/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_trans.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_error.h" #include "xfs_rw.h" #include "xfs_iomap.h" #include "xfs_vnodeops.h" #include "xfs_trace.h" #include "xfs_bmap.h" #include #include #include #include /* * Types of I/O for bmap clustering and I/O completion tracking. */ enum { IO_READ, /* mapping for a read */ IO_DELAY, /* mapping covers delalloc region */ IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */ IO_NEW /* just allocated */ }; /* * Prime number of hash buckets since address is used as the key. */ #define NVSYNC 37 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC]) static wait_queue_head_t xfs_ioend_wq[NVSYNC]; void __init xfs_ioend_init(void) { int i; for (i = 0; i < NVSYNC; i++) init_waitqueue_head(&xfs_ioend_wq[i]); } void xfs_ioend_wait( xfs_inode_t *ip) { wait_queue_head_t *wq = to_ioend_wq(ip); wait_event(*wq, (atomic_read(&ip->i_iocount) == 0)); } STATIC void xfs_ioend_wake( xfs_inode_t *ip) { if (atomic_dec_and_test(&ip->i_iocount)) wake_up(to_ioend_wq(ip)); } void xfs_count_page_state( struct page *page, int *delalloc, int *unmapped, int *unwritten) { struct buffer_head *bh, *head; *delalloc = *unmapped = *unwritten = 0; bh = head = page_buffers(page); do { if (buffer_uptodate(bh) && !buffer_mapped(bh)) (*unmapped) = 1; else if (buffer_unwritten(bh)) (*unwritten) = 1; else if (buffer_delay(bh)) (*delalloc) = 1; } while ((bh = bh->b_this_page) != head); } STATIC struct block_device * xfs_find_bdev_for_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; if (XFS_IS_REALTIME_INODE(ip)) return mp->m_rtdev_targp->bt_bdev; else return mp->m_ddev_targp->bt_bdev; } /* * We're now finished for good with this ioend structure. * Update the page state via the associated buffer_heads, * release holds on the inode and bio, and finally free * up memory. Do not use the ioend after this. */ STATIC void xfs_destroy_ioend( xfs_ioend_t *ioend) { struct buffer_head *bh, *next; struct xfs_inode *ip = XFS_I(ioend->io_inode); for (bh = ioend->io_buffer_head; bh; bh = next) { next = bh->b_private; bh->b_end_io(bh, !ioend->io_error); } /* * Volume managers supporting multiple paths can send back ENODEV * when the final path disappears. In this case continuing to fill * the page cache with dirty data which cannot be written out is * evil, so prevent that. */ if (unlikely(ioend->io_error == -ENODEV)) { xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ, __FILE__, __LINE__); } xfs_ioend_wake(ip); mempool_free(ioend, xfs_ioend_pool); } /* * If the end of the current ioend is beyond the current EOF, * return the new EOF value, otherwise zero. */ STATIC xfs_fsize_t xfs_ioend_new_eof( xfs_ioend_t *ioend) { xfs_inode_t *ip = XFS_I(ioend->io_inode); xfs_fsize_t isize; xfs_fsize_t bsize; bsize = ioend->io_offset + ioend->io_size; isize = MAX(ip->i_size, ip->i_new_size); isize = MIN(isize, bsize); return isize > ip->i_d.di_size ? isize : 0; } /* * Update on-disk file size now that data has been written to disk. The * current in-memory file size is i_size. If a write is beyond eof i_new_size * will be the intended file size until i_size is updated. If this write does * not extend all the way to the valid file size then restrict this update to * the end of the write. * * This function does not block as blocking on the inode lock in IO completion * can lead to IO completion order dependency deadlocks.. If it can't get the * inode ilock it will return EAGAIN. Callers must handle this. */ STATIC int xfs_setfilesize( xfs_ioend_t *ioend) { xfs_inode_t *ip = XFS_I(ioend->io_inode); xfs_fsize_t isize; ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG); ASSERT(ioend->io_type != IO_READ); if (unlikely(ioend->io_error)) return 0; if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) return EAGAIN; isize = xfs_ioend_new_eof(ioend); if (isize) { ip->i_d.di_size = isize; xfs_mark_inode_dirty(ip); } xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; } /* * Schedule IO completion handling on a xfsdatad if this was * the final hold on this ioend. If we are asked to wait, * flush the workqueue. */ STATIC void xfs_finish_ioend( xfs_ioend_t *ioend, int wait) { if (atomic_dec_and_test(&ioend->io_remaining)) { struct workqueue_struct *wq; wq = (ioend->io_type == IO_UNWRITTEN) ? xfsconvertd_workqueue : xfsdatad_workqueue; queue_work(wq, &ioend->io_work); if (wait) flush_workqueue(wq); } } /* * IO write completion. */ STATIC void xfs_end_io( struct work_struct *work) { xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); struct xfs_inode *ip = XFS_I(ioend->io_inode); int error = 0; /* * For unwritten extents we need to issue transactions to convert a * range to normal written extens after the data I/O has finished. */ if (ioend->io_type == IO_UNWRITTEN && likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) { error = xfs_iomap_write_unwritten(ip, ioend->io_offset, ioend->io_size); if (error) ioend->io_error = error; } /* * We might have to update the on-disk file size after extending * writes. */ if (ioend->io_type != IO_READ) { error = xfs_setfilesize(ioend); ASSERT(!error || error == EAGAIN); } /* * If we didn't complete processing of the ioend, requeue it to the * tail of the workqueue for another attempt later. Otherwise destroy * it. */ if (error == EAGAIN) { atomic_inc(&ioend->io_remaining); xfs_finish_ioend(ioend, 0); /* ensure we don't spin on blocked ioends */ delay(1); } else xfs_destroy_ioend(ioend); } /* * Allocate and initialise an IO completion structure. * We need to track unwritten extent write completion here initially. * We'll need to extend this for updating the ondisk inode size later * (vs. incore size). */ STATIC xfs_ioend_t * xfs_alloc_ioend( struct inode *inode, unsigned int type) { xfs_ioend_t *ioend; ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); /* * Set the count to 1 initially, which will prevent an I/O * completion callback from happening before we have started * all the I/O from calling the completion routine too early. */ atomic_set(&ioend->io_remaining, 1); ioend->io_error = 0; ioend->io_list = NULL; ioend->io_type = type; ioend->io_inode = inode; ioend->io_buffer_head = NULL; ioend->io_buffer_tail = NULL; atomic_inc(&XFS_I(ioend->io_inode)->i_iocount); ioend->io_offset = 0; ioend->io_size = 0; INIT_WORK(&ioend->io_work, xfs_end_io); return ioend; } STATIC int xfs_map_blocks( struct inode *inode, loff_t offset, ssize_t count, struct xfs_bmbt_irec *imap, int flags) { int nmaps = 1; int new = 0; return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new); } STATIC int xfs_imap_valid( struct inode *inode, struct xfs_bmbt_irec *imap, xfs_off_t offset) { offset >>= inode->i_blkbits; return offset >= imap->br_startoff && offset < imap->br_startoff + imap->br_blockcount; } /* * BIO completion handler for buffered IO. */ STATIC void xfs_end_bio( struct bio *bio, int error) { xfs_ioend_t *ioend = bio->bi_private; ASSERT(atomic_read(&bio->bi_cnt) >= 1); ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; /* Toss bio and pass work off to an xfsdatad thread */ bio->bi_private = NULL; bio->bi_end_io = NULL; bio_put(bio); xfs_finish_ioend(ioend, 0); } STATIC void xfs_submit_ioend_bio( struct writeback_control *wbc, xfs_ioend_t *ioend, struct bio *bio) { atomic_inc(&ioend->io_remaining); bio->bi_private = ioend; bio->bi_end_io = xfs_end_bio; /* * If the I/O is beyond EOF we mark the inode dirty immediately * but don't update the inode size until I/O completion. */ if (xfs_ioend_new_eof(ioend)) xfs_mark_inode_dirty(XFS_I(ioend->io_inode)); submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC_PLUG : WRITE, bio); ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP)); bio_put(bio); } STATIC struct bio * xfs_alloc_ioend_bio( struct buffer_head *bh) { struct bio *bio; int nvecs = bio_get_nr_vecs(bh->b_bdev); do { bio = bio_alloc(GFP_NOIO, nvecs); nvecs >>= 1; } while (!bio); ASSERT(bio->bi_private == NULL); bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); bio->bi_bdev = bh->b_bdev; bio_get(bio); return bio; } STATIC void xfs_start_buffer_writeback( struct buffer_head *bh) { ASSERT(buffer_mapped(bh)); ASSERT(buffer_locked(bh)); ASSERT(!buffer_delay(bh)); ASSERT(!buffer_unwritten(bh)); mark_buffer_async_write(bh); set_buffer_uptodate(bh); clear_buffer_dirty(bh); } STATIC void xfs_start_page_writeback( struct page *page, int clear_dirty, int buffers) { ASSERT(PageLocked(page)); ASSERT(!PageWriteback(page)); if (clear_dirty) clear_page_dirty_for_io(page); set_page_writeback(page); unlock_page(page); /* If no buffers on the page are to be written, finish it here */ if (!buffers) end_page_writeback(page); } static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) { return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); } /* * Submit all of the bios for all of the ioends we have saved up, covering the * initial writepage page and also any probed pages. * * Because we may have multiple ioends spanning a page, we need to start * writeback on all the buffers before we submit them for I/O. If we mark the * buffers as we got, then we can end up with a page that only has buffers * marked async write and I/O complete on can occur before we mark the other * buffers async write. * * The end result of this is that we trip a bug in end_page_writeback() because * we call it twice for the one page as the code in end_buffer_async_write() * assumes that all buffers on the page are started at the same time. * * The fix is two passes across the ioend list - one to start writeback on the * buffer_heads, and then submit them for I/O on the second pass. */ STATIC void xfs_submit_ioend( struct writeback_control *wbc, xfs_ioend_t *ioend) { xfs_ioend_t *head = ioend; xfs_ioend_t *next; struct buffer_head *bh; struct bio *bio; sector_t lastblock = 0; /* Pass 1 - start writeback */ do { next = ioend->io_list; for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { xfs_start_buffer_writeback(bh); } } while ((ioend = next) != NULL); /* Pass 2 - submit I/O */ ioend = head; do { next = ioend->io_list; bio = NULL; for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { if (!bio) { retry: bio = xfs_alloc_ioend_bio(bh); } else if (bh->b_blocknr != lastblock + 1) { xfs_submit_ioend_bio(wbc, ioend, bio); goto retry; } if (bio_add_buffer(bio, bh) != bh->b_size) { xfs_submit_ioend_bio(wbc, ioend, bio); goto retry; } lastblock = bh->b_blocknr; } if (bio) xfs_submit_ioend_bio(wbc, ioend, bio); xfs_finish_ioend(ioend, 0); } while ((ioend = next) != NULL); } /* * Cancel submission of all buffer_heads so far in this endio. * Toss the endio too. Only ever called for the initial page * in a writepage request, so only ever one page. */ STATIC void xfs_cancel_ioend( xfs_ioend_t *ioend) { xfs_ioend_t *next; struct buffer_head *bh, *next_bh; do { next = ioend->io_list; bh = ioend->io_buffer_head; do { next_bh = bh->b_private; clear_buffer_async_write(bh); unlock_buffer(bh); } while ((bh = next_bh) != NULL); xfs_ioend_wake(XFS_I(ioend->io_inode)); mempool_free(ioend, xfs_ioend_pool); } while ((ioend = next) != NULL); } /* * Test to see if we've been building up a completion structure for * earlier buffers -- if so, we try to append to this ioend if we * can, otherwise we finish off any current ioend and start another. * Return true if we've finished the given ioend. */ STATIC void xfs_add_to_ioend( struct inode *inode, struct buffer_head *bh, xfs_off_t offset, unsigned int type, xfs_ioend_t **result, int need_ioend) { xfs_ioend_t *ioend = *result; if (!ioend || need_ioend || type != ioend->io_type) { xfs_ioend_t *previous = *result; ioend = xfs_alloc_ioend(inode, type); ioend->io_offset = offset; ioend->io_buffer_head = bh; ioend->io_buffer_tail = bh; if (previous) previous->io_list = ioend; *result = ioend; } else { ioend->io_buffer_tail->b_private = bh; ioend->io_buffer_tail = bh; } bh->b_private = NULL; ioend->io_size += bh->b_size; } STATIC void xfs_map_buffer( struct inode *inode, struct buffer_head *bh, struct xfs_bmbt_irec *imap, xfs_off_t offset) { sector_t bn; struct xfs_mount *m = XFS_I(inode)->i_mount; xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + ((offset - iomap_offset) >> inode->i_blkbits); ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); bh->b_blocknr = bn; set_buffer_mapped(bh); } STATIC void xfs_map_at_offset( struct inode *inode, struct buffer_head *bh, struct xfs_bmbt_irec *imap, xfs_off_t offset) { ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); lock_buffer(bh); xfs_map_buffer(inode, bh, imap, offset); bh->b_bdev = xfs_find_bdev_for_inode(inode); set_buffer_mapped(bh); clear_buffer_delay(bh); clear_buffer_unwritten(bh); } /* * Look for a page at index that is suitable for clustering. */ STATIC unsigned int xfs_probe_page( struct page *page, unsigned int pg_offset, int mapped) { int ret = 0; if (PageWriteback(page)) return 0; if (page->mapping && PageDirty(page)) { if (page_has_buffers(page)) { struct buffer_head *bh, *head; bh = head = page_buffers(page); do { if (!buffer_uptodate(bh)) break; if (mapped != buffer_mapped(bh)) break; ret += bh->b_size; if (ret >= pg_offset) break; } while ((bh = bh->b_this_page) != head); } else ret = mapped ? 0 : PAGE_CACHE_SIZE; } return ret; } STATIC size_t xfs_probe_cluster( struct inode *inode, struct page *startpage, struct buffer_head *bh, struct buffer_head *head, int mapped) { struct pagevec pvec; pgoff_t tindex, tlast, tloff; size_t total = 0; int done = 0, i; /* First sum forwards in this page */ do { if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh))) return total; total += bh->b_size; } while ((bh = bh->b_this_page) != head); /* if we reached the end of the page, sum forwards in following pages */ tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; tindex = startpage->index + 1; /* Prune this back to avoid pathological behavior */ tloff = min(tlast, startpage->index + 64); pagevec_init(&pvec, 0); while (!done && tindex <= tloff) { unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) break; for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; size_t pg_offset, pg_len = 0; if (tindex == tlast) { pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1); if (!pg_offset) { done = 1; break; } } else pg_offset = PAGE_CACHE_SIZE; if (page->index == tindex && trylock_page(page)) { pg_len = xfs_probe_page(page, pg_offset, mapped); unlock_page(page); } if (!pg_len) { done = 1; break; } total += pg_len; tindex++; } pagevec_release(&pvec); cond_resched(); } return total; } /* * Test if a given page is suitable for writing as part of an unwritten * or delayed allocate extent. */ STATIC int xfs_is_delayed_page( struct page *page, unsigned int type) { if (PageWriteback(page)) return 0; if (page->mapping && page_has_buffers(page)) { struct buffer_head *bh, *head; int acceptable = 0; bh = head = page_buffers(page); do { if (buffer_unwritten(bh)) acceptable = (type == IO_UNWRITTEN); else if (buffer_delay(bh)) acceptable = (type == IO_DELAY); else if (buffer_dirty(bh) && buffer_mapped(bh)) acceptable = (type == IO_NEW); else break; } while ((bh = bh->b_this_page) != head); if (acceptable) return 1; } return 0; } /* * Allocate & map buffers for page given the extent map. Write it out. * except for the original page of a writepage, this is called on * delalloc/unwritten pages only, for the original page it is possible * that the page has no mapping at all. */ STATIC int xfs_convert_page( struct inode *inode, struct page *page, loff_t tindex, struct xfs_bmbt_irec *imap, xfs_ioend_t **ioendp, struct writeback_control *wbc, int startio, int all_bh) { struct buffer_head *bh, *head; xfs_off_t end_offset; unsigned long p_offset; unsigned int type; int len, page_dirty; int count = 0, done = 0, uptodate = 1; xfs_off_t offset = page_offset(page); if (page->index != tindex) goto fail; if (!trylock_page(page)) goto fail; if (PageWriteback(page)) goto fail_unlock_page; if (page->mapping != inode->i_mapping) goto fail_unlock_page; if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) goto fail_unlock_page; /* * page_dirty is initially a count of buffers on the page before * EOF and is decremented as we move each into a cleanable state. * * Derivation: * * End offset is the highest offset that this page should represent. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) * will evaluate non-zero and be less than PAGE_CACHE_SIZE and * hence give us the correct page_dirty count. On any other page, * it will be zero and in that case we need page_dirty to be the * count of buffers on the page. */ end_offset = min_t(unsigned long long, (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, i_size_read(inode)); len = 1 << inode->i_blkbits; p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), PAGE_CACHE_SIZE); p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; page_dirty = p_offset / len; bh = head = page_buffers(page); do { if (offset >= end_offset) break; if (!buffer_uptodate(bh)) uptodate = 0; if (!(PageUptodate(page) || buffer_uptodate(bh))) { done = 1; continue; } if (buffer_unwritten(bh) || buffer_delay(bh)) { if (buffer_unwritten(bh)) type = IO_UNWRITTEN; else type = IO_DELAY; if (!xfs_imap_valid(inode, imap, offset)) { done = 1; continue; } ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); xfs_map_at_offset(inode, bh, imap, offset); if (startio) { xfs_add_to_ioend(inode, bh, offset, type, ioendp, done); } else { set_buffer_dirty(bh); unlock_buffer(bh); mark_buffer_dirty(bh); } page_dirty--; count++; } else { type = IO_NEW; if (buffer_mapped(bh) && all_bh && startio) { lock_buffer(bh); xfs_add_to_ioend(inode, bh, offset, type, ioendp, done); count++; page_dirty--; } else { done = 1; } } } while (offset += len, (bh = bh->b_this_page) != head); if (uptodate && bh == head) SetPageUptodate(page); if (startio) { if (count) { wbc->nr_to_write--; if (wbc->nr_to_write <= 0) done = 1; } xfs_start_page_writeback(page, !page_dirty, count); } return done; fail_unlock_page: unlock_page(page); fail: return 1; } /* * Convert & write out a cluster of pages in the same extent as defined * by mp and following the start page. */ STATIC void xfs_cluster_write( struct inode *inode, pgoff_t tindex, struct xfs_bmbt_irec *imap, xfs_ioend_t **ioendp, struct writeback_control *wbc, int startio, int all_bh, pgoff_t tlast) { struct pagevec pvec; int done = 0, i; pagevec_init(&pvec, 0); while (!done && tindex <= tlast) { unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) break; for (i = 0; i < pagevec_count(&pvec); i++) { done = xfs_convert_page(inode, pvec.pages[i], tindex++, imap, ioendp, wbc, startio, all_bh); if (done) break; } pagevec_release(&pvec); cond_resched(); } } STATIC void xfs_vm_invalidatepage( struct page *page, unsigned long offset) { trace_xfs_invalidatepage(page->mapping->host, page, offset); block_invalidatepage(page, offset); } /* * If the page has delalloc buffers on it, we need to punch them out before we * invalidate the page. If we don't, we leave a stale delalloc mapping on the * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read * is done on that same region - the delalloc extent is returned when none is * supposed to be there. * * We prevent this by truncating away the delalloc regions on the page before * invalidating it. Because they are delalloc, we can do this without needing a * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this * truncation without a transaction as there is no space left for block * reservation (typically why we see a ENOSPC in writeback). * * This is not a performance critical path, so for now just do the punching a * buffer head at a time. */ STATIC void xfs_aops_discard_page( struct page *page) { struct inode *inode = page->mapping->host; struct xfs_inode *ip = XFS_I(inode); struct buffer_head *bh, *head; loff_t offset = page_offset(page); ssize_t len = 1 << inode->i_blkbits; if (!xfs_is_delayed_page(page, IO_DELAY)) goto out_invalidate; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) goto out_invalidate; xfs_fs_cmn_err(CE_ALERT, ip->i_mount, "page discard on page %p, inode 0x%llx, offset %llu.", page, ip->i_ino, offset); xfs_ilock(ip, XFS_ILOCK_EXCL); bh = head = page_buffers(page); do { int done; xfs_fileoff_t offset_fsb; xfs_bmbt_irec_t imap; int nimaps = 1; int error; xfs_fsblock_t firstblock; xfs_bmap_free_t flist; if (!buffer_delay(bh)) goto next_buffer; offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); /* * Map the range first and check that it is a delalloc extent * before trying to unmap the range. Otherwise we will be * trying to remove a real extent (which requires a * transaction) or a hole, which is probably a bad idea... */ error = xfs_bmapi(NULL, ip, offset_fsb, 1, XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL, NULL); if (error) { /* something screwed, just bail */ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_fs_cmn_err(CE_ALERT, ip->i_mount, "page discard failed delalloc mapping lookup."); } break; } if (!nimaps) { /* nothing there */ goto next_buffer; } if (imap.br_startblock != DELAYSTARTBLOCK) { /* been converted, ignore */ goto next_buffer; } WARN_ON(imap.br_blockcount == 0); /* * Note: while we initialise the firstblock/flist pair, they * should never be used because blocks should never be * allocated or freed for a delalloc extent and hence we need * don't cancel or finish them after the xfs_bunmapi() call. */ xfs_bmap_init(&flist, &firstblock); error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock, &flist, NULL, &done); ASSERT(!flist.xbf_count && !flist.xbf_first); if (error) { /* something screwed, just bail */ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_fs_cmn_err(CE_ALERT, ip->i_mount, "page discard unable to remove delalloc mapping."); } break; } next_buffer: offset += len; } while ((bh = bh->b_this_page) != head); xfs_iunlock(ip, XFS_ILOCK_EXCL); out_invalidate: xfs_vm_invalidatepage(page, 0); return; } /* * Calling this without startio set means we are being asked to make a dirty * page ready for freeing it's buffers. When called with startio set then * we are coming from writepage. * * When called with startio set it is important that we write the WHOLE * page if possible. * The bh->b_state's cannot know if any of the blocks or which block for * that matter are dirty due to mmap writes, and therefore bh uptodate is * only valid if the page itself isn't completely uptodate. Some layers * may clear the page dirty flag prior to calling write page, under the * assumption the entire page will be written out; by not writing out the * whole page the page can be reused before all valid dirty data is * written out. Note: in the case of a page that has been dirty'd by * mapwrite and but partially setup by block_prepare_write the * bh->b_states's will not agree and only ones setup by BPW/BCW will have * valid state, thus the whole page must be written out thing. */ STATIC int xfs_page_state_convert( struct inode *inode, struct page *page, struct writeback_control *wbc, int startio, int unmapped) /* also implies page uptodate */ { struct buffer_head *bh, *head; struct xfs_bmbt_irec imap; xfs_ioend_t *ioend = NULL, *iohead = NULL; loff_t offset; unsigned long p_offset = 0; unsigned int type; __uint64_t end_offset; pgoff_t end_index, last_index; ssize_t size, len; int flags, err, imap_valid = 0, uptodate = 1; int page_dirty, count = 0; int trylock = 0; int all_bh = unmapped; if (startio) { if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking) trylock |= BMAPI_TRYLOCK; } /* Is this page beyond the end of the file? */ offset = i_size_read(inode); end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { if ((page->index >= end_index + 1) || !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { if (startio) unlock_page(page); return 0; } } /* * page_dirty is initially a count of buffers on the page before * EOF and is decremented as we move each into a cleanable state. * * Derivation: * * End offset is the highest offset that this page should represent. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) * will evaluate non-zero and be less than PAGE_CACHE_SIZE and * hence give us the correct page_dirty count. On any other page, * it will be zero and in that case we need page_dirty to be the * count of buffers on the page. */ end_offset = min_t(unsigned long long, (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset); len = 1 << inode->i_blkbits; p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), PAGE_CACHE_SIZE); p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; page_dirty = p_offset / len; bh = head = page_buffers(page); offset = page_offset(page); flags = BMAPI_READ; type = IO_NEW; /* TODO: cleanup count and page_dirty */ do { if (offset >= end_offset) break; if (!buffer_uptodate(bh)) uptodate = 0; if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) { /* * the iomap is actually still valid, but the ioend * isn't. shouldn't happen too often. */ imap_valid = 0; continue; } if (imap_valid) imap_valid = xfs_imap_valid(inode, &imap, offset); /* * First case, map an unwritten extent and prepare for * extent state conversion transaction on completion. * * Second case, allocate space for a delalloc buffer. * We can return EAGAIN here in the release page case. * * Third case, an unmapped buffer was found, and we are * in a path where we need to write the whole page out. */ if (buffer_unwritten(bh) || buffer_delay(bh) || ((buffer_uptodate(bh) || PageUptodate(page)) && !buffer_mapped(bh) && (unmapped || startio))) { int new_ioend = 0; /* * Make sure we don't use a read-only iomap */ if (flags == BMAPI_READ) imap_valid = 0; if (buffer_unwritten(bh)) { type = IO_UNWRITTEN; flags = BMAPI_WRITE | BMAPI_IGNSTATE; } else if (buffer_delay(bh)) { type = IO_DELAY; flags = BMAPI_ALLOCATE | trylock; } else { type = IO_NEW; flags = BMAPI_WRITE | BMAPI_MMAP; } if (!imap_valid) { /* * if we didn't have a valid mapping then we * need to ensure that we put the new mapping * in a new ioend structure. This needs to be * done to ensure that the ioends correctly * reflect the block mappings at io completion * for unwritten extent conversion. */ new_ioend = 1; if (type == IO_NEW) { size = xfs_probe_cluster(inode, page, bh, head, 0); } else { size = len; } err = xfs_map_blocks(inode, offset, size, &imap, flags); if (err) goto error; imap_valid = xfs_imap_valid(inode, &imap, offset); } if (imap_valid) { xfs_map_at_offset(inode, bh, &imap, offset); if (startio) { xfs_add_to_ioend(inode, bh, offset, type, &ioend, new_ioend); } else { set_buffer_dirty(bh); unlock_buffer(bh); mark_buffer_dirty(bh); } page_dirty--; count++; } } else if (buffer_uptodate(bh) && startio) { /* * we got here because the buffer is already mapped. * That means it must already have extents allocated * underneath it. Map the extent by reading it. */ if (!imap_valid || flags != BMAPI_READ) { flags = BMAPI_READ; size = xfs_probe_cluster(inode, page, bh, head, 1); err = xfs_map_blocks(inode, offset, size, &imap, flags); if (err) goto error; imap_valid = xfs_imap_valid(inode, &imap, offset); } /* * We set the type to IO_NEW in case we are doing a * small write at EOF that is extending the file but * without needing an allocation. We need to update the * file size on I/O completion in this case so it is * the same case as having just allocated a new extent * that we are writing into for the first time. */ type = IO_NEW; if (trylock_buffer(bh)) { ASSERT(buffer_mapped(bh)); if (imap_valid) all_bh = 1; xfs_add_to_ioend(inode, bh, offset, type, &ioend, !imap_valid); page_dirty--; count++; } else { imap_valid = 0; } } else if ((buffer_uptodate(bh) || PageUptodate(page)) && (unmapped || startio)) { imap_valid = 0; } if (!iohead) iohead = ioend; } while (offset += len, ((bh = bh->b_this_page) != head)); if (uptodate && bh == head) SetPageUptodate(page); if (startio) xfs_start_page_writeback(page, 1, count); if (ioend && imap_valid) { xfs_off_t end_index; end_index = imap.br_startoff + imap.br_blockcount; /* to bytes */ end_index <<= inode->i_blkbits; /* to pages */ end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; /* check against file size */ if (end_index > last_index) end_index = last_index; xfs_cluster_write(inode, page->index + 1, &imap, &ioend, wbc, startio, all_bh, end_index); } if (iohead) xfs_submit_ioend(wbc, iohead); return page_dirty; error: if (iohead) xfs_cancel_ioend(iohead); /* * If it's delalloc and we have nowhere to put it, * throw it away, unless the lower layers told * us to try again. */ if (err != -EAGAIN) { if (!unmapped) xfs_aops_discard_page(page); ClearPageUptodate(page); } return err; } /* * writepage: Called from one of two places: * * 1. we are flushing a delalloc buffer head. * * 2. we are writing out a dirty page. Typically the page dirty * state is cleared before we get here. In this case is it * conceivable we have no buffer heads. * * For delalloc space on the page we need to allocate space and * flush it. For unmapped buffer heads on the page we should * allocate space if the page is uptodate. For any other dirty * buffer heads on the page we should flush them. * * If we detect that a transaction would be required to flush * the page, we have to check the process flags first, if we * are already in a transaction or disk I/O during allocations * is off, we need to fail the writepage and redirty the page. */ STATIC int xfs_vm_writepage( struct page *page, struct writeback_control *wbc) { int error; int need_trans; int delalloc, unmapped, unwritten; struct inode *inode = page->mapping->host; trace_xfs_writepage(inode, page, 0); /* * Refuse to write the page out if we are called from reclaim context. * * This is primarily to avoid stack overflows when called from deep * used stacks in random callers for direct reclaim, but disabling * reclaim for kswap is a nice side-effect as kswapd causes rather * suboptimal I/O patters, too. * * This should really be done by the core VM, but until that happens * filesystems like XFS, btrfs and ext4 have to take care of this * by themselves. */ if (current->flags & PF_MEMALLOC) goto out_fail; /* * We need a transaction if: * 1. There are delalloc buffers on the page * 2. The page is uptodate and we have unmapped buffers * 3. The page is uptodate and we have no buffers * 4. There are unwritten buffers on the page */ if (!page_has_buffers(page)) { unmapped = 1; need_trans = 1; } else { xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); if (!PageUptodate(page)) unmapped = 0; need_trans = delalloc + unmapped + unwritten; } /* * If we need a transaction and the process flags say * we are already in a transaction, or no IO is allowed * then mark the page dirty again and leave the page * as is. */ if (current_test_flags(PF_FSTRANS) && need_trans) goto out_fail; /* * Delay hooking up buffer heads until we have * made our go/no-go decision. */ if (!page_has_buffers(page)) create_empty_buffers(page, 1 << inode->i_blkbits, 0); /* * Convert delayed allocate, unwritten or unmapped space * to real space and flush out to disk. */ error = xfs_page_state_convert(inode, page, wbc, 1, unmapped); if (error == -EAGAIN) goto out_fail; if (unlikely(error < 0)) goto out_unlock; return 0; out_fail: redirty_page_for_writepage(wbc, page); unlock_page(page); return 0; out_unlock: unlock_page(page); return error; } STATIC int xfs_vm_writepages( struct address_space *mapping, struct writeback_control *wbc) { xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); return generic_writepages(mapping, wbc); } /* * Called to move a page into cleanable state - and from there * to be released. Possibly the page is already clean. We always * have buffer heads in this call. * * Returns 0 if the page is ok to release, 1 otherwise. * * Possible scenarios are: * * 1. We are being called to release a page which has been written * to via regular I/O. buffer heads will be dirty and possibly * delalloc. If no delalloc buffer heads in this case then we * can just return zero. * * 2. We are called to release a page which has been written via * mmap, all we need to do is ensure there is no delalloc * state in the buffer heads, if not we can let the caller * free them and we should come back later via writepage. */ STATIC int xfs_vm_releasepage( struct page *page, gfp_t gfp_mask) { struct inode *inode = page->mapping->host; int dirty, delalloc, unmapped, unwritten; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = 1, }; trace_xfs_releasepage(inode, page, 0); if (!page_has_buffers(page)) return 0; xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); if (!delalloc && !unwritten) goto free_buffers; if (!(gfp_mask & __GFP_FS)) return 0; /* If we are already inside a transaction or the thread cannot * do I/O, we cannot release this page. */ if (current_test_flags(PF_FSTRANS)) return 0; /* * Convert delalloc space to real space, do not flush the * data out to disk, that will be done by the caller. * Never need to allocate space here - we will always * come back to writepage in that case. */ dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0); if (dirty == 0 && !unwritten) goto free_buffers; return 0; free_buffers: return try_to_free_buffers(page); } STATIC int __xfs_get_blocks( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create, int direct, bmapi_flags_t flags) { struct xfs_bmbt_irec imap; xfs_off_t offset; ssize_t size; int nimap = 1; int new = 0; int error; offset = (xfs_off_t)iblock << inode->i_blkbits; ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); size = bh_result->b_size; if (!create && direct && offset >= i_size_read(inode)) return 0; error = xfs_iomap(XFS_I(inode), offset, size, create ? flags : BMAPI_READ, &imap, &nimap, &new); if (error) return -error; if (nimap == 0) return 0; if (imap.br_startblock != HOLESTARTBLOCK && imap.br_startblock != DELAYSTARTBLOCK) { /* * For unwritten extents do not report a disk address on * the read case (treat as if we're reading into a hole). */ if (create || !ISUNWRITTEN(&imap)) xfs_map_buffer(inode, bh_result, &imap, offset); if (create && ISUNWRITTEN(&imap)) { if (direct) bh_result->b_private = inode; set_buffer_unwritten(bh_result); } } /* * If this is a realtime file, data may be on a different device. * to that pointed to from the buffer_head b_bdev currently. */ bh_result->b_bdev = xfs_find_bdev_for_inode(inode); /* * If we previously allocated a block out beyond eof and we are now * coming back to use it then we will need to flag it as new even if it * has a disk address. * * With sub-block writes into unwritten extents we also need to mark * the buffer as new so that the unwritten parts of the buffer gets * correctly zeroed. */ if (create && ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || (offset >= i_size_read(inode)) || (new || ISUNWRITTEN(&imap)))) set_buffer_new(bh_result); if (imap.br_startblock == DELAYSTARTBLOCK) { BUG_ON(direct); if (create) { set_buffer_uptodate(bh_result); set_buffer_mapped(bh_result); set_buffer_delay(bh_result); } } /* * If this is O_DIRECT or the mpage code calling tell them how large * the mapping is, so that we can avoid repeated get_blocks calls. */ if (direct || size > (1 << inode->i_blkbits)) { xfs_off_t mapping_size; mapping_size = imap.br_startoff + imap.br_blockcount - iblock; mapping_size <<= inode->i_blkbits; ASSERT(mapping_size > 0); if (mapping_size > size) mapping_size = size; if (mapping_size > LONG_MAX) mapping_size = LONG_MAX; bh_result->b_size = mapping_size; } return 0; } int xfs_get_blocks( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __xfs_get_blocks(inode, iblock, bh_result, create, 0, BMAPI_WRITE); } STATIC int xfs_get_blocks_direct( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __xfs_get_blocks(inode, iblock, bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT); } STATIC void xfs_end_io_direct( struct kiocb *iocb, loff_t offset, ssize_t size, void *private, int ret, bool is_async) { xfs_ioend_t *ioend = iocb->private; /* * Non-NULL private data means we need to issue a transaction to * convert a range from unwritten to written extents. This needs * to happen from process context but aio+dio I/O completion * happens from irq context so we need to defer it to a workqueue. * This is not necessary for synchronous direct I/O, but we do * it anyway to keep the code uniform and simpler. * * Well, if only it were that simple. Because synchronous direct I/O * requires extent conversion to occur *before* we return to userspace, * we have to wait for extent conversion to complete. Look at the * iocb that has been passed to us to determine if this is AIO or * not. If it is synchronous, tell xfs_finish_ioend() to kick the * workqueue and wait for it to complete. * * The core direct I/O code might be changed to always call the * completion handler in the future, in which case all this can * go away. */ ioend->io_offset = offset; ioend->io_size = size; if (ioend->io_type == IO_READ) { xfs_finish_ioend(ioend, 0); } else if (private && size > 0) { xfs_finish_ioend(ioend, is_sync_kiocb(iocb)); } else { /* * A direct I/O write ioend starts it's life in unwritten * state in case they map an unwritten extent. This write * didn't map an unwritten extent so switch it's completion * handler. */ ioend->io_type = IO_NEW; xfs_finish_ioend(ioend, 0); } /* * blockdev_direct_IO can return an error even after the I/O * completion handler was called. Thus we need to protect * against double-freeing. */ iocb->private = NULL; if (is_async) aio_complete(iocb, ret, 0); } STATIC ssize_t xfs_vm_direct_IO( int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; struct block_device *bdev; ssize_t ret; bdev = xfs_find_bdev_for_inode(inode); iocb->private = xfs_alloc_ioend(inode, rw == WRITE ? IO_UNWRITTEN : IO_READ); ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov, offset, nr_segs, xfs_get_blocks_direct, xfs_end_io_direct); if (unlikely(ret != -EIOCBQUEUED && iocb->private)) xfs_destroy_ioend(iocb->private); return ret; } STATIC int xfs_vm_write_begin( struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { *pagep = NULL; return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, xfs_get_blocks); } STATIC sector_t xfs_vm_bmap( struct address_space *mapping, sector_t block) { struct inode *inode = (struct inode *)mapping->host; struct xfs_inode *ip = XFS_I(inode); xfs_itrace_entry(XFS_I(inode)); xfs_ilock(ip, XFS_IOLOCK_SHARED); xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); xfs_iunlock(ip, XFS_IOLOCK_SHARED); return generic_block_bmap(mapping, block, xfs_get_blocks); } STATIC int xfs_vm_readpage( struct file *unused, struct page *page) { return mpage_readpage(page, xfs_get_blocks); } STATIC int xfs_vm_readpages( struct file *unused, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); } const struct address_space_operations xfs_address_space_operations = { .readpage = xfs_vm_readpage, .readpages = xfs_vm_readpages, .writepage = xfs_vm_writepage, .writepages = xfs_vm_writepages, .sync_page = block_sync_page, .releasepage = xfs_vm_releasepage, .invalidatepage = xfs_vm_invalidatepage, .write_begin = xfs_vm_write_begin, .write_end = generic_write_end, .bmap = xfs_vm_bmap, .direct_IO = xfs_vm_direct_IO, .migratepage = buffer_migrate_page, .is_partially_uptodate = block_is_partially_uptodate, .error_remove_page = generic_error_remove_page, };