#include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0, }; /* * Smarter SMP flushing macros. * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about * writing to user space from interrupts. (Its not allowed anyway). * * Optimizations Manfred Spraul * * More scalable flush, from Andi Kleen * * To avoid global state use 8 different call vectors. * Each CPU uses a specific vector to trigger flushes on other * CPUs. Depending on the received vector the target CPUs look into * the right array slot for the flush data. * * With more than 8 CPUs they are hashed to the 8 available * vectors. The limited global vector space forces us to this right now. * In future when interrupts are split into per CPU domains this could be * fixed, at the cost of triggering multiple IPIs in some cases. */ union smp_flush_state { struct { struct mm_struct *flush_mm; unsigned long flush_start; unsigned long flush_end; raw_spinlock_t tlbstate_lock; DECLARE_BITMAP(flush_cpumask, NR_CPUS); }; char pad[INTERNODE_CACHE_BYTES]; } ____cacheline_internodealigned_in_smp; /* State is put into the per CPU data section, but padded to a full cache line because other CPUs can access it and we don't want false sharing in the per cpu data segment. */ static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS]; static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset); /* * We cannot call mmdrop() because we are in interrupt context, * instead update mm->cpu_vm_mask. */ void leave_mm(int cpu) { struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm); if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) BUG(); if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) { cpumask_clear_cpu(cpu, mm_cpumask(active_mm)); load_cr3(swapper_pg_dir); } } EXPORT_SYMBOL_GPL(leave_mm); /* * * The flush IPI assumes that a thread switch happens in this order: * [cpu0: the cpu that switches] * 1) switch_mm() either 1a) or 1b) * 1a) thread switch to a different mm * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); * Stop ipi delivery for the old mm. This is not synchronized with * the other cpus, but smp_invalidate_interrupt ignore flush ipis * for the wrong mm, and in the worst case we perform a superfluous * tlb flush. * 1a2) set cpu mmu_state to TLBSTATE_OK * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 * was in lazy tlb mode. * 1a3) update cpu active_mm * Now cpu0 accepts tlb flushes for the new mm. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); * Now the other cpus will send tlb flush ipis. * 1a4) change cr3. * 1b) thread switch without mm change * cpu active_mm is correct, cpu0 already handles * flush ipis. * 1b1) set cpu mmu_state to TLBSTATE_OK * 1b2) test_and_set the cpu bit in cpu_vm_mask. * Atomically set the bit [other cpus will start sending flush ipis], * and test the bit. * 1b3) if the bit was 0: leave_mm was called, flush the tlb. * 2) switch %%esp, ie current * * The interrupt must handle 2 special cases: * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. * - the cpu performs speculative tlb reads, i.e. even if the cpu only * runs in kernel space, the cpu could load tlb entries for user space * pages. * * The good news is that cpu mmu_state is local to each cpu, no * write/read ordering problems. */ /* * TLB flush IPI: * * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. * 2) Leave the mm if we are in the lazy tlb mode. * * Interrupts are disabled. */ /* * FIXME: use of asmlinkage is not consistent. On x86_64 it's noop * but still used for documentation purpose but the usage is slightly * inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt * entry calls in with the first parameter in %eax. Maybe define * intrlinkage? */ #ifdef CONFIG_X86_64 asmlinkage #endif void smp_invalidate_interrupt(struct pt_regs *regs) { unsigned int cpu; unsigned int sender; union smp_flush_state *f; cpu = smp_processor_id(); /* * orig_rax contains the negated interrupt vector. * Use that to determine where the sender put the data. */ sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START; f = &flush_state[sender]; if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask))) goto out; /* * This was a BUG() but until someone can quote me the * line from the intel manual that guarantees an IPI to * multiple CPUs is retried _only_ on the erroring CPUs * its staying as a return * * BUG(); */ if (f->flush_mm == this_cpu_read(cpu_tlbstate.active_mm)) { if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { if (f->flush_end == TLB_FLUSH_ALL || !cpu_has_invlpg) local_flush_tlb(); else if (!f->flush_end) __flush_tlb_single(f->flush_start); else { unsigned long addr; addr = f->flush_start; while (addr < f->flush_end) { __flush_tlb_single(addr); addr += PAGE_SIZE; } } } else leave_mm(cpu); } out: ack_APIC_irq(); smp_mb__before_clear_bit(); cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask)); smp_mb__after_clear_bit(); inc_irq_stat(irq_tlb_count); } static void flush_tlb_others_ipi(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end) { unsigned int sender; union smp_flush_state *f; /* Caller has disabled preemption */ sender = this_cpu_read(tlb_vector_offset); f = &flush_state[sender]; if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS) raw_spin_lock(&f->tlbstate_lock); f->flush_mm = mm; f->flush_start = start; f->flush_end = end; if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) { /* * We have to send the IPI only to * CPUs affected. */ apic->send_IPI_mask(to_cpumask(f->flush_cpumask), INVALIDATE_TLB_VECTOR_START + sender); while (!cpumask_empty(to_cpumask(f->flush_cpumask))) cpu_relax(); } f->flush_mm = NULL; f->flush_start = 0; f->flush_end = 0; if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS) raw_spin_unlock(&f->tlbstate_lock); } void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end) { if (is_uv_system()) { unsigned int cpu; cpu = smp_processor_id(); cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu); if (cpumask) flush_tlb_others_ipi(cpumask, mm, start, end); return; } flush_tlb_others_ipi(cpumask, mm, start, end); } static void __cpuinit calculate_tlb_offset(void) { int cpu, node, nr_node_vecs, idx = 0; /* * we are changing tlb_vector_offset for each CPU in runtime, but this * will not cause inconsistency, as the write is atomic under X86. we * might see more lock contentions in a short time, but after all CPU's * tlb_vector_offset are changed, everything should go normal * * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might * waste some vectors. **/ if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS) nr_node_vecs = 1; else nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes; for_each_online_node(node) { int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) * nr_node_vecs; int cpu_offset = 0; for_each_cpu(cpu, cpumask_of_node(node)) { per_cpu(tlb_vector_offset, cpu) = node_offset + cpu_offset; cpu_offset++; cpu_offset = cpu_offset % nr_node_vecs; } idx++; } } static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n, unsigned long action, void *hcpu) { switch (action & 0xf) { case CPU_ONLINE: case CPU_DEAD: calculate_tlb_offset(); } return NOTIFY_OK; } static int __cpuinit init_smp_flush(void) { int i; for (i = 0; i < ARRAY_SIZE(flush_state); i++) raw_spin_lock_init(&flush_state[i].tlbstate_lock); calculate_tlb_offset(); hotcpu_notifier(tlb_cpuhp_notify, 0); return 0; } core_initcall(init_smp_flush); void flush_tlb_current_task(void) { struct mm_struct *mm = current->mm; preempt_disable(); local_flush_tlb(); if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); preempt_enable(); } void flush_tlb_mm(struct mm_struct *mm) { preempt_disable(); if (current->active_mm == mm) { if (current->mm) local_flush_tlb(); else leave_mm(smp_processor_id()); } if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); preempt_enable(); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline unsigned long has_large_page(struct mm_struct *mm, unsigned long start, unsigned long end) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; unsigned long addr = ALIGN(start, HPAGE_SIZE); for (; addr < end; addr += HPAGE_SIZE) { pgd = pgd_offset(mm, addr); if (likely(!pgd_none(*pgd))) { pud = pud_offset(pgd, addr); if (likely(!pud_none(*pud))) { pmd = pmd_offset(pud, addr); if (likely(!pmd_none(*pmd))) if (pmd_large(*pmd)) return addr; } } } return 0; } #else static inline unsigned long has_large_page(struct mm_struct *mm, unsigned long start, unsigned long end) { return 0; } #endif void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm; if (vma->vm_flags & VM_HUGETLB || tlb_flushall_shift == -1) { flush_all: flush_tlb_mm(vma->vm_mm); return; } preempt_disable(); mm = vma->vm_mm; if (current->active_mm == mm) { if (current->mm) { unsigned long addr, vmflag = vma->vm_flags; unsigned act_entries, tlb_entries = 0; if (vmflag & VM_EXEC) tlb_entries = tlb_lli_4k[ENTRIES]; else tlb_entries = tlb_lld_4k[ENTRIES]; act_entries = tlb_entries > mm->total_vm ? mm->total_vm : tlb_entries; if ((end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift) local_flush_tlb(); else { if (has_large_page(mm, start, end)) { preempt_enable(); goto flush_all; } for (addr = start; addr < end; addr += PAGE_SIZE) __flush_tlb_single(addr); if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, start, end); preempt_enable(); return; } } else { leave_mm(smp_processor_id()); } } if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); preempt_enable(); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long start) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if (current->active_mm == mm) { if (current->mm) __flush_tlb_one(start); else leave_mm(smp_processor_id()); } if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) flush_tlb_others(mm_cpumask(mm), mm, start, 0UL); preempt_enable(); } static void do_flush_tlb_all(void *info) { __flush_tlb_all(); if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) leave_mm(smp_processor_id()); } void flush_tlb_all(void) { on_each_cpu(do_flush_tlb_all, NULL, 1); } #ifdef CONFIG_DEBUG_TLBFLUSH static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; unsigned int len; len = sprintf(buf, "%hd\n", tlb_flushall_shift); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t tlbflush_write_file(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; ssize_t len; s8 shift; len = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, len)) return -EFAULT; buf[len] = '\0'; if (kstrtos8(buf, 0, &shift)) return -EINVAL; if (shift > 64) return -EINVAL; tlb_flushall_shift = shift; return count; } static const struct file_operations fops_tlbflush = { .read = tlbflush_read_file, .write = tlbflush_write_file, .llseek = default_llseek, }; static int __cpuinit create_tlb_flushall_shift(void) { if (cpu_has_invlpg) { debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR, arch_debugfs_dir, NULL, &fops_tlbflush); } return 0; } late_initcall(create_tlb_flushall_shift); #endif