/* * Copyright (c) 2012 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "wil6210.h" #include "wmi.h" #include "txrx.h" static bool rtap_include_phy_info; module_param(rtap_include_phy_info, bool, S_IRUGO); MODULE_PARM_DESC(rtap_include_phy_info, " Include PHY info in the radiotap header, default - no"); static inline int wil_vring_is_empty(struct vring *vring) { return vring->swhead == vring->swtail; } static inline u32 wil_vring_next_tail(struct vring *vring) { return (vring->swtail + 1) % vring->size; } static inline void wil_vring_advance_head(struct vring *vring, int n) { vring->swhead = (vring->swhead + n) % vring->size; } static inline int wil_vring_is_full(struct vring *vring) { return wil_vring_next_tail(vring) == vring->swhead; } /* * Available space in Tx Vring */ static inline int wil_vring_avail_tx(struct vring *vring) { u32 swhead = vring->swhead; u32 swtail = vring->swtail; int used = (vring->size + swhead - swtail) % vring->size; return vring->size - used - 1; } static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring) { struct device *dev = wil_to_dev(wil); size_t sz = vring->size * sizeof(vring->va[0]); uint i; BUILD_BUG_ON(sizeof(vring->va[0]) != 32); vring->swhead = 0; vring->swtail = 0; vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL); if (!vring->ctx) { vring->va = NULL; return -ENOMEM; } /* * vring->va should be aligned on its size rounded up to power of 2 * This is granted by the dma_alloc_coherent */ vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); if (!vring->va) { wil_err(wil, "vring_alloc [%d] failed to alloc DMA mem\n", vring->size); kfree(vring->ctx); vring->ctx = NULL; return -ENOMEM; } /* initially, all descriptors are SW owned * For Tx and Rx, ownership bit is at the same location, thus * we can use any */ for (i = 0; i < vring->size; i++) { volatile struct vring_tx_desc *d = &(vring->va[i].tx); d->dma.status = TX_DMA_STATUS_DU; } wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size, vring->va, (unsigned long long)vring->pa, vring->ctx); return 0; } static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring, int tx) { struct device *dev = wil_to_dev(wil); size_t sz = vring->size * sizeof(vring->va[0]); while (!wil_vring_is_empty(vring)) { if (tx) { volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx; dma_addr_t pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32); struct sk_buff *skb = vring->ctx[vring->swtail]; if (skb) { dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE); dev_kfree_skb_any(skb); vring->ctx[vring->swtail] = NULL; } else { dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE); } vring->swtail = wil_vring_next_tail(vring); } else { /* rx */ volatile struct vring_rx_desc *d = &vring->va[vring->swtail].rx; dma_addr_t pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32); struct sk_buff *skb = vring->ctx[vring->swhead]; dma_unmap_single(dev, pa, d->dma.length, DMA_FROM_DEVICE); kfree_skb(skb); wil_vring_advance_head(vring, 1); } } dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); kfree(vring->ctx); vring->pa = 0; vring->va = NULL; vring->ctx = NULL; } /** * Allocate one skb for Rx VRING * * Safe to call from IRQ */ static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring, u32 i, int headroom) { struct device *dev = wil_to_dev(wil); unsigned int sz = RX_BUF_LEN; volatile struct vring_rx_desc *d = &(vring->va[i].rx); dma_addr_t pa; /* TODO align */ struct sk_buff *skb = dev_alloc_skb(sz + headroom); if (unlikely(!skb)) return -ENOMEM; skb_reserve(skb, headroom); skb_put(skb, sz); pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, pa))) { kfree_skb(skb); return -ENOMEM; } d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT; d->dma.addr_low = lower_32_bits(pa); d->dma.addr_high = (u16)upper_32_bits(pa); /* ip_length don't care */ /* b11 don't care */ /* error don't care */ d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ d->dma.length = sz; vring->ctx[i] = skb; return 0; } /** * Adds radiotap header * * Any error indicated as "Bad FCS" * * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: * - Rx descriptor: 32 bytes * - Phy info */ static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, struct sk_buff *skb, volatile struct vring_rx_desc *d) { struct wireless_dev *wdev = wil->wdev; struct wil6210_rtap { struct ieee80211_radiotap_header rthdr; /* fields should be in the order of bits in rthdr.it_present */ /* flags */ u8 flags; /* channel */ __le16 chnl_freq __aligned(2); __le16 chnl_flags; /* MCS */ u8 mcs_present; u8 mcs_flags; u8 mcs_index; } __packed; struct wil6210_rtap_vendor { struct wil6210_rtap rtap; /* vendor */ u8 vendor_oui[3] __aligned(2); u8 vendor_ns; __le16 vendor_skip; u8 vendor_data[0]; } __packed; struct wil6210_rtap_vendor *rtap_vendor; int rtap_len = sizeof(struct wil6210_rtap); int phy_length = 0; /* phy info header size, bytes */ static char phy_data[128]; struct ieee80211_channel *ch = wdev->preset_chandef.chan; if (rtap_include_phy_info) { rtap_len = sizeof(*rtap_vendor) + sizeof(*d); /* calculate additional length */ if (d->dma.status & RX_DMA_STATUS_PHY_INFO) { /** * PHY info starts from 8-byte boundary * there are 8-byte lines, last line may be partially * written (HW bug), thus FW configures for last line * to be excessive. Driver skips this last line. */ int len = min_t(int, 8 + sizeof(phy_data), wil_rxdesc_phy_length(d)); if (len > 8) { void *p = skb_tail_pointer(skb); void *pa = PTR_ALIGN(p, 8); if (skb_tailroom(skb) >= len + (pa - p)) { phy_length = len - 8; memcpy(phy_data, pa, phy_length); } } } rtap_len += phy_length; } if (skb_headroom(skb) < rtap_len && pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { wil_err(wil, "Unable to expand headrom to %d\n", rtap_len); return; } rtap_vendor = (void *)skb_push(skb, rtap_len); memset(rtap_vendor, 0, rtap_len); rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION; rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len); rtap_vendor->rtap.rthdr.it_present = cpu_to_le32( (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_MCS)); if (d->dma.status & RX_DMA_STATUS_ERROR) rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS; rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); rtap_vendor->rtap.chnl_flags = cpu_to_le16(0); rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; rtap_vendor->rtap.mcs_flags = 0; rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d); if (rtap_include_phy_info) { rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VENDOR_NAMESPACE); /* OUI for Wilocity 04:ce:14 */ rtap_vendor->vendor_oui[0] = 0x04; rtap_vendor->vendor_oui[1] = 0xce; rtap_vendor->vendor_oui[2] = 0x14; rtap_vendor->vendor_ns = 1; /* Rx descriptor + PHY data */ rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) + phy_length); memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d)); memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data, phy_length); } } /* * Fast swap in place between 2 registers */ static void wil_swap_u16(u16 *a, u16 *b) { *a ^= *b; *b ^= *a; *a ^= *b; } static void wil_swap_ethaddr(void *data) { struct ethhdr *eth = data; u16 *s = (u16 *)eth->h_source; u16 *d = (u16 *)eth->h_dest; wil_swap_u16(s++, d++); wil_swap_u16(s++, d++); wil_swap_u16(s, d); } /** * reap 1 frame from @swhead * * Safe to call from IRQ */ static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, struct vring *vring) { struct device *dev = wil_to_dev(wil); struct net_device *ndev = wil_to_ndev(wil); volatile struct vring_rx_desc *d; struct sk_buff *skb; dma_addr_t pa; unsigned int sz = RX_BUF_LEN; u8 ftype; u8 ds_bits; if (wil_vring_is_empty(vring)) return NULL; d = &(vring->va[vring->swhead].rx); if (!(d->dma.status & RX_DMA_STATUS_DU)) { /* it is not error, we just reached end of Rx done area */ return NULL; } pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32); skb = vring->ctx[vring->swhead]; dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); skb_trim(skb, d->dma.length); wil->stats.last_mcs_rx = wil_rxdesc_mcs(d); /* use radiotap header only if required */ if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) wil_rx_add_radiotap_header(wil, skb, d); wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length); wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); wil_vring_advance_head(vring, 1); /* no extra checks if in sniffer mode */ if (ndev->type != ARPHRD_ETHER) return skb; /* * Non-data frames may be delivered through Rx DMA channel (ex: BAR) * Driver should recognize it by frame type, that is found * in Rx descriptor. If type is not data, it is 802.11 frame as is */ ftype = wil_rxdesc_ftype(d) << 2; if (ftype != IEEE80211_FTYPE_DATA) { wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype); /* TODO: process it */ kfree_skb(skb); return NULL; } if (skb->len < ETH_HLEN) { wil_err(wil, "Short frame, len = %d\n", skb->len); /* TODO: process it (i.e. BAR) */ kfree_skb(skb); return NULL; } ds_bits = wil_rxdesc_ds_bits(d); if (ds_bits == 1) { /* * HW bug - in ToDS mode, i.e. Rx on AP side, * addresses get swapped */ wil_swap_ethaddr(skb->data); } return skb; } /** * allocate and fill up to @count buffers in rx ring * buffers posted at @swtail */ static int wil_rx_refill(struct wil6210_priv *wil, int count) { struct net_device *ndev = wil_to_ndev(wil); struct vring *v = &wil->vring_rx; u32 next_tail; int rc = 0; int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? WIL6210_RTAP_SIZE : 0; for (; next_tail = wil_vring_next_tail(v), (next_tail != v->swhead) && (count-- > 0); v->swtail = next_tail) { rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); if (rc) { wil_err(wil, "Error %d in wil_rx_refill[%d]\n", rc, v->swtail); break; } } iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail)); return rc; } /* * Pass Rx packet to the netif. Update statistics. */ static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) { int rc; unsigned int len = skb->len; skb_orphan(skb); if (in_interrupt()) rc = netif_rx(skb); else rc = netif_rx_ni(skb); if (likely(rc == NET_RX_SUCCESS)) { ndev->stats.rx_packets++; ndev->stats.rx_bytes += len; } else { ndev->stats.rx_dropped++; } } /** * Proceed all completed skb's from Rx VRING * * Safe to call from IRQ */ void wil_rx_handle(struct wil6210_priv *wil) { struct net_device *ndev = wil_to_ndev(wil); struct vring *v = &wil->vring_rx; struct sk_buff *skb; if (!v->va) { wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); return; } wil_dbg_txrx(wil, "%s()\n", __func__); while (NULL != (skb = wil_vring_reap_rx(wil, v))) { wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb_headlen(skb), false); if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) { skb->dev = ndev; skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); } else { skb->protocol = eth_type_trans(skb, ndev); } wil_netif_rx_any(skb, ndev); } wil_rx_refill(wil, v->size); } int wil_rx_init(struct wil6210_priv *wil) { struct vring *vring = &wil->vring_rx; int rc; vring->size = WIL6210_RX_RING_SIZE; rc = wil_vring_alloc(wil, vring); if (rc) return rc; rc = wmi_rx_chain_add(wil, vring); if (rc) goto err_free; rc = wil_rx_refill(wil, vring->size); if (rc) goto err_free; return 0; err_free: wil_vring_free(wil, vring, 0); return rc; } void wil_rx_fini(struct wil6210_priv *wil) { struct vring *vring = &wil->vring_rx; if (vring->va) wil_vring_free(wil, vring, 0); } int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size, int cid, int tid) { int rc; struct wmi_vring_cfg_cmd cmd = { .action = cpu_to_le32(WMI_VRING_CMD_ADD), .vring_cfg = { .tx_sw_ring = { .max_mpdu_size = cpu_to_le16(TX_BUF_LEN), }, .ringid = id, .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4), .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, .mac_ctrl = 0, .to_resolution = 0, .agg_max_wsize = 16, .schd_params = { .priority = cpu_to_le16(0), .timeslot_us = cpu_to_le16(0xfff), }, }, }; struct { struct wil6210_mbox_hdr_wmi wmi; struct wmi_vring_cfg_done_event cmd; } __packed reply; struct vring *vring = &wil->vring_tx[id]; if (vring->va) { wil_err(wil, "Tx ring [%d] already allocated\n", id); rc = -EINVAL; goto out; } vring->size = size; rc = wil_vring_alloc(wil, vring); if (rc) goto out; cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); cmd.vring_cfg.tx_sw_ring.ring_size = cpu_to_le16(vring->size); rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd), WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); if (rc) goto out_free; if (reply.cmd.status != WMI_VRING_CFG_SUCCESS) { wil_err(wil, "Tx config failed, status 0x%02x\n", reply.cmd.status); rc = -EINVAL; goto out_free; } vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); return 0; out_free: wil_vring_free(wil, vring, 1); out: return rc; } void wil_vring_fini_tx(struct wil6210_priv *wil, int id) { struct vring *vring = &wil->vring_tx[id]; if (!vring->va) return; wil_vring_free(wil, vring, 1); } static struct vring *wil_find_tx_vring(struct wil6210_priv *wil, struct sk_buff *skb) { struct vring *v = &wil->vring_tx[0]; if (v->va) return v; return NULL; } static int wil_tx_desc_map(volatile struct vring_tx_desc *d, dma_addr_t pa, u32 len) { d->dma.addr_low = lower_32_bits(pa); d->dma.addr_high = (u16)upper_32_bits(pa); d->dma.ip_length = 0; /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ d->dma.b11 = 0/*14 | BIT(7)*/; d->dma.error = 0; d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ d->dma.length = len; d->dma.d0 = 0; d->mac.d[0] = 0; d->mac.d[1] = 0; d->mac.d[2] = 0; d->mac.ucode_cmd = 0; /* use dst index 0 */ d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) | (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS); /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); return 0; } static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring, struct sk_buff *skb) { struct device *dev = wil_to_dev(wil); volatile struct vring_tx_desc *d; u32 swhead = vring->swhead; int avail = wil_vring_avail_tx(vring); int nr_frags = skb_shinfo(skb)->nr_frags; uint f; int vring_index = vring - wil->vring_tx; uint i = swhead; dma_addr_t pa; wil_dbg_txrx(wil, "%s()\n", __func__); if (avail < vring->size/8) netif_tx_stop_all_queues(wil_to_ndev(wil)); if (avail < 1 + nr_frags) { wil_err(wil, "Tx ring full. No space for %d fragments\n", 1 + nr_frags); return -ENOMEM; } d = &(vring->va[i].tx); /* FIXME FW can accept only unicast frames for the peer */ memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN); pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb), skb->data, (unsigned long long)pa); wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb_headlen(skb), false); if (unlikely(dma_mapping_error(dev, pa))) return -EINVAL; /* 1-st segment */ wil_tx_desc_map(d, pa, skb_headlen(skb)); d->mac.d[2] |= ((nr_frags + 1) << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); /* middle segments */ for (f = 0; f < nr_frags; f++) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f]; int len = skb_frag_size(frag); i = (swhead + f + 1) % vring->size; d = &(vring->va[i].tx); pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, pa))) goto dma_error; wil_tx_desc_map(d, pa, len); vring->ctx[i] = NULL; } /* for the last seg only */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); d->dma.d0 |= BIT(9); /* BUG: undocumented bit */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS); wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); /* advance swhead */ wil_vring_advance_head(vring, nr_frags + 1); wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead); iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail)); /* hold reference to skb * to prevent skb release before accounting * in case of immediate "tx done" */ vring->ctx[i] = skb_get(skb); return 0; dma_error: /* unmap what we have mapped */ /* Note: increment @f to operate with positive index */ for (f++; f > 0; f--) { i = (swhead + f) % vring->size; d = &(vring->va[i].tx); d->dma.status = TX_DMA_STATUS_DU; pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32); if (vring->ctx[i]) dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE); else dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE); } return -EINVAL; } netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct wil6210_priv *wil = ndev_to_wil(ndev); struct vring *vring; int rc; wil_dbg_txrx(wil, "%s()\n", __func__); if (!test_bit(wil_status_fwready, &wil->status)) { wil_err(wil, "FW not ready\n"); goto drop; } if (!test_bit(wil_status_fwconnected, &wil->status)) { wil_err(wil, "FW not connected\n"); goto drop; } if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) { wil_err(wil, "Xmit in monitor mode not supported\n"); goto drop; } if (skb->protocol == cpu_to_be16(ETH_P_PAE)) { rc = wmi_tx_eapol(wil, skb); } else { /* find vring */ vring = wil_find_tx_vring(wil, skb); if (!vring) { wil_err(wil, "No Tx VRING available\n"); goto drop; } /* set up vring entry */ rc = wil_tx_vring(wil, vring, skb); } switch (rc) { case 0: /* statistics will be updated on the tx_complete */ dev_kfree_skb_any(skb); return NETDEV_TX_OK; case -ENOMEM: return NETDEV_TX_BUSY; default: break; /* goto drop; */ } drop: netif_tx_stop_all_queues(ndev); ndev->stats.tx_dropped++; dev_kfree_skb_any(skb); return NET_XMIT_DROP; } /** * Clean up transmitted skb's from the Tx VRING * * Safe to call from IRQ */ void wil_tx_complete(struct wil6210_priv *wil, int ringid) { struct net_device *ndev = wil_to_ndev(wil); struct device *dev = wil_to_dev(wil); struct vring *vring = &wil->vring_tx[ringid]; if (!vring->va) { wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); return; } wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid); while (!wil_vring_is_empty(vring)) { volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx; dma_addr_t pa; struct sk_buff *skb; if (!(d->dma.status & TX_DMA_STATUS_DU)) break; wil_dbg_txrx(wil, "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n", vring->swtail, d->dma.length, d->dma.status, d->dma.error); wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32); skb = vring->ctx[vring->swtail]; if (skb) { if (d->dma.error == 0) { ndev->stats.tx_packets++; ndev->stats.tx_bytes += skb->len; } else { ndev->stats.tx_errors++; } dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE); dev_kfree_skb_any(skb); vring->ctx[vring->swtail] = NULL; } else { dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE); } d->dma.addr_low = 0; d->dma.addr_high = 0; d->dma.length = 0; d->dma.status = TX_DMA_STATUS_DU; vring->swtail = wil_vring_next_tail(vring); } if (wil_vring_avail_tx(vring) > vring->size/4) netif_tx_wake_all_queues(wil_to_ndev(wil)); }