* Make IRQs happen for the system timer */ setup_irq(AT91_ID_SYS, &at91rm9200_timer_irq); /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used * directly for the clocksource and all clockevents, after adjusting * its prescaler from the 1 Hz default. */ at91_st_write(AT91_ST_RTMR, 1); /* Setup timer clockevent, with minimum of two ticks (important!!) */ clkevt.mult = div_sc(AT91_SLOW_CLOCK, NSEC_PER_SEC, clkevt.shift); clkevt.max_delta_ns = clockevent_delta2ns(AT91_ST_ALMV, &clkevt); clkevt.min_delta_ns = clockevent_delta2ns(2, &clkevt) + 1; clkevt.cpumask = cpumask_of(0); clockevents_register_device(&clkevt); /* register clocksource */ clocksource_register_hz(&clk32k, AT91_SLOW_CLOCK); } struct sys_timer at91rm9200_timer = { .init = at91rm9200_timer_init, };