/* * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com) * Copyright (C) 1997, 2001 Ralf Baechle (ralf@gnu.org) * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation * Copyright (C) 2004 Maciej W. Rozycki * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include extern void sb1_dma_init(void); /* These are probed at ld_mmu time */ static unsigned long icache_size; static unsigned long dcache_size; static unsigned short icache_line_size; static unsigned short dcache_line_size; static unsigned int icache_index_mask; static unsigned int dcache_index_mask; static unsigned short icache_assoc; static unsigned short dcache_assoc; static unsigned short icache_sets; static unsigned short dcache_sets; static unsigned int icache_range_cutoff; static unsigned int dcache_range_cutoff; /* * The dcache is fully coherent to the system, with one * big caveat: the instruction stream. In other words, * if we miss in the icache, and have dirty data in the * L1 dcache, then we'll go out to memory (or the L2) and * get the not-as-recent data. * * So the only time we have to flush the dcache is when * we're flushing the icache. Since the L2 is fully * coherent to everything, including I/O, we never have * to flush it */ #define cache_set_op(op, addr) \ __asm__ __volatile__( \ " .set noreorder \n" \ " .set mips64\n\t \n" \ " cache %0, (0<<13)(%1) \n" \ " cache %0, (1<<13)(%1) \n" \ " cache %0, (2<<13)(%1) \n" \ " cache %0, (3<<13)(%1) \n" \ " .set mips0 \n" \ " .set reorder" \ : \ : "i" (op), "r" (addr)) #define sync() \ __asm__ __volatile( \ " .set mips64\n\t \n" \ " sync \n" \ " .set mips0") #define mispredict() \ __asm__ __volatile__( \ " bnezl $0, 1f \n" /* Force mispredict */ \ "1: \n"); /* * Writeback and invalidate the entire dcache */ static inline void __sb1_writeback_inv_dcache_all(void) { unsigned long addr = 0; while (addr < dcache_line_size * dcache_sets) { cache_set_op(Index_Writeback_Inv_D, addr); addr += dcache_line_size; } } /* * Writeback and invalidate a range of the dcache. The addresses are * virtual, and since we're using index ops and bit 12 is part of both * the virtual frame and physical index, we have to clear both sets * (bit 12 set and cleared). */ static inline void __sb1_writeback_inv_dcache_range(unsigned long start, unsigned long end) { unsigned long index; start &= ~(dcache_line_size - 1); end = (end + dcache_line_size - 1) & ~(dcache_line_size - 1); while (start != end) { index = start & dcache_index_mask; cache_set_op(Index_Writeback_Inv_D, index); cache_set_op(Index_Writeback_Inv_D, index ^ (1<<12)); start += dcache_line_size; } sync(); } /* * Writeback and invalidate a range of the dcache. With physical * addresseses, we don't have to worry about possible bit 12 aliasing. * XXXKW is it worth turning on KX and using hit ops with xkphys? */ static inline void __sb1_writeback_inv_dcache_phys_range(unsigned long start, unsigned long end) { start &= ~(dcache_line_size - 1); end = (end + dcache_line_size - 1) & ~(dcache_line_size - 1); while (start != end) { cache_set_op(Index_Writeback_Inv_D, start & dcache_index_mask); start += dcache_line_size; } sync(); } /* * Invalidate the entire icache */ static inline void __sb1_flush_icache_all(void) { unsigned long addr = 0; while (addr < icache_line_size * icache_sets) { cache_set_op(Index_Invalidate_I, addr); addr += icache_line_size; } } /* * Flush the icache for a given physical page. Need to writeback the * dcache first, then invalidate the icache. If the page isn't * executable, nothing is required. */ static void local_sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { int cpu = smp_processor_id(); #ifndef CONFIG_SMP if (!(vma->vm_flags & VM_EXEC)) return; #endif __sb1_writeback_inv_dcache_range(addr, addr + PAGE_SIZE); /* * Bumping the ASID is probably cheaper than the flush ... */ if (cpu_context(cpu, vma->vm_mm) != 0) drop_mmu_context(vma->vm_mm, cpu); } #ifdef CONFIG_SMP struct flush_cache_page_args { struct vm_area_struct *vma; unsigned long addr; unsigned long pfn; }; static void sb1_flush_cache_page_ipi(void *info) { struct flush_cache_page_args *args = info; local_sb1_flush_cache_page(args->vma, args->addr, args->pfn); } /* Dirty dcache could be on another CPU, so do the IPIs */ static void sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { struct flush_cache_page_args args; if (!(vma->vm_flags & VM_EXEC)) return; addr &= PAGE_MASK; args.vma = vma; args.addr = addr; args.pfn = pfn; on_each_cpu(sb1_flush_cache_page_ipi, (void *) &args, 1, 1); } #else void sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) __attribute__((alias("local_sb1_flush_cache_page"))); #endif /* * Invalidate a range of the icache. The addresses are virtual, and * the cache is virtually indexed and tagged. However, we don't * necessarily have the right ASID context, so use index ops instead * of hit ops. */ static inline void __sb1_flush_icache_range(unsigned long start, unsigned long end) { start &= ~(icache_line_size - 1); end = (end + icache_line_size - 1) & ~(icache_line_size - 1); while (start != end) { cache_set_op(Index_Invalidate_I, start & icache_index_mask); start += icache_line_size; } mispredict(); sync(); } /* * Invalidate all caches on this CPU */ static void __attribute_used__ local_sb1___flush_cache_all(void) { __sb1_writeback_inv_dcache_all(); __sb1_flush_icache_all(); } #ifdef CONFIG_SMP void sb1___flush_cache_all_ipi(void *ignored) __attribute__((alias("local_sb1___flush_cache_all"))); static void sb1___flush_cache_all(void) { on_each_cpu(sb1___flush_cache_all_ipi, 0, 1, 1); } #else void sb1___flush_cache_all(void) __attribute__((alias("local_sb1___flush_cache_all"))); #endif /* * When flushing a range in the icache, we have to first writeback * the dcache for the same range, so new ifetches will see any * data that was dirty in the dcache. * * The start/end arguments are Kseg addresses (possibly mapped Kseg). */ static void local_sb1_flush_icache_range(unsigned long start, unsigned long end) { /* Just wb-inv the whole dcache if the range is big enough */ if ((end - start) > dcache_range_cutoff) __sb1_writeback_inv_dcache_all(); else __sb1_writeback_inv_dcache_range(start, end); /* Just flush the whole icache if the range is big enough */ if ((end - start) > icache_range_cutoff) __sb1_flush_icache_all(); else __sb1_flush_icache_range(start, end); } #ifdef CONFIG_SMP struct flush_icache_range_args { unsigned long start; unsigned long end; }; static void sb1_flush_icache_range_ipi(void *info) { struct flush_icache_range_args *args = info; local_sb1_flush_icache_range(args->start, args->end); } void sb1_flush_icache_range(unsigned long start, unsigned long end) { struct flush_icache_range_args args; args.start = start; args.end = end; on_each_cpu(sb1_flush_icache_range_ipi, &args, 1, 1); } #else void sb1_flush_icache_range(unsigned long start, unsigned long end) __attribute__((alias("local_sb1_flush_icache_range"))); #endif /* * Flush the icache for a given physical page. Need to writeback the * dcache first, then invalidate the icache. If the page isn't * executable, nothing is required. */ static void local_sb1_flush_icache_page(struct vm_area_struct *vma, struct page *page) { unsigned long start; int cpu = smp_processor_id(); #ifndef CONFIG_SMP if (!(vma->vm_flags & VM_EXEC)) return; #endif /* Need to writeback any dirty data for that page, we have the PA */ start = (unsigned long)(page-mem_map) << PAGE_SHIFT; __sb1_writeback_inv_dcache_phys_range(start, start + PAGE_SIZE); /* * If there's a context, bump the ASID (cheaper than a flush, * since we don't know VAs!) */ if (cpu_context(cpu, vma->vm_mm) != 0) { drop_mmu_context(vma->vm_mm, cpu); } } #ifdef CONFIG_SMP struct flush_icache_page_args { struct vm_area_struct *vma; struct page *page; }; static void sb1_flush_icache_page_ipi(void *info) { struct flush_icache_page_args *args = info; local_sb1_flush_icache_page(args->vma, args->page); } /* Dirty dcache could be on another CPU, so do the IPIs */ static void sb1_flush_icache_page(struct vm_area_struct *vma, struct page *page) { struct flush_icache_page_args args; if (!(vma->vm_flags & VM_EXEC)) return; args.vma = vma; args.page = page; on_each_cpu(sb1_flush_icache_page_ipi, (void *) &args, 1, 1); } #else void sb1_flush_icache_page(struct vm_area_struct *vma, struct page *page) __attribute__((alias("local_sb1_flush_icache_page"))); #endif /* * A signal trampoline must fit into a single cacheline. */ static void local_sb1_flush_cache_sigtramp(unsigned long addr) { cache_set_op(Index_Writeback_Inv_D, addr & dcache_index_mask); cache_set_op(Index_Writeback_Inv_D, (addr ^ (1<<12)) & dcache_index_mask); cache_set_op(Index_Invalidate_I, addr & icache_index_mask); mispredict(); } #ifdef CONFIG_SMP static void sb1_flush_cache_sigtramp_ipi(void *info) { unsigned long iaddr = (unsigned long) info; local_sb1_flush_cache_sigtramp(iaddr); } static void sb1_flush_cache_sigtramp(unsigned long addr) { on_each_cpu(sb1_flush_cache_sigtramp_ipi, (void *) addr, 1, 1); } #else void sb1_flush_cache_sigtramp(unsigned long addr) __attribute__((alias("local_sb1_flush_cache_sigtramp"))); #endif /* * Anything that just flushes dcache state can be ignored, as we're always * coherent in dcache space. This is just a dummy function that all the * nop'ed routines point to */ static void sb1_nop(void) { } /* * Cache set values (from the mips64 spec) * 0 - 64 * 1 - 128 * 2 - 256 * 3 - 512 * 4 - 1024 * 5 - 2048 * 6 - 4096 * 7 - Reserved */ static unsigned int decode_cache_sets(unsigned int config_field) { if (config_field == 7) { /* JDCXXX - Find a graceful way to abort. */ return 0; } return (1<<(config_field + 6)); } /* * Cache line size values (from the mips64 spec) * 0 - No cache present. * 1 - 4 bytes * 2 - 8 bytes * 3 - 16 bytes * 4 - 32 bytes * 5 - 64 bytes * 6 - 128 bytes * 7 - Reserved */ static unsigned int decode_cache_line_size(unsigned int config_field) { if (config_field == 0) { return 0; } else if (config_field == 7) { /* JDCXXX - Find a graceful way to abort. */ return 0; } return (1<<(config_field + 1)); } /* * Relevant bits of the config1 register format (from the MIPS32/MIPS64 specs) * * 24:22 Icache sets per way * 21:19 Icache line size * 18:16 Icache Associativity * 15:13 Dcache sets per way * 12:10 Dcache line size * 9:7 Dcache Associativity */ static char *way_string[] = { "direct mapped", "2-way", "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", }; static __init void probe_cache_sizes(void) { u32 config1; config1 = read_c0_config1(); icache_line_size = decode_cache_line_size((config1 >> 19) & 0x7); dcache_line_size = decode_cache_line_size((config1 >> 10) & 0x7); icache_sets = decode_cache_sets((config1 >> 22) & 0x7); dcache_sets = decode_cache_sets((config1 >> 13) & 0x7); icache_assoc = ((config1 >> 16) & 0x7) + 1; dcache_assoc = ((config1 >> 7) & 0x7) + 1; icache_size = icache_line_size * icache_sets * icache_assoc; dcache_size = dcache_line_size * dcache_sets * dcache_assoc; /* Need to remove non-index bits for index ops */ icache_index_mask = (icache_sets - 1) * icache_line_size; dcache_index_mask = (dcache_sets - 1) * dcache_line_size; /* * These are for choosing range (index ops) versus all. * icache flushes all ways for each set, so drop icache_assoc. * dcache flushes all ways and each setting of bit 12 for each * index, so drop dcache_assoc and halve the dcache_sets. */ icache_range_cutoff = icache_sets * icache_line_size; dcache_range_cutoff = (dcache_sets / 2) * icache_line_size; printk("Primary instruction cache %ldkB, %s, linesize %d bytes.\n", icache_size >> 10, way_string[icache_assoc - 1], icache_line_size); printk("Primary data cache %ldkB, %s, linesize %d bytes.\n", dcache_size >> 10, way_string[dcache_assoc - 1], dcache_line_size); } /* * This is called from cache.c. We have to set up all the * memory management function pointers, as well as initialize * the caches and tlbs */ void sb1_cache_init(void) { extern char except_vec2_sb1; extern char handle_vec2_sb1; /* Special cache error handler for SB1 */ set_uncached_handler (0x100, &except_vec2_sb1, 0x80); probe_cache_sizes(); #ifdef CONFIG_SIBYTE_DMA_PAGEOPS sb1_dma_init(); #endif /* * None of these are needed for the SB1 - the Dcache is * physically indexed and tagged, so no virtual aliasing can * occur */ flush_cache_range = (void *) sb1_nop; flush_cache_mm = (void (*)(struct mm_struct *))sb1_nop; flush_cache_all = sb1_nop; /* These routines are for Icache coherence with the Dcache */ flush_icache_range = sb1_flush_icache_range; __flush_icache_page = sb1_flush_icache_page; flush_icache_all = __sb1_flush_icache_all; /* local only */ /* This implies an Icache flush too, so can't be nop'ed */ flush_cache_page = sb1_flush_cache_page; flush_cache_sigtramp = sb1_flush_cache_sigtramp; local_flush_data_cache_page = (void *) sb1_nop; flush_data_cache_page = (void *) sb1_nop; /* Full flush */ __flush_cache_all = sb1___flush_cache_all; change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT); /* * This is the only way to force the update of K0 to complete * before subsequent instruction fetch. */ __asm__ __volatile__( ".set push \n" " .set noat \n" " .set noreorder \n" " .set mips3 \n" " " STR(PTR_LA) " $1, 1f \n" " " STR(MTC0) " $1, $14 \n" " eret \n" "1: .set pop" : : : "memory"); flush_cache_all(); }