/* * wm_adsp.c -- Wolfson ADSP support * * Copyright 2012 Wolfson Microelectronics plc * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "arizona.h" #include "wm_adsp.h" #define adsp_crit(_dsp, fmt, ...) \ dev_crit(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_err(_dsp, fmt, ...) \ dev_err(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_warn(_dsp, fmt, ...) \ dev_warn(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_info(_dsp, fmt, ...) \ dev_info(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define adsp_dbg(_dsp, fmt, ...) \ dev_dbg(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__) #define ADSP1_CONTROL_1 0x00 #define ADSP1_CONTROL_2 0x02 #define ADSP1_CONTROL_3 0x03 #define ADSP1_CONTROL_4 0x04 #define ADSP1_CONTROL_5 0x06 #define ADSP1_CONTROL_6 0x07 #define ADSP1_CONTROL_7 0x08 #define ADSP1_CONTROL_8 0x09 #define ADSP1_CONTROL_9 0x0A #define ADSP1_CONTROL_10 0x0B #define ADSP1_CONTROL_11 0x0C #define ADSP1_CONTROL_12 0x0D #define ADSP1_CONTROL_13 0x0F #define ADSP1_CONTROL_14 0x10 #define ADSP1_CONTROL_15 0x11 #define ADSP1_CONTROL_16 0x12 #define ADSP1_CONTROL_17 0x13 #define ADSP1_CONTROL_18 0x14 #define ADSP1_CONTROL_19 0x16 #define ADSP1_CONTROL_20 0x17 #define ADSP1_CONTROL_21 0x18 #define ADSP1_CONTROL_22 0x1A #define ADSP1_CONTROL_23 0x1B #define ADSP1_CONTROL_24 0x1C #define ADSP1_CONTROL_25 0x1E #define ADSP1_CONTROL_26 0x20 #define ADSP1_CONTROL_27 0x21 #define ADSP1_CONTROL_28 0x22 #define ADSP1_CONTROL_29 0x23 #define ADSP1_CONTROL_30 0x24 #define ADSP1_CONTROL_31 0x26 /* * ADSP1 Control 19 */ #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ /* * ADSP1 Control 30 */ #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */ #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP1_START 0x0001 /* DSP1_START */ #define ADSP1_START_MASK 0x0001 /* DSP1_START */ #define ADSP1_START_SHIFT 0 /* DSP1_START */ #define ADSP1_START_WIDTH 1 /* DSP1_START */ /* * ADSP1 Control 31 */ #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ #define ADSP2_CONTROL 0x0 #define ADSP2_CLOCKING 0x1 #define ADSP2_STATUS1 0x4 #define ADSP2_WDMA_CONFIG_1 0x30 #define ADSP2_WDMA_CONFIG_2 0x31 #define ADSP2_RDMA_CONFIG_1 0x34 /* * ADSP2 Control */ #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */ #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP2_START 0x0001 /* DSP1_START */ #define ADSP2_START_MASK 0x0001 /* DSP1_START */ #define ADSP2_START_SHIFT 0 /* DSP1_START */ #define ADSP2_START_WIDTH 1 /* DSP1_START */ /* * ADSP2 clocking */ #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ /* * ADSP2 Status 1 */ #define ADSP2_RAM_RDY 0x0001 #define ADSP2_RAM_RDY_MASK 0x0001 #define ADSP2_RAM_RDY_SHIFT 0 #define ADSP2_RAM_RDY_WIDTH 1 struct wm_adsp_buf { struct list_head list; void *buf; }; static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len, struct list_head *list) { struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (buf == NULL) return NULL; buf->buf = kmemdup(src, len, GFP_KERNEL | GFP_DMA); if (!buf->buf) { kfree(buf); return NULL; } if (list) list_add_tail(&buf->list, list); return buf; } static void wm_adsp_buf_free(struct list_head *list) { while (!list_empty(list)) { struct wm_adsp_buf *buf = list_first_entry(list, struct wm_adsp_buf, list); list_del(&buf->list); kfree(buf->buf); kfree(buf); } } #define WM_ADSP_NUM_FW 4 #define WM_ADSP_FW_MBC_VSS 0 #define WM_ADSP_FW_TX 1 #define WM_ADSP_FW_TX_SPK 2 #define WM_ADSP_FW_RX_ANC 3 static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = { [WM_ADSP_FW_MBC_VSS] = "MBC/VSS", [WM_ADSP_FW_TX] = "Tx", [WM_ADSP_FW_TX_SPK] = "Tx Speaker", [WM_ADSP_FW_RX_ANC] = "Rx ANC", }; static struct { const char *file; } wm_adsp_fw[WM_ADSP_NUM_FW] = { [WM_ADSP_FW_MBC_VSS] = { .file = "mbc-vss" }, [WM_ADSP_FW_TX] = { .file = "tx" }, [WM_ADSP_FW_TX_SPK] = { .file = "tx-spk" }, [WM_ADSP_FW_RX_ANC] = { .file = "rx-anc" }, }; struct wm_coeff_ctl_ops { int (*xget)(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int (*xput)(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int (*xinfo)(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); }; struct wm_coeff_ctl { const char *name; struct wm_adsp_alg_region region; struct wm_coeff_ctl_ops ops; struct wm_adsp *adsp; void *private; unsigned int enabled:1; struct list_head list; void *cache; size_t len; unsigned int set:1; struct snd_kcontrol *kcontrol; }; static int wm_adsp_fw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct wm_adsp *adsp = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = adsp[e->shift_l].fw; return 0; } static int wm_adsp_fw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct wm_adsp *adsp = snd_soc_codec_get_drvdata(codec); if (ucontrol->value.integer.value[0] == adsp[e->shift_l].fw) return 0; if (ucontrol->value.integer.value[0] >= WM_ADSP_NUM_FW) return -EINVAL; if (adsp[e->shift_l].running) return -EBUSY; adsp[e->shift_l].fw = ucontrol->value.integer.value[0]; return 0; } static const struct soc_enum wm_adsp_fw_enum[] = { SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), }; const struct snd_kcontrol_new wm_adsp1_fw_controls[] = { SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2], wm_adsp_fw_get, wm_adsp_fw_put), }; EXPORT_SYMBOL_GPL(wm_adsp1_fw_controls); #if IS_ENABLED(CONFIG_SND_SOC_ARIZONA) static const struct soc_enum wm_adsp2_rate_enum[] = { SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP1_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP2_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP3_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP4_CONTROL_1, ARIZONA_DSP1_RATE_SHIFT, 0xf, ARIZONA_RATE_ENUM_SIZE, arizona_rate_text, arizona_rate_val), }; const struct snd_kcontrol_new wm_adsp2_fw_controls[] = { SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP1 Rate", wm_adsp2_rate_enum[0]), SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP2 Rate", wm_adsp2_rate_enum[1]), SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP3 Rate", wm_adsp2_rate_enum[2]), SOC_ENUM_EXT("DSP4 Firmware", wm_adsp_fw_enum[3], wm_adsp_fw_get, wm_adsp_fw_put), SOC_ENUM("DSP4 Rate", wm_adsp2_rate_enum[3]), }; EXPORT_SYMBOL_GPL(wm_adsp2_fw_controls); #endif static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp, int type) { int i; for (i = 0; i < dsp->num_mems; i++) if (dsp->mem[i].type == type) return &dsp->mem[i]; return NULL; } static unsigned int wm_adsp_region_to_reg(struct wm_adsp_region const *region, unsigned int offset) { switch (region->type) { case WMFW_ADSP1_PM: return region->base + (offset * 3); case WMFW_ADSP1_DM: return region->base + (offset * 2); case WMFW_ADSP2_XM: return region->base + (offset * 2); case WMFW_ADSP2_YM: return region->base + (offset * 2); case WMFW_ADSP1_ZM: return region->base + (offset * 2); default: WARN_ON(NULL != "Unknown memory region type"); return offset; } } static int wm_coeff_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = ctl->len; return 0; } static int wm_coeff_write_control(struct snd_kcontrol *kcontrol, const void *buf, size_t len) { struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value; struct wm_adsp_alg_region *region = &ctl->region; const struct wm_adsp_region *mem; struct wm_adsp *adsp = ctl->adsp; void *scratch; int ret; unsigned int reg; mem = wm_adsp_find_region(adsp, region->type); if (!mem) { adsp_err(adsp, "No base for region %x\n", region->type); return -EINVAL; } reg = ctl->region.base; reg = wm_adsp_region_to_reg(mem, reg); scratch = kmemdup(buf, ctl->len, GFP_KERNEL | GFP_DMA); if (!scratch) return -ENOMEM; ret = regmap_raw_write(adsp->regmap, reg, scratch, ctl->len); if (ret) { adsp_err(adsp, "Failed to write %zu bytes to %x: %d\n", ctl->len, reg, ret); kfree(scratch); return ret; } adsp_dbg(adsp, "Wrote %zu bytes to %x\n", ctl->len, reg); kfree(scratch); return 0; } static int wm_coeff_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value; char *p = ucontrol->value.bytes.data; memcpy(ctl->cache, p, ctl->len); if (!ctl->enabled) { ctl->set = 1; return 0; } return wm_coeff_write_control(kcontrol, p, ctl->len); } static int wm_coeff_read_control(struct snd_kcontrol *kcontrol, void *buf, size_t len) { struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value; struct wm_adsp_alg_region *region = &ctl->region; const struct wm_adsp_region *mem; struct wm_adsp *adsp = ctl->adsp; void *scratch; int ret; unsigned int reg; mem = wm_adsp_find_region(adsp, region->type); if (!mem) { adsp_err(adsp, "No base for region %x\n", region->type); return -EINVAL; } reg = ctl->region.base; reg = wm_adsp_region_to_reg(mem, reg); scratch = kmalloc(ctl->len, GFP_KERNEL | GFP_DMA); if (!scratch) return -ENOMEM; ret = regmap_raw_read(adsp->regmap, reg, scratch, ctl->len); if (ret) { adsp_err(adsp, "Failed to read %zu bytes from %x: %d\n", ctl->len, reg, ret); kfree(scratch); return ret; } adsp_dbg(adsp, "Read %zu bytes from %x\n", ctl->len, reg); memcpy(buf, scratch, ctl->len); kfree(scratch); return 0; } static int wm_coeff_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value; char *p = ucontrol->value.bytes.data; memcpy(p, ctl->cache, ctl->len); return 0; } struct wmfw_ctl_work { struct wm_adsp *adsp; struct wm_coeff_ctl *ctl; struct work_struct work; }; static int wmfw_add_ctl(struct wm_adsp *adsp, struct wm_coeff_ctl *ctl) { struct snd_kcontrol_new *kcontrol; int ret; if (!ctl || !ctl->name) return -EINVAL; kcontrol = kzalloc(sizeof(*kcontrol), GFP_KERNEL); if (!kcontrol) return -ENOMEM; kcontrol->iface = SNDRV_CTL_ELEM_IFACE_MIXER; kcontrol->name = ctl->name; kcontrol->info = wm_coeff_info; kcontrol->get = wm_coeff_get; kcontrol->put = wm_coeff_put; kcontrol->private_value = (unsigned long)ctl; ret = snd_soc_add_card_controls(adsp->card, kcontrol, 1); if (ret < 0) goto err_kcontrol; kfree(kcontrol); ctl->kcontrol = snd_soc_card_get_kcontrol(adsp->card, ctl->name); list_add(&ctl->list, &adsp->ctl_list); return 0; err_kcontrol: kfree(kcontrol); return ret; } static int wm_adsp_load(struct wm_adsp *dsp) { LIST_HEAD(buf_list); const struct firmware *firmware; struct regmap *regmap = dsp->regmap; unsigned int pos = 0; const struct wmfw_header *header; const struct wmfw_adsp1_sizes *adsp1_sizes; const struct wmfw_adsp2_sizes *adsp2_sizes; const struct wmfw_footer *footer; const struct wmfw_region *region; const struct wm_adsp_region *mem; const char *region_name; char *file, *text; struct wm_adsp_buf *buf; unsigned int reg; int regions = 0; int ret, offset, type, sizes; file = kzalloc(PAGE_SIZE, GFP_KERNEL); if (file == NULL) return -ENOMEM; snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.wmfw", dsp->part, dsp->num, wm_adsp_fw[dsp->fw].file); file[PAGE_SIZE - 1] = '\0'; ret = request_firmware(&firmware, file, dsp->dev); if (ret != 0) { adsp_err(dsp, "Failed to request '%s'\n", file); goto out; } ret = -EINVAL; pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer); if (pos >= firmware->size) { adsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } header = (void*)&firmware->data[0]; if (memcmp(&header->magic[0], "WMFW", 4) != 0) { adsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } if (header->ver != 0) { adsp_err(dsp, "%s: unknown file format %d\n", file, header->ver); goto out_fw; } if (header->core != dsp->type) { adsp_err(dsp, "%s: invalid core %d != %d\n", file, header->core, dsp->type); goto out_fw; } switch (dsp->type) { case WMFW_ADSP1: pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer); adsp1_sizes = (void *)&(header[1]); footer = (void *)&(adsp1_sizes[1]); sizes = sizeof(*adsp1_sizes); adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file, le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm), le32_to_cpu(adsp1_sizes->zm)); break; case WMFW_ADSP2: pos = sizeof(*header) + sizeof(*adsp2_sizes) + sizeof(*footer); adsp2_sizes = (void *)&(header[1]); footer = (void *)&(adsp2_sizes[1]); sizes = sizeof(*adsp2_sizes); adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file, le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym), le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm)); break; default: BUG_ON(NULL == "Unknown DSP type"); goto out_fw; } if (le32_to_cpu(header->len) != sizeof(*header) + sizes + sizeof(*footer)) { adsp_err(dsp, "%s: unexpected header length %d\n", file, le32_to_cpu(header->len)); goto out_fw; } adsp_dbg(dsp, "%s: timestamp %llu\n", file, le64_to_cpu(footer->timestamp)); while (pos < firmware->size && pos - firmware->size > sizeof(*region)) { region = (void *)&(firmware->data[pos]); region_name = "Unknown"; reg = 0; text = NULL; offset = le32_to_cpu(region->offset) & 0xffffff; type = be32_to_cpu(region->type) & 0xff; mem = wm_adsp_find_region(dsp, type); switch (type) { case WMFW_NAME_TEXT: region_name = "Firmware name"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_INFO_TEXT: region_name = "Information"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_ABSOLUTE: region_name = "Absolute"; reg = offset; break; case WMFW_ADSP1_PM: BUG_ON(!mem); region_name = "PM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP1_DM: BUG_ON(!mem); region_name = "DM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP2_XM: BUG_ON(!mem); region_name = "XM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP2_YM: BUG_ON(!mem); region_name = "YM"; reg = wm_adsp_region_to_reg(mem, offset); break; case WMFW_ADSP1_ZM: BUG_ON(!mem); region_name = "ZM"; reg = wm_adsp_region_to_reg(mem, offset); break; default: adsp_warn(dsp, "%s.%d: Unknown region type %x at %d(%x)\n", file, regions, type, pos, pos); break; } adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file, regions, le32_to_cpu(region->len), offset, region_name); if (text) { memcpy(text, region->data, le32_to_cpu(region->len)); adsp_info(dsp, "%s: %s\n", file, text); kfree(text); } if (reg) { buf = wm_adsp_buf_alloc(region->data, le32_to_cpu(region->len), &buf_list); if (!buf) { adsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(region->len)); if (ret != 0) { adsp_err(dsp, "%s.%d: Failed to write %d bytes at %d in %s: %d\n", file, regions, le32_to_cpu(region->len), offset, region_name, ret); goto out_fw; } } pos += le32_to_cpu(region->len) + sizeof(*region); regions++; } ret = regmap_async_complete(regmap); if (ret != 0) { adsp_err(dsp, "Failed to complete async write: %d\n", ret); goto out_fw; } if (pos > firmware->size) adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, regions, pos - firmware->size); out_fw: regmap_async_complete(regmap); wm_adsp_buf_free(&buf_list); release_firmware(firmware); out: kfree(file); return ret; } static int wm_coeff_init_control_caches(struct wm_adsp *adsp) { struct wm_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &adsp->ctl_list, list) { if (!ctl->enabled || ctl->set) continue; ret = wm_coeff_read_control(ctl->kcontrol, ctl->cache, ctl->len); if (ret < 0) return ret; } return 0; } static int wm_coeff_sync_controls(struct wm_adsp *adsp) { struct wm_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &adsp->ctl_list, list) { if (!ctl->enabled) continue; if (ctl->set) { ret = wm_coeff_write_control(ctl->kcontrol, ctl->cache, ctl->len); if (ret < 0) return ret; } } return 0; } static void wm_adsp_ctl_work(struct work_struct *work) { struct wmfw_ctl_work *ctl_work = container_of(work, struct wmfw_ctl_work, work); wmfw_add_ctl(ctl_work->adsp, ctl_work->ctl); kfree(ctl_work); } static int wm_adsp_create_control(struct wm_adsp *dsp, const struct wm_adsp_alg_region *region) { struct wm_coeff_ctl *ctl; struct wmfw_ctl_work *ctl_work; char *name; char *region_name; int ret; name = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!name) return -ENOMEM; switch (region->type) { case WMFW_ADSP1_PM: region_name = "PM"; break; case WMFW_ADSP1_DM: region_name = "DM"; break; case WMFW_ADSP2_XM: region_name = "XM"; break; case WMFW_ADSP2_YM: region_name = "YM"; break; case WMFW_ADSP1_ZM: region_name = "ZM"; break; default: ret = -EINVAL; goto err_name; } snprintf(name, PAGE_SIZE, "DSP%d %s %x", dsp->num, region_name, region->alg); list_for_each_entry(ctl, &dsp->ctl_list, list) { if (!strcmp(ctl->name, name)) { if (!ctl->enabled) ctl->enabled = 1; goto found; } } ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); if (!ctl) { ret = -ENOMEM; goto err_name; } ctl->region = *region; ctl->name = kmemdup(name, strlen(name) + 1, GFP_KERNEL); if (!ctl->name) { ret = -ENOMEM; goto err_ctl; } ctl->enabled = 1; ctl->set = 0; ctl->ops.xget = wm_coeff_get; ctl->ops.xput = wm_coeff_put; ctl->adsp = dsp; ctl->len = region->len; ctl->cache = kzalloc(ctl->len, GFP_KERNEL); if (!ctl->cache) { ret = -ENOMEM; goto err_ctl_name; } ctl_work = kzalloc(sizeof(*ctl_work), GFP_KERNEL); if (!ctl_work) { ret = -ENOMEM; goto err_ctl_cache; } ctl_work->adsp = dsp; ctl_work->ctl = ctl; INIT_WORK(&ctl_work->work, wm_adsp_ctl_work); schedule_work(&ctl_work->work); found: kfree(name); return 0; err_ctl_cache: kfree(ctl->cache); err_ctl_name: kfree(ctl->name); err_ctl: kfree(ctl); err_name: kfree(name); return ret; } static int wm_adsp_setup_algs(struct wm_adsp *dsp) { struct regmap *regmap = dsp->regmap; struct wmfw_adsp1_id_hdr adsp1_id; struct wmfw_adsp2_id_hdr adsp2_id; struct wmfw_adsp1_alg_hdr *adsp1_alg; struct wmfw_adsp2_alg_hdr *adsp2_alg; void *alg, *buf; struct wm_adsp_alg_region *region; const struct wm_adsp_region *mem; unsigned int pos, term; size_t algs, buf_size; __be32 val; int i, ret; switch (dsp->type) { case WMFW_ADSP1: mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM); break; case WMFW_ADSP2: mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM); break; default: mem = NULL; break; } if (mem == NULL) { BUG_ON(mem != NULL); return -EINVAL; } switch (dsp->type) { case WMFW_ADSP1: ret = regmap_raw_read(regmap, mem->base, &adsp1_id, sizeof(adsp1_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } buf = &adsp1_id; buf_size = sizeof(adsp1_id); algs = be32_to_cpu(adsp1_id.algs); dsp->fw_id = be32_to_cpu(adsp1_id.fw.id); adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n", dsp->fw_id, (be32_to_cpu(adsp1_id.fw.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp1_id.fw.ver) & 0xff00) >> 8, be32_to_cpu(adsp1_id.fw.ver) & 0xff, algs); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_ZM; region->alg = be32_to_cpu(adsp1_id.fw.id); region->base = be32_to_cpu(adsp1_id.zm); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_DM; region->alg = be32_to_cpu(adsp1_id.fw.id); region->base = be32_to_cpu(adsp1_id.dm); list_add_tail(®ion->list, &dsp->alg_regions); pos = sizeof(adsp1_id) / 2; term = pos + ((sizeof(*adsp1_alg) * algs) / 2); break; case WMFW_ADSP2: ret = regmap_raw_read(regmap, mem->base, &adsp2_id, sizeof(adsp2_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } buf = &adsp2_id; buf_size = sizeof(adsp2_id); algs = be32_to_cpu(adsp2_id.algs); dsp->fw_id = be32_to_cpu(adsp2_id.fw.id); adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n", dsp->fw_id, (be32_to_cpu(adsp2_id.fw.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp2_id.fw.ver) & 0xff00) >> 8, be32_to_cpu(adsp2_id.fw.ver) & 0xff, algs); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_XM; region->alg = be32_to_cpu(adsp2_id.fw.id); region->base = be32_to_cpu(adsp2_id.xm); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_YM; region->alg = be32_to_cpu(adsp2_id.fw.id); region->base = be32_to_cpu(adsp2_id.ym); list_add_tail(®ion->list, &dsp->alg_regions); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_ZM; region->alg = be32_to_cpu(adsp2_id.fw.id); region->base = be32_to_cpu(adsp2_id.zm); list_add_tail(®ion->list, &dsp->alg_regions); pos = sizeof(adsp2_id) / 2; term = pos + ((sizeof(*adsp2_alg) * algs) / 2); break; default: BUG_ON(NULL == "Unknown DSP type"); return -EINVAL; } if (algs == 0) { adsp_err(dsp, "No algorithms\n"); return -EINVAL; } if (algs > 1024) { adsp_err(dsp, "Algorithm count %zx excessive\n", algs); print_hex_dump_bytes(dev_name(dsp->dev), DUMP_PREFIX_OFFSET, buf, buf_size); return -EINVAL; } /* Read the terminator first to validate the length */ ret = regmap_raw_read(regmap, mem->base + term, &val, sizeof(val)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm list end: %d\n", ret); return ret; } if (be32_to_cpu(val) != 0xbedead) adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbeadead\n", term, be32_to_cpu(val)); alg = kzalloc((term - pos) * 2, GFP_KERNEL | GFP_DMA); if (!alg) return -ENOMEM; ret = regmap_raw_read(regmap, mem->base + pos, alg, (term - pos) * 2); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm list: %d\n", ret); goto out; } adsp1_alg = alg; adsp2_alg = alg; for (i = 0; i < algs; i++) { switch (dsp->type) { case WMFW_ADSP1: adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n", i, be32_to_cpu(adsp1_alg[i].alg.id), (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp1_alg[i].dm), be32_to_cpu(adsp1_alg[i].zm)); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_DM; region->alg = be32_to_cpu(adsp1_alg[i].alg.id); region->base = be32_to_cpu(adsp1_alg[i].dm); region->len = 0; list_add_tail(®ion->list, &dsp->alg_regions); if (i + 1 < algs) { region->len = be32_to_cpu(adsp1_alg[i + 1].dm); region->len -= be32_to_cpu(adsp1_alg[i].dm); wm_adsp_create_control(dsp, region); } else { adsp_warn(dsp, "Missing length info for region DM with ID %x\n", be32_to_cpu(adsp1_alg[i].alg.id)); } region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP1_ZM; region->alg = be32_to_cpu(adsp1_alg[i].alg.id); region->base = be32_to_cpu(adsp1_alg[i].zm); region->len = 0; list_add_tail(®ion->list, &dsp->alg_regions); if (i + 1 < algs) { region->len = be32_to_cpu(adsp1_alg[i + 1].zm); region->len -= be32_to_cpu(adsp1_alg[i].zm); wm_adsp_create_control(dsp, region); } else { adsp_warn(dsp, "Missing length info for region ZM with ID %x\n", be32_to_cpu(adsp1_alg[i].alg.id)); } break; case WMFW_ADSP2: adsp_info(dsp, "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n", i, be32_to_cpu(adsp2_alg[i].alg.id), (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp2_alg[i].xm), be32_to_cpu(adsp2_alg[i].ym), be32_to_cpu(adsp2_alg[i].zm)); region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_XM; region->alg = be32_to_cpu(adsp2_alg[i].alg.id); region->base = be32_to_cpu(adsp2_alg[i].xm); region->len = 0; list_add_tail(®ion->list, &dsp->alg_regions); if (i + 1 < algs) { region->len = be32_to_cpu(adsp2_alg[i + 1].xm); region->len -= be32_to_cpu(adsp2_alg[i].xm); wm_adsp_create_control(dsp, region); } else { adsp_warn(dsp, "Missing length info for region XM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_YM; region->alg = be32_to_cpu(adsp2_alg[i].alg.id); region->base = be32_to_cpu(adsp2_alg[i].ym); region->len = 0; list_add_tail(®ion->list, &dsp->alg_regions); if (i + 1 < algs) { region->len = be32_to_cpu(adsp2_alg[i + 1].ym); region->len -= be32_to_cpu(adsp2_alg[i].ym); wm_adsp_create_control(dsp, region); } else { adsp_warn(dsp, "Missing length info for region YM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = WMFW_ADSP2_ZM; region->alg = be32_to_cpu(adsp2_alg[i].alg.id); region->base = be32_to_cpu(adsp2_alg[i].zm); region->len = 0; list_add_tail(®ion->list, &dsp->alg_regions); if (i + 1 < algs) { region->len = be32_to_cpu(adsp2_alg[i + 1].zm); region->len -= be32_to_cpu(adsp2_alg[i].zm); wm_adsp_create_control(dsp, region); } else { adsp_warn(dsp, "Missing length info for region ZM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } break; } } out: kfree(alg); return ret; } static int wm_adsp_load_coeff(struct wm_adsp *dsp) { LIST_HEAD(buf_list); struct regmap *regmap = dsp->regmap; struct wmfw_coeff_hdr *hdr; struct wmfw_coeff_item *blk; const struct firmware *firmware; const struct wm_adsp_region *mem; struct wm_adsp_alg_region *alg_region; const char *region_name; int ret, pos, blocks, type, offset, reg; char *file; struct wm_adsp_buf *buf; int tmp; file = kzalloc(PAGE_SIZE, GFP_KERNEL); if (file == NULL) return -ENOMEM; snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.bin", dsp->part, dsp->num, wm_adsp_fw[dsp->fw].file); file[PAGE_SIZE - 1] = '\0'; ret = request_firmware(&firmware, file, dsp->dev); if (ret != 0) { adsp_warn(dsp, "Failed to request '%s'\n", file); ret = 0; goto out; } ret = -EINVAL; if (sizeof(*hdr) >= firmware->size) { adsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } hdr = (void*)&firmware->data[0]; if (memcmp(hdr->magic, "WMDR", 4) != 0) { adsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } switch (be32_to_cpu(hdr->rev) & 0xff) { case 1: break; default: adsp_err(dsp, "%s: Unsupported coefficient file format %d\n", file, be32_to_cpu(hdr->rev) & 0xff); ret = -EINVAL; goto out_fw; } adsp_dbg(dsp, "%s: v%d.%d.%d\n", file, (le32_to_cpu(hdr->ver) >> 16) & 0xff, (le32_to_cpu(hdr->ver) >> 8) & 0xff, le32_to_cpu(hdr->ver) & 0xff); pos = le32_to_cpu(hdr->len); blocks = 0; while (pos < firmware->size && pos - firmware->size > sizeof(*blk)) { blk = (void*)(&firmware->data[pos]); type = le16_to_cpu(blk->type); offset = le16_to_cpu(blk->offset); adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n", file, blocks, le32_to_cpu(blk->id), (le32_to_cpu(blk->ver) >> 16) & 0xff, (le32_to_cpu(blk->ver) >> 8) & 0xff, le32_to_cpu(blk->ver) & 0xff); adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n", file, blocks, le32_to_cpu(blk->len), offset, type); reg = 0; region_name = "Unknown"; switch (type) { case (WMFW_NAME_TEXT << 8): case (WMFW_INFO_TEXT << 8): break; case (WMFW_ABSOLUTE << 8): /* * Old files may use this for global * coefficients. */ if (le32_to_cpu(blk->id) == dsp->fw_id && offset == 0) { region_name = "global coefficients"; mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No ZM\n"); break; } reg = wm_adsp_region_to_reg(mem, 0); } else { region_name = "register"; reg = offset; } break; case WMFW_ADSP1_DM: case WMFW_ADSP1_ZM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n", file, blocks, le32_to_cpu(blk->len), type, le32_to_cpu(blk->id)); mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No base for region %x\n", type); break; } reg = 0; list_for_each_entry(alg_region, &dsp->alg_regions, list) { if (le32_to_cpu(blk->id) == alg_region->alg && type == alg_region->type) { reg = alg_region->base; reg = wm_adsp_region_to_reg(mem, reg); reg += offset; } } if (reg == 0) adsp_err(dsp, "No %x for algorithm %x\n", type, le32_to_cpu(blk->id)); break; default: adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n", file, blocks, type, pos); break; } if (reg) { buf = wm_adsp_buf_alloc(blk->data, le32_to_cpu(blk->len), &buf_list); if (!buf) { adsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n", file, blocks, le32_to_cpu(blk->len), reg); ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(blk->len)); if (ret != 0) { adsp_err(dsp, "%s.%d: Failed to write to %x in %s: %d\n", file, blocks, reg, region_name, ret); } } tmp = le32_to_cpu(blk->len) % 4; if (tmp) pos += le32_to_cpu(blk->len) + (4 - tmp) + sizeof(*blk); else pos += le32_to_cpu(blk->len) + sizeof(*blk); blocks++; } ret = regmap_async_complete(regmap); if (ret != 0) adsp_err(dsp, "Failed to complete async write: %d\n", ret); if (pos > firmware->size) adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, blocks, pos - firmware->size); out_fw: release_firmware(firmware); wm_adsp_buf_free(&buf_list); out: kfree(file); return ret; } int wm_adsp1_init(struct wm_adsp *adsp) { INIT_LIST_HEAD(&adsp->alg_regions); return 0; } EXPORT_SYMBOL_GPL(wm_adsp1_init); int wm_adsp1_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec); struct wm_adsp *dsp = &dsps[w->shift]; struct wm_coeff_ctl *ctl; int ret; int val; dsp->card = codec->card; switch (event) { case SND_SOC_DAPM_POST_PMU: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, ADSP1_SYS_ENA); /* * For simplicity set the DSP clock rate to be the * SYSCLK rate rather than making it configurable. */ if(dsp->sysclk_reg) { ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val); if (ret != 0) { adsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret); return ret; } val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_31, ADSP1_CLK_SEL_MASK, val); if (ret != 0) { adsp_err(dsp, "Failed to set clock rate: %d\n", ret); return ret; } } ret = wm_adsp_load(dsp); if (ret != 0) goto err; ret = wm_adsp_setup_algs(dsp); if (ret != 0) goto err; ret = wm_adsp_load_coeff(dsp); if (ret != 0) goto err; /* Initialize caches for enabled and unset controls */ ret = wm_coeff_init_control_caches(dsp); if (ret != 0) goto err; /* Sync set controls */ ret = wm_coeff_sync_controls(dsp); if (ret != 0) goto err; /* Start the core running */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, ADSP1_CORE_ENA | ADSP1_START); break; case SND_SOC_DAPM_PRE_PMD: /* Halt the core */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19, ADSP1_WDMA_BUFFER_LENGTH_MASK, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); list_for_each_entry(ctl, &dsp->ctl_list, list) ctl->enabled = 0; break; default: break; } return 0; err: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); return ret; } EXPORT_SYMBOL_GPL(wm_adsp1_event); static int wm_adsp2_ena(struct wm_adsp *dsp) { unsigned int val; int ret, count; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA, ADSP2_SYS_ENA); if (ret != 0) return ret; /* Wait for the RAM to start, should be near instantaneous */ count = 0; do { ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val); if (ret != 0) return ret; } while (!(val & ADSP2_RAM_RDY) && ++count < 10); if (!(val & ADSP2_RAM_RDY)) { adsp_err(dsp, "Failed to start DSP RAM\n"); return -EBUSY; } adsp_dbg(dsp, "RAM ready after %d polls\n", count); adsp_info(dsp, "RAM ready after %d polls\n", count); return 0; } int wm_adsp2_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec); struct wm_adsp *dsp = &dsps[w->shift]; struct wm_adsp_alg_region *alg_region; struct wm_coeff_ctl *ctl; unsigned int val; int ret; dsp->card = codec->card; switch (event) { case SND_SOC_DAPM_POST_PMU: /* * For simplicity set the DSP clock rate to be the * SYSCLK rate rather than making it configurable. */ ret = regmap_read(dsp->regmap, ARIZONA_SYSTEM_CLOCK_1, &val); if (ret != 0) { adsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret); return ret; } val = (val & ARIZONA_SYSCLK_FREQ_MASK) >> ARIZONA_SYSCLK_FREQ_SHIFT; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING, ADSP2_CLK_SEL_MASK, val); if (ret != 0) { adsp_err(dsp, "Failed to set clock rate: %d\n", ret); return ret; } if (dsp->dvfs) { ret = regmap_read(dsp->regmap, dsp->base + ADSP2_CLOCKING, &val); if (ret != 0) { dev_err(dsp->dev, "Failed to read clocking: %d\n", ret); return ret; } if ((val & ADSP2_CLK_SEL_MASK) >= 3) { ret = regulator_enable(dsp->dvfs); if (ret != 0) { dev_err(dsp->dev, "Failed to enable supply: %d\n", ret); return ret; } ret = regulator_set_voltage(dsp->dvfs, 1800000, 1800000); if (ret != 0) { dev_err(dsp->dev, "Failed to raise supply: %d\n", ret); return ret; } } } ret = wm_adsp2_ena(dsp); if (ret != 0) return ret; ret = wm_adsp_load(dsp); if (ret != 0) goto err; ret = wm_adsp_setup_algs(dsp); if (ret != 0) goto err; ret = wm_adsp_load_coeff(dsp); if (ret != 0) goto err; /* Initialize caches for enabled and unset controls */ ret = wm_coeff_init_control_caches(dsp); if (ret != 0) goto err; /* Sync set controls */ ret = wm_coeff_sync_controls(dsp); if (ret != 0) goto err; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_CORE_ENA | ADSP2_START, ADSP2_CORE_ENA | ADSP2_START); if (ret != 0) goto err; dsp->running = true; break; case SND_SOC_DAPM_PRE_PMD: dsp->running = false; regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0); /* Make sure DMAs are quiesced */ regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0); if (dsp->dvfs) { ret = regulator_set_voltage(dsp->dvfs, 1200000, 1800000); if (ret != 0) dev_warn(dsp->dev, "Failed to lower supply: %d\n", ret); ret = regulator_disable(dsp->dvfs); if (ret != 0) dev_err(dsp->dev, "Failed to enable supply: %d\n", ret); } list_for_each_entry(ctl, &dsp->ctl_list, list) ctl->enabled = 0; while (!list_empty(&dsp->alg_regions)) { alg_region = list_first_entry(&dsp->alg_regions, struct wm_adsp_alg_region, list); list_del(&alg_region->list); kfree(alg_region); } break; default: break; } return 0; err: regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0); return ret; } EXPORT_SYMBOL_GPL(wm_adsp2_event); int wm_adsp2_init(struct wm_adsp *adsp, bool dvfs) { int ret; /* * Disable the DSP memory by default when in reset for a small * power saving. */ ret = regmap_update_bits(adsp->regmap, adsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, 0); if (ret != 0) { adsp_err(adsp, "Failed to clear memory retention: %d\n", ret); return ret; } INIT_LIST_HEAD(&adsp->alg_regions); INIT_LIST_HEAD(&adsp->ctl_list); if (dvfs) { adsp->dvfs = devm_regulator_get(adsp->dev, "DCVDD"); if (IS_ERR(adsp->dvfs)) { ret = PTR_ERR(adsp->dvfs); dev_err(adsp->dev, "Failed to get DCVDD: %d\n", ret); return ret; } ret = regulator_enable(adsp->dvfs); if (ret != 0) { dev_err(adsp->dev, "Failed to enable DCVDD: %d\n", ret); return ret; } ret = regulator_set_voltage(adsp->dvfs, 1200000, 1800000); if (ret != 0) { dev_err(adsp->dev, "Failed to initialise DVFS: %d\n", ret); return ret; } ret = regulator_disable(adsp->dvfs); if (ret != 0) { dev_err(adsp->dev, "Failed to disable DCVDD: %d\n", ret); return ret; } } return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_init);