/* * Freescale MXS I2C bus driver * * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. * * based on a (non-working) driver which was: * * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "mxs-i2c" #define MXS_I2C_CTRL0 (0x00) #define MXS_I2C_CTRL0_SET (0x04) #define MXS_I2C_CTRL0_SFTRST 0x80000000 #define MXS_I2C_CTRL0_RUN 0x20000000 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 #define MXS_I2C_CTRL0_DIRECTION 0x00010000 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) #define MXS_I2C_TIMING0 (0x10) #define MXS_I2C_TIMING1 (0x20) #define MXS_I2C_TIMING2 (0x30) #define MXS_I2C_CTRL1 (0x40) #define MXS_I2C_CTRL1_SET (0x44) #define MXS_I2C_CTRL1_CLR (0x48) #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 #define MXS_I2C_STAT (0x50) #define MXS_I2C_STAT_BUS_BUSY 0x00000800 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 #define MXS_I2C_DATA (0xa0) #define MXS_I2C_DEBUG0 (0xb0) #define MXS_I2C_DEBUG0_CLR (0xb8) #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ MXS_I2C_CTRL1_SLAVE_IRQ) #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ MXS_I2C_CTRL0_PRE_SEND_START | \ MXS_I2C_CTRL0_MASTER_MODE | \ MXS_I2C_CTRL0_DIRECTION | \ MXS_I2C_CTRL0_XFER_COUNT(1)) #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ MXS_I2C_CTRL0_MASTER_MODE | \ MXS_I2C_CTRL0_DIRECTION) #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ MXS_I2C_CTRL0_MASTER_MODE) /** * struct mxs_i2c_dev - per device, private MXS-I2C data * * @dev: driver model device node * @regs: IO registers pointer * @cmd_complete: completion object for transaction wait * @cmd_err: error code for last transaction * @adapter: i2c subsystem adapter node */ struct mxs_i2c_dev { struct device *dev; void __iomem *regs; struct completion cmd_complete; int cmd_err; struct i2c_adapter adapter; uint32_t timing0; uint32_t timing1; /* DMA support components */ int dma_channel; struct dma_chan *dmach; struct mxs_dma_data dma_data; uint32_t pio_data[2]; uint32_t addr_data; struct scatterlist sg_io[2]; bool dma_read; }; static void mxs_i2c_reset(struct mxs_i2c_dev *i2c) { stmp_reset_block(i2c->regs); /* * Configure timing for the I2C block. The I2C TIMING2 register has to * be programmed with this particular magic number. The rest is derived * from the XTAL speed and requested I2C speed. * * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. */ writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); writel(0x00300030, i2c->regs + MXS_I2C_TIMING2); writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); } static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) { if (i2c->dma_read) { dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); } else { dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); } } static void mxs_i2c_dma_irq_callback(void *param) { struct mxs_i2c_dev *i2c = param; complete(&i2c->cmd_complete); mxs_i2c_dma_finish(i2c); } static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, uint32_t flags) { struct dma_async_tx_descriptor *desc; struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); if (msg->flags & I2C_M_RD) { i2c->dma_read = 1; i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ; /* * SELECT command. */ /* Queue the PIO register write transfer. */ i2c->pio_data[0] = MXS_CMD_I2C_SELECT; desc = dmaengine_prep_slave_sg(i2c->dmach, (struct scatterlist *)&i2c->pio_data[0], 1, DMA_TRANS_NONE, 0); if (!desc) { dev_err(i2c->dev, "Failed to get PIO reg. write descriptor.\n"); goto select_init_pio_fail; } /* Queue the DMA data transfer. */ sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(i2c->dev, "Failed to get DMA data write descriptor.\n"); goto select_init_dma_fail; } /* * READ command. */ /* Queue the PIO register write transfer. */ i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | MXS_I2C_CTRL0_XFER_COUNT(msg->len); desc = dmaengine_prep_slave_sg(i2c->dmach, (struct scatterlist *)&i2c->pio_data[1], 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); if (!desc) { dev_err(i2c->dev, "Failed to get PIO reg. write descriptor.\n"); goto select_init_dma_fail; } /* Queue the DMA data transfer. */ sg_init_one(&i2c->sg_io[1], msg->buf, msg->len); dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(i2c->dev, "Failed to get DMA data write descriptor.\n"); goto read_init_dma_fail; } } else { i2c->dma_read = 0; i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE; /* * WRITE command. */ /* Queue the PIO register write transfer. */ i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); desc = dmaengine_prep_slave_sg(i2c->dmach, (struct scatterlist *)&i2c->pio_data[0], 1, DMA_TRANS_NONE, 0); if (!desc) { dev_err(i2c->dev, "Failed to get PIO reg. write descriptor.\n"); goto write_init_pio_fail; } /* Queue the DMA data transfer. */ sg_init_table(i2c->sg_io, 2); sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len); dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(i2c->dev, "Failed to get DMA data write descriptor.\n"); goto write_init_dma_fail; } } /* * The last descriptor must have this callback, * to finish the DMA transaction. */ desc->callback = mxs_i2c_dma_irq_callback; desc->callback_param = i2c; /* Start the transfer. */ dmaengine_submit(desc); dma_async_issue_pending(i2c->dmach); return 0; /* Read failpath. */ read_init_dma_fail: dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); select_init_dma_fail: dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); select_init_pio_fail: dmaengine_terminate_all(i2c->dmach); return -EINVAL; /* Write failpath. */ write_init_dma_fail: dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); write_init_pio_fail: dmaengine_terminate_all(i2c->dmach); return -EINVAL; } static int mxs_i2c_pio_wait_dmareq(struct mxs_i2c_dev *i2c) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); while (!(readl(i2c->regs + MXS_I2C_DEBUG0) & MXS_I2C_DEBUG0_DMAREQ)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; cond_resched(); } return 0; } static int mxs_i2c_pio_wait_cplt(struct mxs_i2c_dev *i2c, int last) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); /* * We do not use interrupts in the PIO mode. Due to the * maximum transfer length being 8 bytes in PIO mode, the * overhead of interrupt would be too large and this would * neglect the gain from using the PIO mode. */ while (!(readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; cond_resched(); } writel(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ, i2c->regs + MXS_I2C_CTRL1_CLR); /* * When ending a transfer with a stop, we have to wait for the bus to * go idle before we report the transfer as completed. Otherwise the * start of the next transfer may race with the end of the current one. */ while (last && (readl(i2c->regs + MXS_I2C_STAT) & (MXS_I2C_STAT_BUS_BUSY | MXS_I2C_STAT_CLK_GEN_BUSY))) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; cond_resched(); } return 0; } static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) { u32 reg; writel(cmd, i2c->regs + MXS_I2C_CTRL0); /* readback makes sure the write is latched into hardware */ reg = readl(i2c->regs + MXS_I2C_CTRL0); reg |= MXS_I2C_CTRL0_RUN; writel(reg, i2c->regs + MXS_I2C_CTRL0); } static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, uint32_t flags) { struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); uint32_t addr_data = msg->addr << 1; uint32_t data = 0; int i, shifts_left, ret; /* Mute IRQs coming from this block. */ writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); if (msg->flags & I2C_M_RD) { addr_data |= I2C_SMBUS_READ; /* SELECT command. */ mxs_i2c_pio_trigger_cmd(i2c, MXS_CMD_I2C_SELECT); ret = mxs_i2c_pio_wait_dmareq(i2c); if (ret) return ret; writel(addr_data, i2c->regs + MXS_I2C_DATA); writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR); ret = mxs_i2c_pio_wait_cplt(i2c, 0); if (ret) return ret; /* READ command. */ mxs_i2c_pio_trigger_cmd(i2c, MXS_CMD_I2C_READ | flags | MXS_I2C_CTRL0_XFER_COUNT(msg->len)); for (i = 0; i < msg->len; i++) { if ((i & 3) == 0) { ret = mxs_i2c_pio_wait_dmareq(i2c); if (ret) return ret; data = readl(i2c->regs + MXS_I2C_DATA); writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR); } msg->buf[i] = data & 0xff; data >>= 8; } } else { addr_data |= I2C_SMBUS_WRITE; /* WRITE command. */ mxs_i2c_pio_trigger_cmd(i2c, MXS_CMD_I2C_WRITE | flags | MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1)); /* * The LSB of data buffer is the first byte blasted across * the bus. Higher order bytes follow. Thus the following * filling schematic. */ data = addr_data << 24; for (i = 0; i < msg->len; i++) { data >>= 8; data |= (msg->buf[i] << 24); if ((i & 3) == 2) { ret = mxs_i2c_pio_wait_dmareq(i2c); if (ret) return ret; writel(data, i2c->regs + MXS_I2C_DATA); writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR); } } shifts_left = 24 - (i & 3) * 8; if (shifts_left) { data >>= shifts_left; ret = mxs_i2c_pio_wait_dmareq(i2c); if (ret) return ret; writel(data, i2c->regs + MXS_I2C_DATA); writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR); } } ret = mxs_i2c_pio_wait_cplt(i2c, flags & MXS_I2C_CTRL0_POST_SEND_STOP); if (ret) return ret; /* Clear any dangling IRQs and re-enable interrupts. */ writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); return 0; } /* * Low level master read/write transaction. */ static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, int stop) { struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); int ret; int flags; flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", msg->addr, msg->len, msg->flags, stop); if (msg->len == 0) return -EINVAL; /* * The current boundary to select between PIO/DMA transfer method * is set to 8 bytes, transfers shorter than 8 bytes are transfered * using PIO mode while longer transfers use DMA. The 8 byte border is * based on this empirical measurement and a lot of previous frobbing. */ if (msg->len < 8) { ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); if (ret) mxs_i2c_reset(i2c); } else { i2c->cmd_err = 0; INIT_COMPLETION(i2c->cmd_complete); ret = mxs_i2c_dma_setup_xfer(adap, msg, flags); if (ret) return ret; ret = wait_for_completion_timeout(&i2c->cmd_complete, msecs_to_jiffies(1000)); if (ret == 0) goto timeout; if (i2c->cmd_err == -ENXIO) mxs_i2c_reset(i2c); ret = i2c->cmd_err; } dev_dbg(i2c->dev, "Done with err=%d\n", ret); return ret; timeout: dev_dbg(i2c->dev, "Timeout!\n"); mxs_i2c_dma_finish(i2c); mxs_i2c_reset(i2c); return -ETIMEDOUT; } static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { int i; int err; for (i = 0; i < num; i++) { err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); if (err) return err; } return num; } static u32 mxs_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) { struct mxs_i2c_dev *i2c = dev_id; u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; if (!stat) return IRQ_NONE; if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) i2c->cmd_err = -ENXIO; else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | MXS_I2C_CTRL1_MASTER_LOSS_IRQ | MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ i2c->cmd_err = -EIO; writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); return IRQ_HANDLED; } static const struct i2c_algorithm mxs_i2c_algo = { .master_xfer = mxs_i2c_xfer, .functionality = mxs_i2c_func, }; static bool mxs_i2c_dma_filter(struct dma_chan *chan, void *param) { struct mxs_i2c_dev *i2c = param; if (!mxs_dma_is_apbx(chan)) return false; if (chan->chan_id != i2c->dma_channel) return false; chan->private = &i2c->dma_data; return true; } static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, int speed) { /* The I2C block clock run at 24MHz */ const uint32_t clk = 24000000; uint32_t base; uint16_t high_count, low_count, rcv_count, xmit_count; struct device *dev = i2c->dev; if (speed > 540000) { dev_warn(dev, "Speed too high (%d Hz), using 540 kHz\n", speed); speed = 540000; } else if (speed < 12000) { dev_warn(dev, "Speed too low (%d Hz), using 12 kHz\n", speed); speed = 12000; } /* * The timing derivation algorithm. There is no documentation for this * algorithm available, it was derived by using the scope and fiddling * with constants until the result observed on the scope was good enough * for 20kHz, 50kHz, 100kHz, 200kHz, 300kHz and 400kHz. It should be * possible to assume the algorithm works for other frequencies as well. * * Note it was necessary to cap the frequency on both ends as it's not * possible to configure completely arbitrary frequency for the I2C bus * clock. */ base = ((clk / speed) - 38) / 2; high_count = base + 3; low_count = base - 3; rcv_count = (high_count * 3) / 4; xmit_count = low_count / 4; i2c->timing0 = (high_count << 16) | rcv_count; i2c->timing1 = (low_count << 16) | xmit_count; } static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) { uint32_t speed; struct device *dev = i2c->dev; struct device_node *node = dev->of_node; int ret; /* * TODO: This is a temporary solution and should be changed * to use generic DMA binding later when the helpers get in. */ ret = of_property_read_u32(node, "fsl,i2c-dma-channel", &i2c->dma_channel); if (ret) { dev_err(dev, "Failed to get DMA channel!\n"); return -ENODEV; } ret = of_property_read_u32(node, "clock-frequency", &speed); if (ret) { dev_warn(dev, "No I2C speed selected, using 100kHz\n"); speed = 100000; } mxs_i2c_derive_timing(i2c, speed); return 0; } static int mxs_i2c_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mxs_i2c_dev *i2c; struct i2c_adapter *adap; struct pinctrl *pinctrl; struct resource *res; resource_size_t res_size; int err, irq, dmairq; dma_cap_mask_t mask; pinctrl = devm_pinctrl_get_select_default(dev); if (IS_ERR(pinctrl)) return PTR_ERR(pinctrl); i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL); if (!i2c) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); dmairq = platform_get_irq(pdev, 1); if (!res || irq < 0 || dmairq < 0) return -ENOENT; res_size = resource_size(res); if (!devm_request_mem_region(dev, res->start, res_size, res->name)) return -EBUSY; i2c->regs = devm_ioremap_nocache(dev, res->start, res_size); if (!i2c->regs) return -EBUSY; err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); if (err) return err; i2c->dev = dev; init_completion(&i2c->cmd_complete); if (dev->of_node) { err = mxs_i2c_get_ofdata(i2c); if (err) return err; } /* Setup the DMA */ dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); i2c->dma_data.chan_irq = dmairq; i2c->dmach = dma_request_channel(mask, mxs_i2c_dma_filter, i2c); if (!i2c->dmach) { dev_err(dev, "Failed to request dma\n"); return -ENODEV; } platform_set_drvdata(pdev, i2c); /* Do reset to enforce correct startup after pinmuxing */ mxs_i2c_reset(i2c); adap = &i2c->adapter; strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); adap->owner = THIS_MODULE; adap->algo = &mxs_i2c_algo; adap->dev.parent = dev; adap->nr = pdev->id; adap->dev.of_node = pdev->dev.of_node; i2c_set_adapdata(adap, i2c); err = i2c_add_numbered_adapter(adap); if (err) { dev_err(dev, "Failed to add adapter (%d)\n", err); writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); return err; } of_i2c_register_devices(adap); return 0; } static int mxs_i2c_remove(struct platform_device *pdev) { struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adapter); if (i2c->dmach) dma_release_channel(i2c->dmach); writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); return 0; } static const struct of_device_id mxs_i2c_dt_ids[] = { { .compatible = "fsl,imx28-i2c", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); static struct platform_driver mxs_i2c_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = mxs_i2c_dt_ids, }, .remove = mxs_i2c_remove, }; static int __init mxs_i2c_init(void) { return platform_driver_probe(&mxs_i2c_driver, mxs_i2c_probe); } subsys_initcall(mxs_i2c_init); static void __exit mxs_i2c_exit(void) { platform_driver_unregister(&mxs_i2c_driver); } module_exit(mxs_i2c_exit); MODULE_AUTHOR("Wolfram Sang "); MODULE_DESCRIPTION("MXS I2C Bus Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);