/* * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Author: Tom Tucker */ #ifndef SVC_RDMA_H #define SVC_RDMA_H #include #include #include #include #include #define SVCRDMA_DEBUG /* RPC/RDMA parameters and stats */ extern unsigned int svcrdma_ord; extern unsigned int svcrdma_max_requests; extern unsigned int svcrdma_max_req_size; extern atomic_t rdma_stat_recv; extern atomic_t rdma_stat_read; extern atomic_t rdma_stat_write; extern atomic_t rdma_stat_sq_starve; extern atomic_t rdma_stat_rq_starve; extern atomic_t rdma_stat_rq_poll; extern atomic_t rdma_stat_rq_prod; extern atomic_t rdma_stat_sq_poll; extern atomic_t rdma_stat_sq_prod; #define RPCRDMA_VERSION 1 /* * Contexts are built when an RDMA request is created and are a * record of the resources that can be recovered when the request * completes. */ struct svc_rdma_op_ctxt { struct svc_rdma_op_ctxt *read_hdr; struct svc_rdma_fastreg_mr *frmr; int hdr_count; struct xdr_buf arg; struct list_head dto_q; enum ib_wr_opcode wr_op; enum ib_wc_status wc_status; u32 byte_len; struct svcxprt_rdma *xprt; unsigned long flags; enum dma_data_direction direction; int count; struct ib_sge sge[RPCSVC_MAXPAGES]; struct page *pages[RPCSVC_MAXPAGES]; }; /* * NFS_ requests are mapped on the client side by the chunk lists in * the RPCRDMA header. During the fetching of the RPC from the client * and the writing of the reply to the client, the memory in the * client and the memory in the server must be mapped as contiguous * vaddr/len for access by the hardware. These data strucures keep * these mappings. * * For an RDMA_WRITE, the 'sge' maps the RPC REPLY. For RDMA_READ, the * 'sge' in the svc_rdma_req_map maps the server side RPC reply and the * 'ch' field maps the read-list of the RPCRDMA header to the 'sge' * mapping of the reply. */ struct svc_rdma_chunk_sge { int start; /* sge no for this chunk */ int count; /* sge count for this chunk */ }; struct svc_rdma_fastreg_mr { struct ib_mr *mr; void *kva; struct ib_fast_reg_page_list *page_list; int page_list_len; unsigned long access_flags; unsigned long map_len; enum dma_data_direction direction; struct list_head frmr_list; }; struct svc_rdma_req_map { struct svc_rdma_fastreg_mr *frmr; unsigned long count; union { struct kvec sge[RPCSVC_MAXPAGES]; struct svc_rdma_chunk_sge ch[RPCSVC_MAXPAGES]; }; }; #define RDMACTXT_F_FAST_UNREG 1 #define RDMACTXT_F_LAST_CTXT 2 #define SVCRDMA_DEVCAP_FAST_REG 1 /* fast mr registration */ #define SVCRDMA_DEVCAP_READ_W_INV 2 /* read w/ invalidate */ struct svcxprt_rdma { struct svc_xprt sc_xprt; /* SVC transport structure */ struct rdma_cm_id *sc_cm_id; /* RDMA connection id */ struct list_head sc_accept_q; /* Conn. waiting accept */ int sc_ord; /* RDMA read limit */ int sc_max_sge; int sc_sq_depth; /* Depth of SQ */ atomic_t sc_sq_count; /* Number of SQ WR on queue */ int sc_max_requests; /* Depth of RQ */ int sc_max_req_size; /* Size of each RQ WR buf */ struct ib_pd *sc_pd; atomic_t sc_dma_used; atomic_t sc_ctxt_used; struct list_head sc_rq_dto_q; spinlock_t sc_rq_dto_lock; struct ib_qp *sc_qp; struct ib_cq *sc_rq_cq; struct ib_cq *sc_sq_cq; struct ib_mr *sc_phys_mr; /* MR for server memory */ u32 sc_dev_caps; /* distilled device caps */ u32 sc_dma_lkey; /* local dma key */ unsigned int sc_frmr_pg_list_len; struct list_head sc_frmr_q; spinlock_t sc_frmr_q_lock; spinlock_t sc_lock; /* transport lock */ wait_queue_head_t sc_send_wait; /* SQ exhaustion waitlist */ unsigned long sc_flags; struct list_head sc_dto_q; /* DTO tasklet I/O pending Q */ struct list_head sc_read_complete_q; struct work_struct sc_work; }; /* sc_flags */ #define RDMAXPRT_RQ_PENDING 1 #define RDMAXPRT_SQ_PENDING 2 #define RDMAXPRT_CONN_PENDING 3 #define RPCRDMA_LISTEN_BACKLOG 10 /* The default ORD value is based on two outstanding full-size writes with a * page size of 4k, or 32k * 2 ops / 4k = 16 outstanding RDMA_READ. */ #define RPCRDMA_ORD (64/4) #define RPCRDMA_SQ_DEPTH_MULT 8 #define RPCRDMA_MAX_THREADS 16 #define RPCRDMA_MAX_REQUESTS 16 #define RPCRDMA_MAX_REQ_SIZE 4096 /* svc_rdma_marshal.c */ extern void svc_rdma_rcl_chunk_counts(struct rpcrdma_read_chunk *, int *, int *); extern int svc_rdma_xdr_decode_req(struct rpcrdma_msg **, struct svc_rqst *); extern int svc_rdma_xdr_decode_deferred_req(struct svc_rqst *); extern int svc_rdma_xdr_encode_error(struct svcxprt_rdma *, struct rpcrdma_msg *, enum rpcrdma_errcode, u32 *); extern void svc_rdma_xdr_encode_write_list(struct rpcrdma_msg *, int); extern void svc_rdma_xdr_encode_reply_array(struct rpcrdma_write_array *, int); extern void svc_rdma_xdr_encode_array_chunk(struct rpcrdma_write_array *, int, u32, u64, u32); extern void svc_rdma_xdr_encode_reply_header(struct svcxprt_rdma *, struct rpcrdma_msg *, struct rpcrdma_msg *, enum rpcrdma_proc); extern int svc_rdma_xdr_get_reply_hdr_len(struct rpcrdma_msg *); /* svc_rdma_recvfrom.c */ extern int svc_rdma_recvfrom(struct svc_rqst *); /* svc_rdma_sendto.c */ extern int svc_rdma_sendto(struct svc_rqst *); /* svc_rdma_transport.c */ extern int svc_rdma_send(struct svcxprt_rdma *, struct ib_send_wr *); extern void svc_rdma_send_error(struct svcxprt_rdma *, struct rpcrdma_msg *, enum rpcrdma_errcode); struct page *svc_rdma_get_page(void); extern int svc_rdma_post_recv(struct svcxprt_rdma *); extern int svc_rdma_create_listen(struct svc_serv *, int, struct sockaddr *); extern struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *); extern void svc_rdma_put_context(struct svc_rdma_op_ctxt *, int); extern struct svc_rdma_req_map *svc_rdma_get_req_map(void); extern void svc_rdma_put_req_map(struct svc_rdma_req_map *); extern int svc_rdma_fastreg(struct svcxprt_rdma *, struct svc_rdma_fastreg_mr *); extern struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *); extern void svc_rdma_put_frmr(struct svcxprt_rdma *, struct svc_rdma_fastreg_mr *); extern void svc_sq_reap(struct svcxprt_rdma *); extern void svc_rq_reap(struct svcxprt_rdma *); extern struct svc_xprt_class svc_rdma_class; extern void svc_rdma_prep_reply_hdr(struct svc_rqst *); /* svc_rdma.c */ extern int svc_rdma_init(void); extern void svc_rdma_cleanup(void); /* * Returns the address of the first read chunk or if no read chunk is * present */ static inline struct rpcrdma_read_chunk * svc_rdma_get_read_chunk(struct rpcrdma_msg *rmsgp) { struct rpcrdma_read_chunk *ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0]; if (ch->rc_discrim == 0) return NULL; return ch; } /* * Returns the address of the first read write array element or if no * write array list is present */ static inline struct rpcrdma_write_array * svc_rdma_get_write_array(struct rpcrdma_msg *rmsgp) { if (rmsgp->rm_body.rm_chunks[0] != 0 || rmsgp->rm_body.rm_chunks[1] == 0) return NULL; return (struct rpcrdma_write_array *)&rmsgp->rm_body.rm_chunks[1]; } /* * Returns the address of the first reply array element or if no * reply array is present */ static inline struct rpcrdma_write_array * svc_rdma_get_reply_array(struct rpcrdma_msg *rmsgp) { struct rpcrdma_read_chunk *rch; struct rpcrdma_write_array *wr_ary; struct rpcrdma_write_array *rp_ary; /* XXX: Need to fix when reply list may occur with read-list and/or * write list */ if (rmsgp->rm_body.rm_chunks[0] != 0 || rmsgp->rm_body.rm_chunks[1] != 0) return NULL; rch = svc_rdma_get_read_chunk(rmsgp); if (rch) { while (rch->rc_discrim) rch++; /* The reply list follows an empty write array located * at 'rc_position' here. The reply array is at rc_target. */ rp_ary = (struct rpcrdma_write_array *)&rch->rc_target; goto found_it; } wr_ary = svc_rdma_get_write_array(rmsgp); if (wr_ary) { rp_ary = (struct rpcrdma_write_array *) &wr_ary-> wc_array[wr_ary->wc_nchunks].wc_target.rs_length; goto found_it; } /* No read list, no write list */ rp_ary = (struct rpcrdma_write_array *) &rmsgp->rm_body.rm_chunks[2]; found_it: if (rp_ary->wc_discrim == 0) return NULL; return rp_ary; } #endif