/* * linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver * * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * Thanks to the following companies for their support: * * - JMicron (hardware and technical support) */ #include #include #include #include #include #include #include #include "sdhci.h" #define DRIVER_NAME "sdhci" #define DBG(f, x...) \ pr_debug(DRIVER_NAME " [%s()]: " f, __func__,## x) #if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \ defined(CONFIG_MMC_SDHCI_MODULE)) #define SDHCI_USE_LEDS_CLASS #endif static unsigned int debug_quirks = 0; static void sdhci_prepare_data(struct sdhci_host *, struct mmc_data *); static void sdhci_finish_data(struct sdhci_host *); static void sdhci_send_command(struct sdhci_host *, struct mmc_command *); static void sdhci_finish_command(struct sdhci_host *); static void sdhci_dumpregs(struct sdhci_host *host) { printk(KERN_DEBUG DRIVER_NAME ": ============== REGISTER DUMP ==============\n"); printk(KERN_DEBUG DRIVER_NAME ": Sys addr: 0x%08x | Version: 0x%08x\n", sdhci_readl(host, SDHCI_DMA_ADDRESS), sdhci_readw(host, SDHCI_HOST_VERSION)); printk(KERN_DEBUG DRIVER_NAME ": Blk size: 0x%08x | Blk cnt: 0x%08x\n", sdhci_readw(host, SDHCI_BLOCK_SIZE), sdhci_readw(host, SDHCI_BLOCK_COUNT)); printk(KERN_DEBUG DRIVER_NAME ": Argument: 0x%08x | Trn mode: 0x%08x\n", sdhci_readl(host, SDHCI_ARGUMENT), sdhci_readw(host, SDHCI_TRANSFER_MODE)); printk(KERN_DEBUG DRIVER_NAME ": Present: 0x%08x | Host ctl: 0x%08x\n", sdhci_readl(host, SDHCI_PRESENT_STATE), sdhci_readb(host, SDHCI_HOST_CONTROL)); printk(KERN_DEBUG DRIVER_NAME ": Power: 0x%08x | Blk gap: 0x%08x\n", sdhci_readb(host, SDHCI_POWER_CONTROL), sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL)); printk(KERN_DEBUG DRIVER_NAME ": Wake-up: 0x%08x | Clock: 0x%08x\n", sdhci_readb(host, SDHCI_WAKE_UP_CONTROL), sdhci_readw(host, SDHCI_CLOCK_CONTROL)); printk(KERN_DEBUG DRIVER_NAME ": Timeout: 0x%08x | Int stat: 0x%08x\n", sdhci_readb(host, SDHCI_TIMEOUT_CONTROL), sdhci_readl(host, SDHCI_INT_STATUS)); printk(KERN_DEBUG DRIVER_NAME ": Int enab: 0x%08x | Sig enab: 0x%08x\n", sdhci_readl(host, SDHCI_INT_ENABLE), sdhci_readl(host, SDHCI_SIGNAL_ENABLE)); printk(KERN_DEBUG DRIVER_NAME ": AC12 err: 0x%08x | Slot int: 0x%08x\n", sdhci_readw(host, SDHCI_ACMD12_ERR), sdhci_readw(host, SDHCI_SLOT_INT_STATUS)); printk(KERN_DEBUG DRIVER_NAME ": Caps: 0x%08x | Max curr: 0x%08x\n", sdhci_readl(host, SDHCI_CAPABILITIES), sdhci_readl(host, SDHCI_MAX_CURRENT)); if (host->flags & SDHCI_USE_ADMA) printk(KERN_DEBUG DRIVER_NAME ": ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n", readl(host->ioaddr + SDHCI_ADMA_ERROR), readl(host->ioaddr + SDHCI_ADMA_ADDRESS)); printk(KERN_DEBUG DRIVER_NAME ": ===========================================\n"); } /*****************************************************************************\ * * * Low level functions * * * \*****************************************************************************/ static void sdhci_clear_set_irqs(struct sdhci_host *host, u32 clear, u32 set) { u32 ier; ier = sdhci_readl(host, SDHCI_INT_ENABLE); ier &= ~clear; ier |= set; sdhci_writel(host, ier, SDHCI_INT_ENABLE); sdhci_writel(host, ier, SDHCI_SIGNAL_ENABLE); } static void sdhci_unmask_irqs(struct sdhci_host *host, u32 irqs) { sdhci_clear_set_irqs(host, 0, irqs); } static void sdhci_mask_irqs(struct sdhci_host *host, u32 irqs) { sdhci_clear_set_irqs(host, irqs, 0); } static void sdhci_set_card_detection(struct sdhci_host *host, bool enable) { u32 irqs = SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT; if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) return; if (enable) sdhci_unmask_irqs(host, irqs); else sdhci_mask_irqs(host, irqs); } static void sdhci_enable_card_detection(struct sdhci_host *host) { sdhci_set_card_detection(host, true); } static void sdhci_disable_card_detection(struct sdhci_host *host) { sdhci_set_card_detection(host, false); } static void sdhci_reset(struct sdhci_host *host, u8 mask) { unsigned long timeout; u32 uninitialized_var(ier); if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT)) return; } if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET) ier = sdhci_readl(host, SDHCI_INT_ENABLE); sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET); if (mask & SDHCI_RESET_ALL) host->clock = 0; /* Wait max 100 ms */ timeout = 100; /* hw clears the bit when it's done */ while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) { if (timeout == 0) { printk(KERN_ERR "%s: Reset 0x%x never completed.\n", mmc_hostname(host->mmc), (int)mask); sdhci_dumpregs(host); return; } timeout--; mdelay(1); } if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET) sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK, ier); } static void sdhci_init(struct sdhci_host *host) { sdhci_reset(host, SDHCI_RESET_ALL); sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK, SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE); } static void sdhci_reinit(struct sdhci_host *host) { sdhci_init(host); sdhci_enable_card_detection(host); } static void sdhci_activate_led(struct sdhci_host *host) { u8 ctrl; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl |= SDHCI_CTRL_LED; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } static void sdhci_deactivate_led(struct sdhci_host *host) { u8 ctrl; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_LED; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } #ifdef SDHCI_USE_LEDS_CLASS static void sdhci_led_control(struct led_classdev *led, enum led_brightness brightness) { struct sdhci_host *host = container_of(led, struct sdhci_host, led); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (brightness == LED_OFF) sdhci_deactivate_led(host); else sdhci_activate_led(host); spin_unlock_irqrestore(&host->lock, flags); } #endif /*****************************************************************************\ * * * Core functions * * * \*****************************************************************************/ static void sdhci_read_block_pio(struct sdhci_host *host) { unsigned long flags; size_t blksize, len, chunk; u32 uninitialized_var(scratch); u8 *buf; DBG("PIO reading\n"); blksize = host->data->blksz; chunk = 0; local_irq_save(flags); while (blksize) { if (!sg_miter_next(&host->sg_miter)) BUG(); len = min(host->sg_miter.length, blksize); blksize -= len; host->sg_miter.consumed = len; buf = host->sg_miter.addr; while (len) { if (chunk == 0) { scratch = sdhci_readl(host, SDHCI_BUFFER); chunk = 4; } *buf = scratch & 0xFF; buf++; scratch >>= 8; chunk--; len--; } } sg_miter_stop(&host->sg_miter); local_irq_restore(flags); } static void sdhci_write_block_pio(struct sdhci_host *host) { unsigned long flags; size_t blksize, len, chunk; u32 scratch; u8 *buf; DBG("PIO writing\n"); blksize = host->data->blksz; chunk = 0; scratch = 0; local_irq_save(flags); while (blksize) { if (!sg_miter_next(&host->sg_miter)) BUG(); len = min(host->sg_miter.length, blksize); blksize -= len; host->sg_miter.consumed = len; buf = host->sg_miter.addr; while (len) { scratch |= (u32)*buf << (chunk * 8); buf++; chunk++; len--; if ((chunk == 4) || ((len == 0) && (blksize == 0))) { sdhci_writel(host, scratch, SDHCI_BUFFER); chunk = 0; scratch = 0; } } } sg_miter_stop(&host->sg_miter); local_irq_restore(flags); } static void sdhci_transfer_pio(struct sdhci_host *host) { u32 mask; BUG_ON(!host->data); if (host->blocks == 0) return; if (host->data->flags & MMC_DATA_READ) mask = SDHCI_DATA_AVAILABLE; else mask = SDHCI_SPACE_AVAILABLE; /* * Some controllers (JMicron JMB38x) mess up the buffer bits * for transfers < 4 bytes. As long as it is just one block, * we can ignore the bits. */ if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) && (host->data->blocks == 1)) mask = ~0; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY) udelay(100); if (host->data->flags & MMC_DATA_READ) sdhci_read_block_pio(host); else sdhci_write_block_pio(host); host->blocks--; if (host->blocks == 0) break; } DBG("PIO transfer complete.\n"); } static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags) { local_irq_save(*flags); return kmap_atomic(sg_page(sg), KM_BIO_SRC_IRQ) + sg->offset; } static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags) { kunmap_atomic(buffer, KM_BIO_SRC_IRQ); local_irq_restore(*flags); } static int sdhci_adma_table_pre(struct sdhci_host *host, struct mmc_data *data) { int direction; u8 *desc; u8 *align; dma_addr_t addr; dma_addr_t align_addr; int len, offset; struct scatterlist *sg; int i; char *buffer; unsigned long flags; /* * The spec does not specify endianness of descriptor table. * We currently guess that it is LE. */ if (data->flags & MMC_DATA_READ) direction = DMA_FROM_DEVICE; else direction = DMA_TO_DEVICE; /* * The ADMA descriptor table is mapped further down as we * need to fill it with data first. */ host->align_addr = dma_map_single(mmc_dev(host->mmc), host->align_buffer, 128 * 4, direction); if (dma_mapping_error(mmc_dev(host->mmc), host->align_addr)) goto fail; BUG_ON(host->align_addr & 0x3); host->sg_count = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, direction); if (host->sg_count == 0) goto unmap_align; desc = host->adma_desc; align = host->align_buffer; align_addr = host->align_addr; for_each_sg(data->sg, sg, host->sg_count, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); /* * The SDHCI specification states that ADMA * addresses must be 32-bit aligned. If they * aren't, then we use a bounce buffer for * the (up to three) bytes that screw up the * alignment. */ offset = (4 - (addr & 0x3)) & 0x3; if (offset) { if (data->flags & MMC_DATA_WRITE) { buffer = sdhci_kmap_atomic(sg, &flags); WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3)); memcpy(align, buffer, offset); sdhci_kunmap_atomic(buffer, &flags); } desc[7] = (align_addr >> 24) & 0xff; desc[6] = (align_addr >> 16) & 0xff; desc[5] = (align_addr >> 8) & 0xff; desc[4] = (align_addr >> 0) & 0xff; BUG_ON(offset > 65536); desc[3] = (offset >> 8) & 0xff; desc[2] = (offset >> 0) & 0xff; desc[1] = 0x00; desc[0] = 0x21; /* tran, valid */ align += 4; align_addr += 4; desc += 8; addr += offset; len -= offset; } desc[7] = (addr >> 24) & 0xff; desc[6] = (addr >> 16) & 0xff; desc[5] = (addr >> 8) & 0xff; desc[4] = (addr >> 0) & 0xff; BUG_ON(len > 65536); desc[3] = (len >> 8) & 0xff; desc[2] = (len >> 0) & 0xff; desc[1] = 0x00; desc[0] = 0x21; /* tran, valid */ desc += 8; /* * If this triggers then we have a calculation bug * somewhere. :/ */ WARN_ON((desc - host->adma_desc) > (128 * 2 + 1) * 4); } /* * Add a terminating entry. */ desc[7] = 0; desc[6] = 0; desc[5] = 0; desc[4] = 0; desc[3] = 0; desc[2] = 0; desc[1] = 0x00; desc[0] = 0x03; /* nop, end, valid */ /* * Resync align buffer as we might have changed it. */ if (data->flags & MMC_DATA_WRITE) { dma_sync_single_for_device(mmc_dev(host->mmc), host->align_addr, 128 * 4, direction); } host->adma_addr = dma_map_single(mmc_dev(host->mmc), host->adma_desc, (128 * 2 + 1) * 4, DMA_TO_DEVICE); if (dma_mapping_error(mmc_dev(host->mmc), host->adma_addr)) goto unmap_entries; BUG_ON(host->adma_addr & 0x3); return 0; unmap_entries: dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, direction); unmap_align: dma_unmap_single(mmc_dev(host->mmc), host->align_addr, 128 * 4, direction); fail: return -EINVAL; } static void sdhci_adma_table_post(struct sdhci_host *host, struct mmc_data *data) { int direction; struct scatterlist *sg; int i, size; u8 *align; char *buffer; unsigned long flags; if (data->flags & MMC_DATA_READ) direction = DMA_FROM_DEVICE; else direction = DMA_TO_DEVICE; dma_unmap_single(mmc_dev(host->mmc), host->adma_addr, (128 * 2 + 1) * 4, DMA_TO_DEVICE); dma_unmap_single(mmc_dev(host->mmc), host->align_addr, 128 * 4, direction); if (data->flags & MMC_DATA_READ) { dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg, data->sg_len, direction); align = host->align_buffer; for_each_sg(data->sg, sg, host->sg_count, i) { if (sg_dma_address(sg) & 0x3) { size = 4 - (sg_dma_address(sg) & 0x3); buffer = sdhci_kmap_atomic(sg, &flags); WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3)); memcpy(buffer, align, size); sdhci_kunmap_atomic(buffer, &flags); align += 4; } } } dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, direction); } static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_data *data) { u8 count; unsigned target_timeout, current_timeout; /* * If the host controller provides us with an incorrect timeout * value, just skip the check and use 0xE. The hardware may take * longer to time out, but that's much better than having a too-short * timeout value. */ if ((host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)) return 0xE; /* timeout in us */ target_timeout = data->timeout_ns / 1000 + data->timeout_clks / host->clock; /* * Figure out needed cycles. * We do this in steps in order to fit inside a 32 bit int. * The first step is the minimum timeout, which will have a * minimum resolution of 6 bits: * (1) 2^13*1000 > 2^22, * (2) host->timeout_clk < 2^16 * => * (1) / (2) > 2^6 */ count = 0; current_timeout = (1 << 13) * 1000 / host->timeout_clk; while (current_timeout < target_timeout) { count++; current_timeout <<= 1; if (count >= 0xF) break; } if (count >= 0xF) { printk(KERN_WARNING "%s: Too large timeout requested!\n", mmc_hostname(host->mmc)); count = 0xE; } return count; } static void sdhci_set_transfer_irqs(struct sdhci_host *host) { u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL; u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR; if (host->flags & SDHCI_REQ_USE_DMA) sdhci_clear_set_irqs(host, pio_irqs, dma_irqs); else sdhci_clear_set_irqs(host, dma_irqs, pio_irqs); } static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_data *data) { u8 count; u8 ctrl; int ret; WARN_ON(host->data); if (data == NULL) return; /* Sanity checks */ BUG_ON(data->blksz * data->blocks > 524288); BUG_ON(data->blksz > host->mmc->max_blk_size); BUG_ON(data->blocks > 65535); host->data = data; host->data_early = 0; count = sdhci_calc_timeout(host, data); sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL); if (host->flags & SDHCI_USE_DMA) host->flags |= SDHCI_REQ_USE_DMA; /* * FIXME: This doesn't account for merging when mapping the * scatterlist. */ if (host->flags & SDHCI_REQ_USE_DMA) { int broken, i; struct scatterlist *sg; broken = 0; if (host->flags & SDHCI_USE_ADMA) { if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) broken = 1; } else { if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) broken = 1; } if (unlikely(broken)) { for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->length & 0x3) { DBG("Reverting to PIO because of " "transfer size (%d)\n", sg->length); host->flags &= ~SDHCI_REQ_USE_DMA; break; } } } } /* * The assumption here being that alignment is the same after * translation to device address space. */ if (host->flags & SDHCI_REQ_USE_DMA) { int broken, i; struct scatterlist *sg; broken = 0; if (host->flags & SDHCI_USE_ADMA) { /* * As we use 3 byte chunks to work around * alignment problems, we need to check this * quirk. */ if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) broken = 1; } else { if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) broken = 1; } if (unlikely(broken)) { for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->offset & 0x3) { DBG("Reverting to PIO because of " "bad alignment\n"); host->flags &= ~SDHCI_REQ_USE_DMA; break; } } } } if (host->flags & SDHCI_REQ_USE_DMA) { if (host->flags & SDHCI_USE_ADMA) { ret = sdhci_adma_table_pre(host, data); if (ret) { /* * This only happens when someone fed * us an invalid request. */ WARN_ON(1); host->flags &= ~SDHCI_REQ_USE_DMA; } else { sdhci_writel(host, host->adma_addr, SDHCI_ADMA_ADDRESS); } } else { int sg_cnt; sg_cnt = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_READ) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (sg_cnt == 0) { /* * This only happens when someone fed * us an invalid request. */ WARN_ON(1); host->flags &= ~SDHCI_REQ_USE_DMA; } else { WARN_ON(sg_cnt != 1); sdhci_writel(host, sg_dma_address(data->sg), SDHCI_DMA_ADDRESS); } } } /* * Always adjust the DMA selection as some controllers * (e.g. JMicron) can't do PIO properly when the selection * is ADMA. */ if (host->version >= SDHCI_SPEC_200) { ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_DMA_MASK; if ((host->flags & SDHCI_REQ_USE_DMA) && (host->flags & SDHCI_USE_ADMA)) ctrl |= SDHCI_CTRL_ADMA32; else ctrl |= SDHCI_CTRL_SDMA; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } if (!(host->flags & SDHCI_REQ_USE_DMA)) { sg_miter_start(&host->sg_miter, data->sg, data->sg_len, SG_MITER_ATOMIC); host->blocks = data->blocks; } sdhci_set_transfer_irqs(host); /* We do not handle DMA boundaries, so set it to max (512 KiB) */ sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, data->blksz), SDHCI_BLOCK_SIZE); sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT); } static void sdhci_set_transfer_mode(struct sdhci_host *host, struct mmc_data *data) { u16 mode; if (data == NULL) return; WARN_ON(!host->data); mode = SDHCI_TRNS_BLK_CNT_EN; if (data->blocks > 1) mode |= SDHCI_TRNS_MULTI; if (data->flags & MMC_DATA_READ) mode |= SDHCI_TRNS_READ; if (host->flags & SDHCI_REQ_USE_DMA) mode |= SDHCI_TRNS_DMA; sdhci_writew(host, mode, SDHCI_TRANSFER_MODE); } static void sdhci_finish_data(struct sdhci_host *host) { struct mmc_data *data; BUG_ON(!host->data); data = host->data; host->data = NULL; if (host->flags & SDHCI_REQ_USE_DMA) { if (host->flags & SDHCI_USE_ADMA) sdhci_adma_table_post(host, data); else { dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_READ) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } } /* * The specification states that the block count register must * be updated, but it does not specify at what point in the * data flow. That makes the register entirely useless to read * back so we have to assume that nothing made it to the card * in the event of an error. */ if (data->error) data->bytes_xfered = 0; else data->bytes_xfered = data->blksz * data->blocks; if (data->stop) { /* * The controller needs a reset of internal state machines * upon error conditions. */ if (data->error) { sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); } sdhci_send_command(host, data->stop); } else tasklet_schedule(&host->finish_tasklet); } static void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd) { int flags; u32 mask; unsigned long timeout; WARN_ON(host->cmd); /* Wait max 10 ms */ timeout = 10; mask = SDHCI_CMD_INHIBIT; if ((cmd->data != NULL) || (cmd->flags & MMC_RSP_BUSY)) mask |= SDHCI_DATA_INHIBIT; /* We shouldn't wait for data inihibit for stop commands, even though they might use busy signaling */ if (host->mrq->data && (cmd == host->mrq->data->stop)) mask &= ~SDHCI_DATA_INHIBIT; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (timeout == 0) { printk(KERN_ERR "%s: Controller never released " "inhibit bit(s).\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); cmd->error = -EIO; tasklet_schedule(&host->finish_tasklet); return; } timeout--; mdelay(1); } mod_timer(&host->timer, jiffies + 10 * HZ); host->cmd = cmd; sdhci_prepare_data(host, cmd->data); sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT); sdhci_set_transfer_mode(host, cmd->data); if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { printk(KERN_ERR "%s: Unsupported response type!\n", mmc_hostname(host->mmc)); cmd->error = -EINVAL; tasklet_schedule(&host->finish_tasklet); return; } if (!(cmd->flags & MMC_RSP_PRESENT)) flags = SDHCI_CMD_RESP_NONE; else if (cmd->flags & MMC_RSP_136) flags = SDHCI_CMD_RESP_LONG; else if (cmd->flags & MMC_RSP_BUSY) flags = SDHCI_CMD_RESP_SHORT_BUSY; else flags = SDHCI_CMD_RESP_SHORT; if (cmd->flags & MMC_RSP_CRC) flags |= SDHCI_CMD_CRC; if (cmd->flags & MMC_RSP_OPCODE) flags |= SDHCI_CMD_INDEX; if (cmd->data) flags |= SDHCI_CMD_DATA; sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND); } static void sdhci_finish_command(struct sdhci_host *host) { int i; BUG_ON(host->cmd == NULL); if (host->cmd->flags & MMC_RSP_PRESENT) { if (host->cmd->flags & MMC_RSP_136) { /* CRC is stripped so we need to do some shifting. */ for (i = 0;i < 4;i++) { host->cmd->resp[i] = sdhci_readl(host, SDHCI_RESPONSE + (3-i)*4) << 8; if (i != 3) host->cmd->resp[i] |= sdhci_readb(host, SDHCI_RESPONSE + (3-i)*4-1); } } else { host->cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE); } } host->cmd->error = 0; if (host->data && host->data_early) sdhci_finish_data(host); if (!host->cmd->data) tasklet_schedule(&host->finish_tasklet); host->cmd = NULL; } static void sdhci_set_clock(struct sdhci_host *host, unsigned int clock) { int div; u16 clk; unsigned long timeout; if (clock == host->clock) return; if (host->ops->set_clock) { host->ops->set_clock(host, clock); if (host->quirks & SDHCI_QUIRK_NONSTANDARD_CLOCK) return; } sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); if (clock == 0) goto out; for (div = 1;div < 256;div *= 2) { if ((host->max_clk / div) <= clock) break; } div >>= 1; clk = div << SDHCI_DIVIDER_SHIFT; clk |= SDHCI_CLOCK_INT_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Wait max 10 ms */ timeout = 10; while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL)) & SDHCI_CLOCK_INT_STABLE)) { if (timeout == 0) { printk(KERN_ERR "%s: Internal clock never " "stabilised.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); return; } timeout--; mdelay(1); } clk |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); out: host->clock = clock; } static void sdhci_set_power(struct sdhci_host *host, unsigned short power) { u8 pwr; if (power == (unsigned short)-1) pwr = 0; else { switch (1 << power) { case MMC_VDD_165_195: pwr = SDHCI_POWER_180; break; case MMC_VDD_29_30: case MMC_VDD_30_31: pwr = SDHCI_POWER_300; break; case MMC_VDD_32_33: case MMC_VDD_33_34: pwr = SDHCI_POWER_330; break; default: BUG(); } } if (host->pwr == pwr) return; host->pwr = pwr; if (pwr == 0) { sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); return; } /* * Spec says that we should clear the power reg before setting * a new value. Some controllers don't seem to like this though. */ if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE)) sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); /* * At least the Marvell CaFe chip gets confused if we set the voltage * and set turn on power at the same time, so set the voltage first. */ if ((host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)) sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); pwr |= SDHCI_POWER_ON; sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); /* * Some controllers need an extra 10ms delay of 10ms before they * can apply clock after applying power */ if ((host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)) mdelay(10); } /*****************************************************************************\ * * * MMC callbacks * * * \*****************************************************************************/ static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host; bool present; unsigned long flags; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); WARN_ON(host->mrq != NULL); #ifndef SDHCI_USE_LEDS_CLASS sdhci_activate_led(host); #endif host->mrq = mrq; /* If polling, assume that the card is always present. */ if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) present = true; else present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT; if (!present || host->flags & SDHCI_DEVICE_DEAD) { host->mrq->cmd->error = -ENOMEDIUM; tasklet_schedule(&host->finish_tasklet); } else sdhci_send_command(host, mrq->cmd); mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host; unsigned long flags; u8 ctrl; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) goto out; /* * Reset the chip on each power off. * Should clear out any weird states. */ if (ios->power_mode == MMC_POWER_OFF) { sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); sdhci_reinit(host); } sdhci_set_clock(host, ios->clock); if (ios->power_mode == MMC_POWER_OFF) sdhci_set_power(host, -1); else sdhci_set_power(host, ios->vdd); ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); if (ios->bus_width == MMC_BUS_WIDTH_4) ctrl |= SDHCI_CTRL_4BITBUS; else ctrl &= ~SDHCI_CTRL_4BITBUS; if (ios->timing == MMC_TIMING_SD_HS) ctrl |= SDHCI_CTRL_HISPD; else ctrl &= ~SDHCI_CTRL_HISPD; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* * Some (ENE) controllers go apeshit on some ios operation, * signalling timeout and CRC errors even on CMD0. Resetting * it on each ios seems to solve the problem. */ if(host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS) sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); out: mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static int sdhci_get_ro(struct mmc_host *mmc) { struct sdhci_host *host; unsigned long flags; int present; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) present = 0; else present = sdhci_readl(host, SDHCI_PRESENT_STATE); spin_unlock_irqrestore(&host->lock, flags); if (host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT) return !!(present & SDHCI_WRITE_PROTECT); return !(present & SDHCI_WRITE_PROTECT); } static void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct sdhci_host *host; unsigned long flags; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) goto out; if (enable) sdhci_unmask_irqs(host, SDHCI_INT_CARD_INT); else sdhci_mask_irqs(host, SDHCI_INT_CARD_INT); out: mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static const struct mmc_host_ops sdhci_ops = { .request = sdhci_request, .set_ios = sdhci_set_ios, .get_ro = sdhci_get_ro, .enable_sdio_irq = sdhci_enable_sdio_irq, }; /*****************************************************************************\ * * * Tasklets * * * \*****************************************************************************/ static void sdhci_tasklet_card(unsigned long param) { struct sdhci_host *host; unsigned long flags; host = (struct sdhci_host*)param; spin_lock_irqsave(&host->lock, flags); if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT)) { if (host->mrq) { printk(KERN_ERR "%s: Card removed during transfer!\n", mmc_hostname(host->mmc)); printk(KERN_ERR "%s: Resetting controller.\n", mmc_hostname(host->mmc)); sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); host->mrq->cmd->error = -ENOMEDIUM; tasklet_schedule(&host->finish_tasklet); } } spin_unlock_irqrestore(&host->lock, flags); mmc_detect_change(host->mmc, msecs_to_jiffies(200)); } static void sdhci_tasklet_finish(unsigned long param) { struct sdhci_host *host; unsigned long flags; struct mmc_request *mrq; host = (struct sdhci_host*)param; spin_lock_irqsave(&host->lock, flags); del_timer(&host->timer); mrq = host->mrq; /* * The controller needs a reset of internal state machines * upon error conditions. */ if (!(host->flags & SDHCI_DEVICE_DEAD) && (mrq->cmd->error || (mrq->data && (mrq->data->error || (mrq->data->stop && mrq->data->stop->error))) || (host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { /* Some controllers need this kick or reset won't work here */ if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET) { unsigned int clock; /* This is to force an update */ clock = host->clock; host->clock = 0; sdhci_set_clock(host, clock); } /* Spec says we should do both at the same time, but Ricoh controllers do not like that. */ sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); } host->mrq = NULL; host->cmd = NULL; host->data = NULL; #ifndef SDHCI_USE_LEDS_CLASS sdhci_deactivate_led(host); #endif mmiowb(); spin_unlock_irqrestore(&host->lock, flags); mmc_request_done(host->mmc, mrq); } static void sdhci_timeout_timer(unsigned long data) { struct sdhci_host *host; unsigned long flags; host = (struct sdhci_host*)data; spin_lock_irqsave(&host->lock, flags); if (host->mrq) { printk(KERN_ERR "%s: Timeout waiting for hardware " "interrupt.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); if (host->data) { host->data->error = -ETIMEDOUT; sdhci_finish_data(host); } else { if (host->cmd) host->cmd->error = -ETIMEDOUT; else host->mrq->cmd->error = -ETIMEDOUT; tasklet_schedule(&host->finish_tasklet); } } mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } /*****************************************************************************\ * * * Interrupt handling * * * \*****************************************************************************/ static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask) { BUG_ON(intmask == 0); if (!host->cmd) { printk(KERN_ERR "%s: Got command interrupt 0x%08x even " "though no command operation was in progress.\n", mmc_hostname(host->mmc), (unsigned)intmask); sdhci_dumpregs(host); return; } if (intmask & SDHCI_INT_TIMEOUT) host->cmd->error = -ETIMEDOUT; else if (intmask & (SDHCI_INT_CRC | SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) host->cmd->error = -EILSEQ; if (host->cmd->error) { tasklet_schedule(&host->finish_tasklet); return; } /* * The host can send and interrupt when the busy state has * ended, allowing us to wait without wasting CPU cycles. * Unfortunately this is overloaded on the "data complete" * interrupt, so we need to take some care when handling * it. * * Note: The 1.0 specification is a bit ambiguous about this * feature so there might be some problems with older * controllers. */ if (host->cmd->flags & MMC_RSP_BUSY) { if (host->cmd->data) DBG("Cannot wait for busy signal when also " "doing a data transfer"); else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ)) return; /* The controller does not support the end-of-busy IRQ, * fall through and take the SDHCI_INT_RESPONSE */ } if (intmask & SDHCI_INT_RESPONSE) sdhci_finish_command(host); } #ifdef DEBUG static void sdhci_show_adma_error(struct sdhci_host *host) { const char *name = mmc_hostname(host->mmc); u8 *desc = host->adma_desc; __le32 *dma; __le16 *len; u8 attr; sdhci_dumpregs(host); while (true) { dma = (__le32 *)(desc + 4); len = (__le16 *)(desc + 2); attr = *desc; DBG("%s: %p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n", name, desc, le32_to_cpu(*dma), le16_to_cpu(*len), attr); desc += 8; if (attr & 2) break; } } #else static void sdhci_show_adma_error(struct sdhci_host *host) { } #endif static void sdhci_data_irq(struct sdhci_host *host, u32 intmask) { BUG_ON(intmask == 0); if (!host->data) { /* * The "data complete" interrupt is also used to * indicate that a busy state has ended. See comment * above in sdhci_cmd_irq(). */ if (host->cmd && (host->cmd->flags & MMC_RSP_BUSY)) { if (intmask & SDHCI_INT_DATA_END) { sdhci_finish_command(host); return; } } printk(KERN_ERR "%s: Got data interrupt 0x%08x even " "though no data operation was in progress.\n", mmc_hostname(host->mmc), (unsigned)intmask); sdhci_dumpregs(host); return; } if (intmask & SDHCI_INT_DATA_TIMEOUT) host->data->error = -ETIMEDOUT; else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) host->data->error = -EILSEQ; else if (intmask & SDHCI_INT_ADMA_ERROR) { printk(KERN_ERR "%s: ADMA error\n", mmc_hostname(host->mmc)); sdhci_show_adma_error(host); host->data->error = -EIO; } if (host->data->error) sdhci_finish_data(host); else { if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) sdhci_transfer_pio(host); /* * We currently don't do anything fancy with DMA * boundaries, but as we can't disable the feature * we need to at least restart the transfer. */ if (intmask & SDHCI_INT_DMA_END) sdhci_writel(host, sdhci_readl(host, SDHCI_DMA_ADDRESS), SDHCI_DMA_ADDRESS); if (intmask & SDHCI_INT_DATA_END) { if (host->cmd) { /* * Data managed to finish before the * command completed. Make sure we do * things in the proper order. */ host->data_early = 1; } else { sdhci_finish_data(host); } } } } static irqreturn_t sdhci_irq(int irq, void *dev_id) { irqreturn_t result; struct sdhci_host* host = dev_id; u32 intmask; int cardint = 0; spin_lock(&host->lock); intmask = sdhci_readl(host, SDHCI_INT_STATUS); if (!intmask || intmask == 0xffffffff) { result = IRQ_NONE; goto out; } DBG("*** %s got interrupt: 0x%08x\n", mmc_hostname(host->mmc), intmask); if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS); tasklet_schedule(&host->card_tasklet); } intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); if (intmask & SDHCI_INT_CMD_MASK) { sdhci_writel(host, intmask & SDHCI_INT_CMD_MASK, SDHCI_INT_STATUS); sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK); } if (intmask & SDHCI_INT_DATA_MASK) { sdhci_writel(host, intmask & SDHCI_INT_DATA_MASK, SDHCI_INT_STATUS); sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK); } intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK); intmask &= ~SDHCI_INT_ERROR; if (intmask & SDHCI_INT_BUS_POWER) { printk(KERN_ERR "%s: Card is consuming too much power!\n", mmc_hostname(host->mmc)); sdhci_writel(host, SDHCI_INT_BUS_POWER, SDHCI_INT_STATUS); } intmask &= ~SDHCI_INT_BUS_POWER; if (intmask & SDHCI_INT_CARD_INT) cardint = 1; intmask &= ~SDHCI_INT_CARD_INT; if (intmask) { printk(KERN_ERR "%s: Unexpected interrupt 0x%08x.\n", mmc_hostname(host->mmc), intmask); sdhci_dumpregs(host); sdhci_writel(host, intmask, SDHCI_INT_STATUS); } result = IRQ_HANDLED; mmiowb(); out: spin_unlock(&host->lock); /* * We have to delay this as it calls back into the driver. */ if (cardint) mmc_signal_sdio_irq(host->mmc); return result; } /*****************************************************************************\ * * * Suspend/resume * * * \*****************************************************************************/ #ifdef CONFIG_PM int sdhci_suspend_host(struct sdhci_host *host, pm_message_t state) { int ret; sdhci_disable_card_detection(host); ret = mmc_suspend_host(host->mmc, state); if (ret) return ret; free_irq(host->irq, host); return 0; } EXPORT_SYMBOL_GPL(sdhci_suspend_host); int sdhci_resume_host(struct sdhci_host *host) { int ret; if (host->flags & SDHCI_USE_DMA) { if (host->ops->enable_dma) host->ops->enable_dma(host); } ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED, mmc_hostname(host->mmc), host); if (ret) return ret; sdhci_init(host); mmiowb(); ret = mmc_resume_host(host->mmc); if (ret) return ret; sdhci_enable_card_detection(host); return 0; } EXPORT_SYMBOL_GPL(sdhci_resume_host); #endif /* CONFIG_PM */ /*****************************************************************************\ * * * Device allocation/registration * * * \*****************************************************************************/ struct sdhci_host *sdhci_alloc_host(struct device *dev, size_t priv_size) { struct mmc_host *mmc; struct sdhci_host *host; WARN_ON(dev == NULL); mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev); if (!mmc) return ERR_PTR(-ENOMEM); host = mmc_priv(mmc); host->mmc = mmc; return host; } EXPORT_SYMBOL_GPL(sdhci_alloc_host); int sdhci_add_host(struct sdhci_host *host) { struct mmc_host *mmc; unsigned int caps; int ret; WARN_ON(host == NULL); if (host == NULL) return -EINVAL; mmc = host->mmc; if (debug_quirks) host->quirks = debug_quirks; sdhci_reset(host, SDHCI_RESET_ALL); host->version = sdhci_readw(host, SDHCI_HOST_VERSION); host->version = (host->version & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT; if (host->version > SDHCI_SPEC_200) { printk(KERN_ERR "%s: Unknown controller version (%d). " "You may experience problems.\n", mmc_hostname(mmc), host->version); } caps = sdhci_readl(host, SDHCI_CAPABILITIES); if (host->quirks & SDHCI_QUIRK_FORCE_DMA) host->flags |= SDHCI_USE_DMA; else if (!(caps & SDHCI_CAN_DO_DMA)) DBG("Controller doesn't have DMA capability\n"); else host->flags |= SDHCI_USE_DMA; if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) && (host->flags & SDHCI_USE_DMA)) { DBG("Disabling DMA as it is marked broken\n"); host->flags &= ~SDHCI_USE_DMA; } if (host->flags & SDHCI_USE_DMA) { if ((host->version >= SDHCI_SPEC_200) && (caps & SDHCI_CAN_DO_ADMA2)) host->flags |= SDHCI_USE_ADMA; } if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) && (host->flags & SDHCI_USE_ADMA)) { DBG("Disabling ADMA as it is marked broken\n"); host->flags &= ~SDHCI_USE_ADMA; } if (host->flags & SDHCI_USE_DMA) { if (host->ops->enable_dma) { if (host->ops->enable_dma(host)) { printk(KERN_WARNING "%s: No suitable DMA " "available. Falling back to PIO.\n", mmc_hostname(mmc)); host->flags &= ~(SDHCI_USE_DMA | SDHCI_USE_ADMA); } } } if (host->flags & SDHCI_USE_ADMA) { /* * We need to allocate descriptors for all sg entries * (128) and potentially one alignment transfer for * each of those entries. */ host->adma_desc = kmalloc((128 * 2 + 1) * 4, GFP_KERNEL); host->align_buffer = kmalloc(128 * 4, GFP_KERNEL); if (!host->adma_desc || !host->align_buffer) { kfree(host->adma_desc); kfree(host->align_buffer); printk(KERN_WARNING "%s: Unable to allocate ADMA " "buffers. Falling back to standard DMA.\n", mmc_hostname(mmc)); host->flags &= ~SDHCI_USE_ADMA; } } /* * If we use DMA, then it's up to the caller to set the DMA * mask, but PIO does not need the hw shim so we set a new * mask here in that case. */ if (!(host->flags & SDHCI_USE_DMA)) { host->dma_mask = DMA_BIT_MASK(64); mmc_dev(host->mmc)->dma_mask = &host->dma_mask; } host->max_clk = (caps & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; host->max_clk *= 1000000; if (host->max_clk == 0) { if (!host->ops->get_max_clock) { printk(KERN_ERR "%s: Hardware doesn't specify base clock " "frequency.\n", mmc_hostname(mmc)); return -ENODEV; } host->max_clk = host->ops->get_max_clock(host); } host->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT; if (host->timeout_clk == 0) { if (!host->ops->get_timeout_clock) { printk(KERN_ERR "%s: Hardware doesn't specify timeout clock " "frequency.\n", mmc_hostname(mmc)); return -ENODEV; } host->timeout_clk = host->ops->get_timeout_clock(host); } if (caps & SDHCI_TIMEOUT_CLK_UNIT) host->timeout_clk *= 1000; /* * Set host parameters. */ mmc->ops = &sdhci_ops; mmc->f_min = host->max_clk / 256; mmc->f_max = host->max_clk; mmc->caps = MMC_CAP_SDIO_IRQ; if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA)) mmc->caps |= MMC_CAP_4_BIT_DATA; if (caps & SDHCI_CAN_DO_HISPD) mmc->caps |= MMC_CAP_SD_HIGHSPEED; if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) mmc->caps |= MMC_CAP_NEEDS_POLL; mmc->ocr_avail = 0; if (caps & SDHCI_CAN_VDD_330) mmc->ocr_avail |= MMC_VDD_32_33|MMC_VDD_33_34; if (caps & SDHCI_CAN_VDD_300) mmc->ocr_avail |= MMC_VDD_29_30|MMC_VDD_30_31; if (caps & SDHCI_CAN_VDD_180) mmc->ocr_avail |= MMC_VDD_165_195; if (mmc->ocr_avail == 0) { printk(KERN_ERR "%s: Hardware doesn't report any " "support voltages.\n", mmc_hostname(mmc)); return -ENODEV; } spin_lock_init(&host->lock); /* * Maximum number of segments. Depends on if the hardware * can do scatter/gather or not. */ if (host->flags & SDHCI_USE_ADMA) mmc->max_hw_segs = 128; else if (host->flags & SDHCI_USE_DMA) mmc->max_hw_segs = 1; else /* PIO */ mmc->max_hw_segs = 128; mmc->max_phys_segs = 128; /* * Maximum number of sectors in one transfer. Limited by DMA boundary * size (512KiB). */ mmc->max_req_size = 524288; /* * Maximum segment size. Could be one segment with the maximum number * of bytes. When doing hardware scatter/gather, each entry cannot * be larger than 64 KiB though. */ if (host->flags & SDHCI_USE_ADMA) mmc->max_seg_size = 65536; else mmc->max_seg_size = mmc->max_req_size; /* * Maximum block size. This varies from controller to controller and * is specified in the capabilities register. */ if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) { mmc->max_blk_size = 2; } else { mmc->max_blk_size = (caps & SDHCI_MAX_BLOCK_MASK) >> SDHCI_MAX_BLOCK_SHIFT; if (mmc->max_blk_size >= 3) { printk(KERN_WARNING "%s: Invalid maximum block size, " "assuming 512 bytes\n", mmc_hostname(mmc)); mmc->max_blk_size = 0; } } mmc->max_blk_size = 512 << mmc->max_blk_size; /* * Maximum block count. */ mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535; /* * Init tasklets. */ tasklet_init(&host->card_tasklet, sdhci_tasklet_card, (unsigned long)host); tasklet_init(&host->finish_tasklet, sdhci_tasklet_finish, (unsigned long)host); setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host); ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED, mmc_hostname(mmc), host); if (ret) goto untasklet; sdhci_init(host); #ifdef CONFIG_MMC_DEBUG sdhci_dumpregs(host); #endif #ifdef SDHCI_USE_LEDS_CLASS snprintf(host->led_name, sizeof(host->led_name), "%s::", mmc_hostname(mmc)); host->led.name = host->led_name; host->led.brightness = LED_OFF; host->led.default_trigger = mmc_hostname(mmc); host->led.brightness_set = sdhci_led_control; ret = led_classdev_register(mmc_dev(mmc), &host->led); if (ret) goto reset; #endif mmiowb(); mmc_add_host(mmc); printk(KERN_INFO "%s: SDHCI controller on %s [%s] using %s%s\n", mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)), (host->flags & SDHCI_USE_ADMA)?"A":"", (host->flags & SDHCI_USE_DMA)?"DMA":"PIO"); sdhci_enable_card_detection(host); return 0; #ifdef SDHCI_USE_LEDS_CLASS reset: sdhci_reset(host, SDHCI_RESET_ALL); free_irq(host->irq, host); #endif untasklet: tasklet_kill(&host->card_tasklet); tasklet_kill(&host->finish_tasklet); return ret; } EXPORT_SYMBOL_GPL(sdhci_add_host); void sdhci_remove_host(struct sdhci_host *host, int dead) { unsigned long flags; if (dead) { spin_lock_irqsave(&host->lock, flags); host->flags |= SDHCI_DEVICE_DEAD; if (host->mrq) { printk(KERN_ERR "%s: Controller removed during " " transfer!\n", mmc_hostname(host->mmc)); host->mrq->cmd->error = -ENOMEDIUM; tasklet_schedule(&host->finish_tasklet); } spin_unlock_irqrestore(&host->lock, flags); } sdhci_disable_card_detection(host); mmc_remove_host(host->mmc); #ifdef SDHCI_USE_LEDS_CLASS led_classdev_unregister(&host->led); #endif if (!dead) sdhci_reset(host, SDHCI_RESET_ALL); free_irq(host->irq, host); del_timer_sync(&host->timer); tasklet_kill(&host->card_tasklet); tasklet_kill(&host->finish_tasklet); kfree(host->adma_desc); kfree(host->align_buffer); host->adma_desc = NULL; host->align_buffer = NULL; } EXPORT_SYMBOL_GPL(sdhci_remove_host); void sdhci_free_host(struct sdhci_host *host) { mmc_free_host(host->mmc); } EXPORT_SYMBOL_GPL(sdhci_free_host); /*****************************************************************************\ * * * Driver init/exit * * * \*****************************************************************************/ static int __init sdhci_drv_init(void) { printk(KERN_INFO DRIVER_NAME ": Secure Digital Host Controller Interface driver\n"); printk(KERN_INFO DRIVER_NAME ": Copyright(c) Pierre Ossman\n"); return 0; } static void __exit sdhci_drv_exit(void) { } module_init(sdhci_drv_init); module_exit(sdhci_drv_exit); module_param(debug_quirks, uint, 0444); MODULE_AUTHOR("Pierre Ossman "); MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver"); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");