/* * IPv4 over IEEE 1394, per RFC 2734 * * Copyright (C) 2009 Jay Fenlason * * based on eth1394 by Ben Collins et al */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */ #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2) #define IEEE1394_BROADCAST_CHANNEL 31 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) #define IEEE1394_MAX_PAYLOAD_S100 512 #define FWNET_NO_FIFO_ADDR (~0ULL) #define IANA_SPECIFIER_ID 0x00005eU #define RFC2734_SW_VERSION 0x000001U #define IEEE1394_GASP_HDR_SIZE 8 #define RFC2374_UNFRAG_HDR_SIZE 4 #define RFC2374_FRAG_HDR_SIZE 8 #define RFC2374_FRAG_OVERHEAD 4 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ #define RFC2734_HW_ADDR_LEN 16 struct rfc2734_arp { __be16 hw_type; /* 0x0018 */ __be16 proto_type; /* 0x0806 */ u8 hw_addr_len; /* 16 */ u8 ip_addr_len; /* 4 */ __be16 opcode; /* ARP Opcode */ /* Above is exactly the same format as struct arphdr */ __be64 s_uniq_id; /* Sender's 64bit EUI */ u8 max_rec; /* Sender's max packet size */ u8 sspd; /* Sender's max speed */ __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ __be32 sip; /* Sender's IP Address */ __be32 tip; /* IP Address of requested hw addr */ } __attribute__((packed)); /* This header format is specific to this driver implementation. */ #define FWNET_ALEN 8 #define FWNET_HLEN 10 struct fwnet_header { u8 h_dest[FWNET_ALEN]; /* destination address */ __be16 h_proto; /* packet type ID field */ } __attribute__((packed)); /* IPv4 and IPv6 encapsulation header */ struct rfc2734_header { u32 w0; u32 w1; }; #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) #define fwnet_set_hdr_lf(lf) ((lf) << 30) #define fwnet_set_hdr_ether_type(et) (et) #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) #define fwnet_set_hdr_fg_off(fgo) (fgo) #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, unsigned ether_type) { hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) | fwnet_set_hdr_ether_type(ether_type); } static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl) { hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) | fwnet_set_hdr_dg_size(dg_size) | fwnet_set_hdr_ether_type(ether_type); hdr->w1 = fwnet_set_hdr_dgl(dgl); } static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) { hdr->w0 = fwnet_set_hdr_lf(lf) | fwnet_set_hdr_dg_size(dg_size) | fwnet_set_hdr_fg_off(fg_off); hdr->w1 = fwnet_set_hdr_dgl(dgl); } /* This list keeps track of what parts of the datagram have been filled in */ struct fwnet_fragment_info { struct list_head fi_link; u16 offset; u16 len; }; struct fwnet_partial_datagram { struct list_head pd_link; struct list_head fi_list; struct sk_buff *skb; /* FIXME Why not use skb->data? */ char *pbuf; u16 datagram_label; u16 ether_type; u16 datagram_size; }; static DEFINE_MUTEX(fwnet_device_mutex); static LIST_HEAD(fwnet_device_list); struct fwnet_device { struct list_head dev_link; spinlock_t lock; enum { FWNET_BROADCAST_ERROR, FWNET_BROADCAST_RUNNING, FWNET_BROADCAST_STOPPED, } broadcast_state; struct fw_iso_context *broadcast_rcv_context; struct fw_iso_buffer broadcast_rcv_buffer; void **broadcast_rcv_buffer_ptrs; unsigned broadcast_rcv_next_ptr; unsigned num_broadcast_rcv_ptrs; unsigned rcv_buffer_size; /* * This value is the maximum unfragmented datagram size that can be * sent by the hardware. It already has the GASP overhead and the * unfragmented datagram header overhead calculated into it. */ unsigned broadcast_xmt_max_payload; u16 broadcast_xmt_datagramlabel; /* * The CSR address that remote nodes must send datagrams to for us to * receive them. */ struct fw_address_handler handler; u64 local_fifo; /* List of packets to be sent */ struct list_head packet_list; /* * List of packets that were broadcasted. When we get an ISO interrupt * one of them has been sent */ struct list_head broadcasted_list; /* List of packets that have been sent but not yet acked */ struct list_head sent_list; struct list_head peer_list; struct fw_card *card; struct net_device *netdev; }; struct fwnet_peer { struct list_head peer_link; struct fwnet_device *dev; u64 guid; u64 fifo; /* guarded by dev->lock */ struct list_head pd_list; /* received partial datagrams */ unsigned pdg_size; /* pd_list size */ u16 datagram_label; /* outgoing datagram label */ unsigned max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ int node_id; int generation; unsigned speed; }; /* This is our task struct. It's used for the packet complete callback. */ struct fwnet_packet_task { /* * ptask can actually be on dev->packet_list, dev->broadcasted_list, * or dev->sent_list depending on its current state. */ struct list_head pt_link; struct fw_transaction transaction; struct rfc2734_header hdr; struct sk_buff *skb; struct fwnet_device *dev; int outstanding_pkts; unsigned max_payload; u64 fifo_addr; u16 dest_node; u8 generation; u8 speed; }; /* * saddr == NULL means use device source address. * daddr == NULL means leave destination address (eg unresolved arp). */ static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, unsigned short type, const void *daddr, const void *saddr, unsigned len) { struct fwnet_header *h; h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); put_unaligned_be16(type, &h->h_proto); if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { memset(h->h_dest, 0, net->addr_len); return net->hard_header_len; } if (daddr) { memcpy(h->h_dest, daddr, net->addr_len); return net->hard_header_len; } return -net->hard_header_len; } static int fwnet_header_rebuild(struct sk_buff *skb) { struct fwnet_header *h = (struct fwnet_header *)skb->data; if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) return arp_find((unsigned char *)&h->h_dest, skb); fw_notify("%s: unable to resolve type %04x addresses\n", skb->dev->name, be16_to_cpu(h->h_proto)); return 0; } static int fwnet_header_cache(const struct neighbour *neigh, struct hh_cache *hh) { struct net_device *net; struct fwnet_header *h; if (hh->hh_type == cpu_to_be16(ETH_P_802_3)) return -1; net = neigh->dev; h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); h->h_proto = hh->hh_type; memcpy(h->h_dest, neigh->ha, net->addr_len); hh->hh_len = FWNET_HLEN; return 0; } /* Called by Address Resolution module to notify changes in address. */ static void fwnet_header_cache_update(struct hh_cache *hh, const struct net_device *net, const unsigned char *haddr) { memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); } static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); return FWNET_ALEN; } static const struct header_ops fwnet_header_ops = { .create = fwnet_header_create, .rebuild = fwnet_header_rebuild, .cache = fwnet_header_cache, .cache_update = fwnet_header_cache_update, .parse = fwnet_header_parse, }; /* FIXME: is this correct for all cases? */ static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) { struct fwnet_fragment_info *fi; unsigned end = offset + len; list_for_each_entry(fi, &pd->fi_list, fi_link) if (offset < fi->offset + fi->len && end > fi->offset) return true; return false; } /* Assumes that new fragment does not overlap any existing fragments */ static struct fwnet_fragment_info *fwnet_frag_new( struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) { struct fwnet_fragment_info *fi, *fi2, *new; struct list_head *list; list = &pd->fi_list; list_for_each_entry(fi, &pd->fi_list, fi_link) { if (fi->offset + fi->len == offset) { /* The new fragment can be tacked on to the end */ /* Did the new fragment plug a hole? */ fi2 = list_entry(fi->fi_link.next, struct fwnet_fragment_info, fi_link); if (fi->offset + fi->len == fi2->offset) { /* glue fragments together */ fi->len += len + fi2->len; list_del(&fi2->fi_link); kfree(fi2); } else { fi->len += len; } return fi; } if (offset + len == fi->offset) { /* The new fragment can be tacked on to the beginning */ /* Did the new fragment plug a hole? */ fi2 = list_entry(fi->fi_link.prev, struct fwnet_fragment_info, fi_link); if (fi2->offset + fi2->len == fi->offset) { /* glue fragments together */ fi2->len += fi->len + len; list_del(&fi->fi_link); kfree(fi); return fi2; } fi->offset = offset; fi->len += len; return fi; } if (offset > fi->offset + fi->len) { list = &fi->fi_link; break; } if (offset + len < fi->offset) { list = fi->fi_link.prev; break; } } new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) { fw_error("out of memory\n"); return NULL; } new->offset = offset; new->len = len; list_add(&new->fi_link, list); return new; } static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, void *frag_buf, unsigned frag_off, unsigned frag_len) { struct fwnet_partial_datagram *new; struct fwnet_fragment_info *fi; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) goto fail; INIT_LIST_HEAD(&new->fi_list); fi = fwnet_frag_new(new, frag_off, frag_len); if (fi == NULL) goto fail_w_new; new->datagram_label = datagram_label; new->datagram_size = dg_size; new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); if (new->skb == NULL) goto fail_w_fi; skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); new->pbuf = skb_put(new->skb, dg_size); memcpy(new->pbuf + frag_off, frag_buf, frag_len); list_add_tail(&new->pd_link, &peer->pd_list); return new; fail_w_fi: kfree(fi); fail_w_new: kfree(new); fail: fw_error("out of memory\n"); return NULL; } static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, u16 datagram_label) { struct fwnet_partial_datagram *pd; list_for_each_entry(pd, &peer->pd_list, pd_link) if (pd->datagram_label == datagram_label) return pd; return NULL; } static void fwnet_pd_delete(struct fwnet_partial_datagram *old) { struct fwnet_fragment_info *fi, *n; list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) kfree(fi); list_del(&old->pd_link); dev_kfree_skb_any(old->skb); kfree(old); } static bool fwnet_pd_update(struct fwnet_peer *peer, struct fwnet_partial_datagram *pd, void *frag_buf, unsigned frag_off, unsigned frag_len) { if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) return false; memcpy(pd->pbuf + frag_off, frag_buf, frag_len); /* * Move list entry to beginnig of list so that oldest partial * datagrams percolate to the end of the list */ list_move_tail(&pd->pd_link, &peer->pd_list); return true; } static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) { struct fwnet_fragment_info *fi; fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); return fi->len == pd->datagram_size; } /* caller must hold dev->lock */ static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, u64 guid) { struct fwnet_peer *peer; list_for_each_entry(peer, &dev->peer_list, peer_link) if (peer->guid == guid) return peer; return NULL; } /* caller must hold dev->lock */ static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, int node_id, int generation) { struct fwnet_peer *peer; list_for_each_entry(peer, &dev->peer_list, peer_link) if (peer->node_id == node_id && peer->generation == generation) return peer; return NULL; } /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) { max_rec = min(max_rec, speed + 8); max_rec = min(max_rec, 0xbU); /* <= 4096 */ if (max_rec < 8) { fw_notify("max_rec %x out of range\n", max_rec); max_rec = 8; } return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; } static int fwnet_finish_incoming_packet(struct net_device *net, struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type) { struct fwnet_device *dev; static const __be64 broadcast_hw = cpu_to_be64(~0ULL); int status; __be64 guid; dev = netdev_priv(net); /* Write metadata, and then pass to the receive level */ skb->dev = net; skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ /* * Parse the encapsulation header. This actually does the job of * converting to an ethernet frame header, as well as arp * conversion if needed. ARP conversion is easier in this * direction, since we are using ethernet as our backend. */ /* * If this is an ARP packet, convert it. First, we want to make * use of some of the fields, since they tell us a little bit * about the sending machine. */ if (ether_type == ETH_P_ARP) { struct rfc2734_arp *arp1394; struct arphdr *arp; unsigned char *arp_ptr; u64 fifo_addr; u64 peer_guid; unsigned sspd; u16 max_payload; struct fwnet_peer *peer; unsigned long flags; arp1394 = (struct rfc2734_arp *)skb->data; arp = (struct arphdr *)skb->data; arp_ptr = (unsigned char *)(arp + 1); peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 | get_unaligned_be32(&arp1394->fifo_lo); sspd = arp1394->sspd; /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ if (sspd > SCODE_3200) { fw_notify("sspd %x out of range\n", sspd); sspd = SCODE_3200; } max_payload = fwnet_max_payload(arp1394->max_rec, sspd); spin_lock_irqsave(&dev->lock, flags); peer = fwnet_peer_find_by_guid(dev, peer_guid); if (peer) { peer->fifo = fifo_addr; if (peer->speed > sspd) peer->speed = sspd; if (peer->max_payload > max_payload) peer->max_payload = max_payload; } spin_unlock_irqrestore(&dev->lock, flags); if (!peer) { fw_notify("No peer for ARP packet from %016llx\n", (unsigned long long)peer_guid); goto failed_proto; } /* * Now that we're done with the 1394 specific stuff, we'll * need to alter some of the data. Believe it or not, all * that needs to be done is sender_IP_address needs to be * moved, the destination hardware address get stuffed * in and the hardware address length set to 8. * * IMPORTANT: The code below overwrites 1394 specific data * needed above so keep the munging of the data for the * higher level IP stack last. */ arp->ar_hln = 8; /* skip over sender unique id */ arp_ptr += arp->ar_hln; /* move sender IP addr */ put_unaligned(arp1394->sip, (u32 *)arp_ptr); /* skip over sender IP addr */ arp_ptr += arp->ar_pln; if (arp->ar_op == htons(ARPOP_REQUEST)) memset(arp_ptr, 0, sizeof(u64)); else memcpy(arp_ptr, net->dev_addr, sizeof(u64)); } /* Now add the ethernet header. */ guid = cpu_to_be64(dev->card->guid); if (dev_hard_header(skb, net, ether_type, is_broadcast ? &broadcast_hw : &guid, NULL, skb->len) >= 0) { struct fwnet_header *eth; u16 *rawp; __be16 protocol; skb_reset_mac_header(skb); skb_pull(skb, sizeof(*eth)); eth = (struct fwnet_header *)skb_mac_header(skb); if (*eth->h_dest & 1) { if (memcmp(eth->h_dest, net->broadcast, net->addr_len) == 0) skb->pkt_type = PACKET_BROADCAST; #if 0 else skb->pkt_type = PACKET_MULTICAST; #endif } else { if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) { u64 a1, a2; memcpy(&a1, eth->h_dest, sizeof(u64)); memcpy(&a2, net->dev_addr, sizeof(u64)); skb->pkt_type = PACKET_OTHERHOST; } } if (ntohs(eth->h_proto) >= 1536) { protocol = eth->h_proto; } else { rawp = (u16 *)skb->data; if (*rawp == 0xffff) protocol = htons(ETH_P_802_3); else protocol = htons(ETH_P_802_2); } skb->protocol = protocol; } status = netif_rx(skb); if (status == NET_RX_DROP) { net->stats.rx_errors++; net->stats.rx_dropped++; } else { net->stats.rx_packets++; net->stats.rx_bytes += skb->len; } if (netif_queue_stopped(net)) netif_wake_queue(net); return 0; failed_proto: net->stats.rx_errors++; net->stats.rx_dropped++; dev_kfree_skb_any(skb); if (netif_queue_stopped(net)) netif_wake_queue(net); net->last_rx = jiffies; return 0; } static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, int source_node_id, int generation, bool is_broadcast) { struct sk_buff *skb; struct net_device *net = dev->netdev; struct rfc2734_header hdr; unsigned lf; unsigned long flags; struct fwnet_peer *peer; struct fwnet_partial_datagram *pd; int fg_off; int dg_size; u16 datagram_label; int retval; u16 ether_type; hdr.w0 = be32_to_cpu(buf[0]); lf = fwnet_get_hdr_lf(&hdr); if (lf == RFC2374_HDR_UNFRAG) { /* * An unfragmented datagram has been received by the ieee1394 * bus. Build an skbuff around it so we can pass it to the * high level network layer. */ ether_type = fwnet_get_hdr_ether_type(&hdr); buf++; len -= RFC2374_UNFRAG_HDR_SIZE; skb = dev_alloc_skb(len + net->hard_header_len + 15); if (unlikely(!skb)) { fw_error("out of memory\n"); net->stats.rx_dropped++; return -1; } skb_reserve(skb, (net->hard_header_len + 15) & ~15); memcpy(skb_put(skb, len), buf, len); return fwnet_finish_incoming_packet(net, skb, source_node_id, is_broadcast, ether_type); } /* A datagram fragment has been received, now the fun begins. */ hdr.w1 = ntohl(buf[1]); buf += 2; len -= RFC2374_FRAG_HDR_SIZE; if (lf == RFC2374_HDR_FIRSTFRAG) { ether_type = fwnet_get_hdr_ether_type(&hdr); fg_off = 0; } else { ether_type = 0; fg_off = fwnet_get_hdr_fg_off(&hdr); } datagram_label = fwnet_get_hdr_dgl(&hdr); dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ spin_lock_irqsave(&dev->lock, flags); peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); if (!peer) goto bad_proto; pd = fwnet_pd_find(peer, datagram_label); if (pd == NULL) { while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { /* remove the oldest */ fwnet_pd_delete(list_first_entry(&peer->pd_list, struct fwnet_partial_datagram, pd_link)); peer->pdg_size--; } pd = fwnet_pd_new(net, peer, datagram_label, dg_size, buf, fg_off, len); if (pd == NULL) { retval = -ENOMEM; goto bad_proto; } peer->pdg_size++; } else { if (fwnet_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) { /* * Differing datagram sizes or overlapping fragments, * discard old datagram and start a new one. */ fwnet_pd_delete(pd); pd = fwnet_pd_new(net, peer, datagram_label, dg_size, buf, fg_off, len); if (pd == NULL) { retval = -ENOMEM; peer->pdg_size--; goto bad_proto; } } else { if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { /* * Couldn't save off fragment anyway * so might as well obliterate the * datagram now. */ fwnet_pd_delete(pd); peer->pdg_size--; goto bad_proto; } } } /* new datagram or add to existing one */ if (lf == RFC2374_HDR_FIRSTFRAG) pd->ether_type = ether_type; if (fwnet_pd_is_complete(pd)) { ether_type = pd->ether_type; peer->pdg_size--; skb = skb_get(pd->skb); fwnet_pd_delete(pd); spin_unlock_irqrestore(&dev->lock, flags); return fwnet_finish_incoming_packet(net, skb, source_node_id, false, ether_type); } /* * Datagram is not complete, we're done for the * moment. */ spin_unlock_irqrestore(&dev->lock, flags); return 0; bad_proto: spin_unlock_irqrestore(&dev->lock, flags); if (netif_queue_stopped(net)) netif_wake_queue(net); return 0; } static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, int tcode, int destination, int source, int generation, int speed, unsigned long long offset, void *payload, size_t length, void *callback_data) { struct fwnet_device *dev; int status; dev = callback_data; if (tcode != TCODE_WRITE_BLOCK_REQUEST || destination != card->node_id /* <- FIXME */ || generation != card->generation /* <- FIXME */ || offset != dev->handler.offset) { fw_send_response(card, r, RCODE_CONFLICT_ERROR); return; } status = fwnet_incoming_packet(dev, payload, length, source, generation, false); if (status != 0) { fw_error("Incoming packet failure\n"); fw_send_response(card, r, RCODE_CONFLICT_ERROR); return; } fw_send_response(card, r, RCODE_COMPLETE); } static void fwnet_receive_broadcast(struct fw_iso_context *context, u32 cycle, size_t header_length, void *header, void *data) { struct fwnet_device *dev; struct fw_iso_packet packet; struct fw_card *card; __be16 *hdr_ptr; __be32 *buf_ptr; int retval; u32 length; u16 source_node_id; u32 specifier_id; u32 ver; unsigned long offset; unsigned long flags; dev = data; card = dev->card; hdr_ptr = header; length = be16_to_cpup(hdr_ptr); spin_lock_irqsave(&dev->lock, flags); offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) dev->broadcast_rcv_next_ptr = 0; spin_unlock_irqrestore(&dev->lock, flags); specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { buf_ptr += 2; length -= IEEE1394_GASP_HDR_SIZE; fwnet_incoming_packet(dev, buf_ptr, length, source_node_id, -1, true); } packet.payload_length = dev->rcv_buffer_size; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IEEE1394_GASP_HDR_SIZE; spin_lock_irqsave(&dev->lock, flags); retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, &dev->broadcast_rcv_buffer, offset); spin_unlock_irqrestore(&dev->lock, flags); if (retval < 0) fw_error("requeue failed\n"); } static struct kmem_cache *fwnet_packet_task_cache; static int fwnet_send_packet(struct fwnet_packet_task *ptask); static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) { struct fwnet_device *dev; unsigned long flags; dev = ptask->dev; spin_lock_irqsave(&dev->lock, flags); list_del(&ptask->pt_link); spin_unlock_irqrestore(&dev->lock, flags); ptask->outstanding_pkts--; /* FIXME access inside lock */ if (ptask->outstanding_pkts > 0) { u16 dg_size; u16 fg_off; u16 datagram_label; u16 lf; struct sk_buff *skb; /* Update the ptask to point to the next fragment and send it */ lf = fwnet_get_hdr_lf(&ptask->hdr); switch (lf) { case RFC2374_HDR_LASTFRAG: case RFC2374_HDR_UNFRAG: default: fw_error("Outstanding packet %x lf %x, header %x,%x\n", ptask->outstanding_pkts, lf, ptask->hdr.w0, ptask->hdr.w1); BUG(); case RFC2374_HDR_FIRSTFRAG: /* Set frag type here for future interior fragments */ dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); break; case RFC2374_HDR_INTFRAG: dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); break; } skb = ptask->skb; skb_pull(skb, ptask->max_payload); if (ptask->outstanding_pkts > 1) { fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, dg_size, fg_off, datagram_label); } else { fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, dg_size, fg_off, datagram_label); ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; } fwnet_send_packet(ptask); } else { dev_kfree_skb_any(ptask->skb); kmem_cache_free(fwnet_packet_task_cache, ptask); } } static void fwnet_write_complete(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct fwnet_packet_task *ptask; ptask = data; if (rcode == RCODE_COMPLETE) fwnet_transmit_packet_done(ptask); else fw_error("fwnet_write_complete: failed: %x\n", rcode); /* ??? error recovery */ } static int fwnet_send_packet(struct fwnet_packet_task *ptask) { struct fwnet_device *dev; unsigned tx_len; struct rfc2734_header *bufhdr; unsigned long flags; dev = ptask->dev; tx_len = ptask->max_payload; switch (fwnet_get_hdr_lf(&ptask->hdr)) { case RFC2374_HDR_UNFRAG: bufhdr = (struct rfc2734_header *) skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); break; case RFC2374_HDR_FIRSTFRAG: case RFC2374_HDR_INTFRAG: case RFC2374_HDR_LASTFRAG: bufhdr = (struct rfc2734_header *) skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); break; default: BUG(); } if (ptask->dest_node == IEEE1394_ALL_NODES) { u8 *p; int generation; int node_id; /* ptask->generation may not have been set yet */ generation = dev->card->generation; smp_rmb(); node_id = dev->card->node_id; p = skb_push(ptask->skb, 8); put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 | RFC2734_SW_VERSION, &p[4]); /* We should not transmit if broadcast_channel.valid == 0. */ fw_send_request(dev->card, &ptask->transaction, TCODE_STREAM_DATA, fw_stream_packet_destination_id(3, IEEE1394_BROADCAST_CHANNEL, 0), generation, SCODE_100, 0ULL, ptask->skb->data, tx_len + 8, fwnet_write_complete, ptask); /* FIXME race? */ spin_lock_irqsave(&dev->lock, flags); list_add_tail(&ptask->pt_link, &dev->broadcasted_list); spin_unlock_irqrestore(&dev->lock, flags); return 0; } fw_send_request(dev->card, &ptask->transaction, TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, ptask->generation, ptask->speed, ptask->fifo_addr, ptask->skb->data, tx_len, fwnet_write_complete, ptask); /* FIXME race? */ spin_lock_irqsave(&dev->lock, flags); list_add_tail(&ptask->pt_link, &dev->sent_list); spin_unlock_irqrestore(&dev->lock, flags); dev->netdev->trans_start = jiffies; return 0; } static int fwnet_broadcast_start(struct fwnet_device *dev) { struct fw_iso_context *context; int retval; unsigned num_packets; unsigned max_receive; struct fw_iso_packet packet; unsigned long offset; unsigned u; if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { /* outside OHCI posted write area? */ static const struct fw_address_region region = { .start = 0xffff00000000ULL, .end = CSR_REGISTER_BASE, }; dev->handler.length = 4096; dev->handler.address_callback = fwnet_receive_packet; dev->handler.callback_data = dev; retval = fw_core_add_address_handler(&dev->handler, ®ion); if (retval < 0) goto failed_initial; dev->local_fifo = dev->handler.offset; } max_receive = 1U << (dev->card->max_receive + 1); num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; if (!dev->broadcast_rcv_context) { void **ptrptr; context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, dev->card->link_speed, 8, fwnet_receive_broadcast, dev); if (IS_ERR(context)) { retval = PTR_ERR(context); goto failed_context_create; } retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); if (retval < 0) goto failed_buffer_init; ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); if (!ptrptr) { retval = -ENOMEM; goto failed_ptrs_alloc; } dev->broadcast_rcv_buffer_ptrs = ptrptr; for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { void *ptr; unsigned v; ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) *ptrptr++ = (void *) ((char *)ptr + v * max_receive); } dev->broadcast_rcv_context = context; } else { context = dev->broadcast_rcv_context; } packet.payload_length = max_receive; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IEEE1394_GASP_HDR_SIZE; offset = 0; for (u = 0; u < num_packets; u++) { retval = fw_iso_context_queue(context, &packet, &dev->broadcast_rcv_buffer, offset); if (retval < 0) goto failed_rcv_queue; offset += max_receive; } dev->num_broadcast_rcv_ptrs = num_packets; dev->rcv_buffer_size = max_receive; dev->broadcast_rcv_next_ptr = 0U; retval = fw_iso_context_start(context, -1, 0, FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ if (retval < 0) goto failed_rcv_queue; /* FIXME: adjust it according to the min. speed of all known peers? */ dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; dev->broadcast_state = FWNET_BROADCAST_RUNNING; return 0; failed_rcv_queue: kfree(dev->broadcast_rcv_buffer_ptrs); dev->broadcast_rcv_buffer_ptrs = NULL; failed_ptrs_alloc: fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); failed_buffer_init: fw_iso_context_destroy(context); dev->broadcast_rcv_context = NULL; failed_context_create: fw_core_remove_address_handler(&dev->handler); failed_initial: dev->local_fifo = FWNET_NO_FIFO_ADDR; return retval; } /* ifup */ static int fwnet_open(struct net_device *net) { struct fwnet_device *dev = netdev_priv(net); int ret; if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { ret = fwnet_broadcast_start(dev); if (ret) return ret; } netif_start_queue(net); return 0; } /* ifdown */ static int fwnet_stop(struct net_device *net) { netif_stop_queue(net); /* Deallocate iso context for use by other applications? */ return 0; } static int fwnet_tx(struct sk_buff *skb, struct net_device *net) { struct fwnet_header hdr_buf; struct fwnet_device *dev = netdev_priv(net); __be16 proto; u16 dest_node; unsigned max_payload; u16 dg_size; u16 *datagram_label_ptr; struct fwnet_packet_task *ptask; struct fwnet_peer *peer; unsigned long flags; ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); if (ptask == NULL) goto fail; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) goto fail; /* * Make a copy of the driver-specific header. * We might need to rebuild the header on tx failure. */ memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); skb_pull(skb, sizeof(hdr_buf)); proto = hdr_buf.h_proto; dg_size = skb->len; /* serialize access to peer, including peer->datagram_label */ spin_lock_irqsave(&dev->lock, flags); /* * Set the transmission type for the packet. ARP packets and IP * broadcast packets are sent via GASP. */ if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 || proto == htons(ETH_P_ARP) || (proto == htons(ETH_P_IP) && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { max_payload = dev->broadcast_xmt_max_payload; datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; ptask->fifo_addr = FWNET_NO_FIFO_ADDR; ptask->generation = 0; ptask->dest_node = IEEE1394_ALL_NODES; ptask->speed = SCODE_100; } else { __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); u8 generation; peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) goto fail_unlock; generation = peer->generation; dest_node = peer->node_id; max_payload = peer->max_payload; datagram_label_ptr = &peer->datagram_label; ptask->fifo_addr = peer->fifo; ptask->generation = generation; ptask->dest_node = dest_node; ptask->speed = peer->speed; } /* If this is an ARP packet, convert it */ if (proto == htons(ETH_P_ARP)) { struct arphdr *arp = (struct arphdr *)skb->data; unsigned char *arp_ptr = (unsigned char *)(arp + 1); struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; __be32 ipaddr; ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; arp1394->max_rec = dev->card->max_receive; arp1394->sspd = dev->card->link_speed; put_unaligned_be16(dev->local_fifo >> 32, &arp1394->fifo_hi); put_unaligned_be32(dev->local_fifo & 0xffffffff, &arp1394->fifo_lo); put_unaligned(ipaddr, &arp1394->sip); } ptask->hdr.w0 = 0; ptask->hdr.w1 = 0; ptask->skb = skb; ptask->dev = dev; /* Does it all fit in one packet? */ if (dg_size <= max_payload) { fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); ptask->outstanding_pkts = 1; max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; } else { u16 datagram_label; max_payload -= RFC2374_FRAG_OVERHEAD; datagram_label = (*datagram_label_ptr)++; fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, datagram_label); ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); max_payload += RFC2374_FRAG_HDR_SIZE; } spin_unlock_irqrestore(&dev->lock, flags); ptask->max_payload = max_payload; fwnet_send_packet(ptask); return NETDEV_TX_OK; fail_unlock: spin_unlock_irqrestore(&dev->lock, flags); fail: if (ptask) kmem_cache_free(fwnet_packet_task_cache, ptask); if (skb != NULL) dev_kfree_skb(skb); net->stats.tx_dropped++; net->stats.tx_errors++; /* * FIXME: According to a patch from 2003-02-26, "returning non-zero * causes serious problems" here, allegedly. Before that patch, * -ERRNO was returned which is not appropriate under Linux 2.6. * Perhaps more needs to be done? Stop the queue in serious * conditions and restart it elsewhere? */ return NETDEV_TX_OK; } static void fwnet_tx_timeout(struct net_device *net) { fw_error("%s: timeout\n", net->name); /* FIXME: What to do if we timeout? */ } static int fwnet_change_mtu(struct net_device *net, int new_mtu) { if (new_mtu < 68) return -EINVAL; net->mtu = new_mtu; return 0; } static void fwnet_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { strcpy(info->driver, KBUILD_MODNAME); strcpy(info->bus_info, "ieee1394"); } static struct ethtool_ops fwnet_ethtool_ops = { .get_drvinfo = fwnet_get_drvinfo, }; static const struct net_device_ops fwnet_netdev_ops = { .ndo_open = fwnet_open, .ndo_stop = fwnet_stop, .ndo_start_xmit = fwnet_tx, .ndo_tx_timeout = fwnet_tx_timeout, .ndo_change_mtu = fwnet_change_mtu, }; static void fwnet_init_dev(struct net_device *net) { net->header_ops = &fwnet_header_ops; net->netdev_ops = &fwnet_netdev_ops; net->watchdog_timeo = 100000; /* ? FIXME */ net->flags = IFF_BROADCAST | IFF_MULTICAST; net->features = NETIF_F_HIGHDMA; net->addr_len = FWNET_ALEN; net->hard_header_len = FWNET_HLEN; net->type = ARPHRD_IEEE1394; net->tx_queue_len = 1000; /* ? FIXME */ SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops); } /* caller must hold fwnet_device_mutex */ static struct fwnet_device *fwnet_dev_find(struct fw_card *card) { struct fwnet_device *dev; list_for_each_entry(dev, &fwnet_device_list, dev_link) if (dev->card == card) return dev; return NULL; } static int fwnet_add_peer(struct fwnet_device *dev, struct fw_unit *unit, struct fw_device *device) { struct fwnet_peer *peer; peer = kmalloc(sizeof(*peer), GFP_KERNEL); if (!peer) return -ENOMEM; unit->device.driver_data = peer; peer->dev = dev; peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; peer->fifo = FWNET_NO_FIFO_ADDR; INIT_LIST_HEAD(&peer->pd_list); peer->pdg_size = 0; peer->datagram_label = 0; peer->speed = device->max_speed; peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); peer->generation = device->generation; smp_rmb(); peer->node_id = device->node_id; spin_lock_irq(&dev->lock); list_add_tail(&peer->peer_link, &dev->peer_list); spin_unlock_irq(&dev->lock); return 0; } static int fwnet_probe(struct device *_dev) { struct fw_unit *unit = fw_unit(_dev); struct fw_device *device = fw_parent_device(unit); struct fw_card *card = device->card; struct net_device *net; struct fwnet_device *dev; unsigned max_mtu; bool new_netdev; int ret; mutex_lock(&fwnet_device_mutex); dev = fwnet_dev_find(card); if (dev) { new_netdev = false; net = dev->netdev; goto have_dev; } new_netdev = true; net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); if (net == NULL) { ret = -ENOMEM; goto out; } SET_NETDEV_DEV(net, card->device); dev = netdev_priv(net); spin_lock_init(&dev->lock); dev->broadcast_state = FWNET_BROADCAST_ERROR; dev->broadcast_rcv_context = NULL; dev->broadcast_xmt_max_payload = 0; dev->broadcast_xmt_datagramlabel = 0; dev->local_fifo = FWNET_NO_FIFO_ADDR; INIT_LIST_HEAD(&dev->packet_list); INIT_LIST_HEAD(&dev->broadcasted_list); INIT_LIST_HEAD(&dev->sent_list); INIT_LIST_HEAD(&dev->peer_list); dev->card = card; dev->netdev = net; /* * Use the RFC 2734 default 1500 octets or the maximum payload * as initial MTU */ max_mtu = (1 << (card->max_receive + 1)) - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; net->mtu = min(1500U, max_mtu); /* Set our hardware address while we're at it */ put_unaligned_be64(card->guid, net->dev_addr); put_unaligned_be64(~0ULL, net->broadcast); ret = register_netdev(net); if (ret) { fw_error("Cannot register the driver\n"); goto out; } list_add_tail(&dev->dev_link, &fwnet_device_list); fw_notify("%s: IPv4 over FireWire on device %016llx\n", net->name, (unsigned long long)card->guid); have_dev: ret = fwnet_add_peer(dev, unit, device); if (ret && new_netdev) { unregister_netdev(net); list_del(&dev->dev_link); } out: if (ret && new_netdev) free_netdev(net); mutex_unlock(&fwnet_device_mutex); return ret; } static void fwnet_remove_peer(struct fwnet_peer *peer) { struct fwnet_partial_datagram *pd, *pd_next; spin_lock_irq(&peer->dev->lock); list_del(&peer->peer_link); spin_unlock_irq(&peer->dev->lock); list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) fwnet_pd_delete(pd); kfree(peer); } static int fwnet_remove(struct device *_dev) { struct fwnet_peer *peer = _dev->driver_data; struct fwnet_device *dev = peer->dev; struct net_device *net; struct fwnet_packet_task *ptask, *pt_next; mutex_lock(&fwnet_device_mutex); fwnet_remove_peer(peer); if (list_empty(&dev->peer_list)) { net = dev->netdev; unregister_netdev(net); if (dev->local_fifo != FWNET_NO_FIFO_ADDR) fw_core_remove_address_handler(&dev->handler); if (dev->broadcast_rcv_context) { fw_iso_context_stop(dev->broadcast_rcv_context); fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); fw_iso_context_destroy(dev->broadcast_rcv_context); } list_for_each_entry_safe(ptask, pt_next, &dev->packet_list, pt_link) { dev_kfree_skb_any(ptask->skb); kmem_cache_free(fwnet_packet_task_cache, ptask); } list_for_each_entry_safe(ptask, pt_next, &dev->broadcasted_list, pt_link) { dev_kfree_skb_any(ptask->skb); kmem_cache_free(fwnet_packet_task_cache, ptask); } list_for_each_entry_safe(ptask, pt_next, &dev->sent_list, pt_link) { dev_kfree_skb_any(ptask->skb); kmem_cache_free(fwnet_packet_task_cache, ptask); } free_netdev(net); } mutex_unlock(&fwnet_device_mutex); return 0; } /* * FIXME abort partially sent fragmented datagrams, * discard partially received fragmented datagrams */ static void fwnet_update(struct fw_unit *unit) { struct fw_device *device = fw_parent_device(unit); struct fwnet_peer *peer = unit->device.driver_data; int generation; generation = device->generation; spin_lock_irq(&peer->dev->lock); peer->node_id = device->node_id; peer->generation = generation; spin_unlock_irq(&peer->dev->lock); } static const struct ieee1394_device_id fwnet_id_table[] = { { .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .specifier_id = IANA_SPECIFIER_ID, .version = RFC2734_SW_VERSION, }, { } }; static struct fw_driver fwnet_driver = { .driver = { .owner = THIS_MODULE, .name = "net", .bus = &fw_bus_type, .probe = fwnet_probe, .remove = fwnet_remove, }, .update = fwnet_update, .id_table = fwnet_id_table, }; static const u32 rfc2374_unit_directory_data[] = { 0x00040000, /* directory_length */ 0x1200005e, /* unit_specifier_id: IANA */ 0x81000003, /* textual descriptor offset */ 0x13000001, /* unit_sw_version: RFC 2734 */ 0x81000005, /* textual descriptor offset */ 0x00030000, /* descriptor_length */ 0x00000000, /* text */ 0x00000000, /* minimal ASCII, en */ 0x49414e41, /* I A N A */ 0x00030000, /* descriptor_length */ 0x00000000, /* text */ 0x00000000, /* minimal ASCII, en */ 0x49507634, /* I P v 4 */ }; static struct fw_descriptor rfc2374_unit_directory = { .length = ARRAY_SIZE(rfc2374_unit_directory_data), .key = (CSR_DIRECTORY | CSR_UNIT) << 24, .data = rfc2374_unit_directory_data }; static int __init fwnet_init(void) { int err; err = fw_core_add_descriptor(&rfc2374_unit_directory); if (err) return err; fwnet_packet_task_cache = kmem_cache_create("packet_task", sizeof(struct fwnet_packet_task), 0, 0, NULL); if (!fwnet_packet_task_cache) { err = -ENOMEM; goto out; } err = driver_register(&fwnet_driver.driver); if (!err) return 0; kmem_cache_destroy(fwnet_packet_task_cache); out: fw_core_remove_descriptor(&rfc2374_unit_directory); return err; } module_init(fwnet_init); static void __exit fwnet_cleanup(void) { driver_unregister(&fwnet_driver.driver); kmem_cache_destroy(fwnet_packet_task_cache); fw_core_remove_descriptor(&rfc2374_unit_directory); } module_exit(fwnet_cleanup); MODULE_AUTHOR("Jay Fenlason "); MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);