/* Broadcom NetXtreme-C/E network driver. * * Copyright (c) 2014-2016 Broadcom Corporation * Copyright (c) 2016-2017 Broadcom Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bnxt_hsi.h" #include "bnxt.h" #include "bnxt_ulp.h" #include "bnxt_sriov.h" #include "bnxt_ethtool.h" #include "bnxt_dcb.h" #include "bnxt_xdp.h" #define BNXT_TX_TIMEOUT (5 * HZ) static const char version[] = "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n"; MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); MODULE_VERSION(DRV_MODULE_VERSION); #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) #define BNXT_RX_DMA_OFFSET NET_SKB_PAD #define BNXT_RX_COPY_THRESH 256 #define BNXT_TX_PUSH_THRESH 164 enum board_idx { BCM57301, BCM57302, BCM57304, BCM57417_NPAR, BCM58700, BCM57311, BCM57312, BCM57402, BCM57404, BCM57406, BCM57402_NPAR, BCM57407, BCM57412, BCM57414, BCM57416, BCM57417, BCM57412_NPAR, BCM57314, BCM57417_SFP, BCM57416_SFP, BCM57404_NPAR, BCM57406_NPAR, BCM57407_SFP, BCM57407_NPAR, BCM57414_NPAR, BCM57416_NPAR, BCM57452, BCM57454, NETXTREME_E_VF, NETXTREME_C_VF, }; /* indexed by enum above */ static const struct { char *name; } board_info[] = { { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, { "Broadcom NetXtreme-E Ethernet Virtual Function" }, { "Broadcom NetXtreme-C Ethernet Virtual Function" }, }; static const struct pci_device_id bnxt_pci_tbl[] = { { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, #ifdef CONFIG_BNXT_SRIOV { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, #endif { 0 } }; MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); static const u16 bnxt_vf_req_snif[] = { HWRM_FUNC_CFG, HWRM_PORT_PHY_QCFG, HWRM_CFA_L2_FILTER_ALLOC, }; static const u16 bnxt_async_events_arr[] = { ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, }; static bool bnxt_vf_pciid(enum board_idx idx) { return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF); } #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) #define BNXT_CP_DB_REARM(db, raw_cons) \ writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db) #define BNXT_CP_DB(db, raw_cons) \ writel(DB_CP_FLAGS | RING_CMP(raw_cons), db) #define BNXT_CP_DB_IRQ_DIS(db) \ writel(DB_CP_IRQ_DIS_FLAGS, db) const u16 bnxt_lhint_arr[] = { TX_BD_FLAGS_LHINT_512_AND_SMALLER, TX_BD_FLAGS_LHINT_512_TO_1023, TX_BD_FLAGS_LHINT_1024_TO_2047, TX_BD_FLAGS_LHINT_1024_TO_2047, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, TX_BD_FLAGS_LHINT_2048_AND_LARGER, }; static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct bnxt *bp = netdev_priv(dev); struct tx_bd *txbd; struct tx_bd_ext *txbd1; struct netdev_queue *txq; int i; dma_addr_t mapping; unsigned int length, pad = 0; u32 len, free_size, vlan_tag_flags, cfa_action, flags; u16 prod, last_frag; struct pci_dev *pdev = bp->pdev; struct bnxt_tx_ring_info *txr; struct bnxt_sw_tx_bd *tx_buf; i = skb_get_queue_mapping(skb); if (unlikely(i >= bp->tx_nr_rings)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } txq = netdev_get_tx_queue(dev, i); txr = &bp->tx_ring[bp->tx_ring_map[i]]; prod = txr->tx_prod; free_size = bnxt_tx_avail(bp, txr); if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { netif_tx_stop_queue(txq); return NETDEV_TX_BUSY; } length = skb->len; len = skb_headlen(skb); last_frag = skb_shinfo(skb)->nr_frags; txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; txbd->tx_bd_opaque = prod; tx_buf = &txr->tx_buf_ring[prod]; tx_buf->skb = skb; tx_buf->nr_frags = last_frag; vlan_tag_flags = 0; cfa_action = 0; if (skb_vlan_tag_present(skb)) { vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | skb_vlan_tag_get(skb); /* Currently supports 8021Q, 8021AD vlan offloads * QINQ1, QINQ2, QINQ3 vlan headers are deprecated */ if (skb->vlan_proto == htons(ETH_P_8021Q)) vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; } if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { struct tx_push_buffer *tx_push_buf = txr->tx_push; struct tx_push_bd *tx_push = &tx_push_buf->push_bd; struct tx_bd_ext *tx_push1 = &tx_push->txbd2; void *pdata = tx_push_buf->data; u64 *end; int j, push_len; /* Set COAL_NOW to be ready quickly for the next push */ tx_push->tx_bd_len_flags_type = cpu_to_le32((length << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | TX_BD_FLAGS_LHINT_512_AND_SMALLER | TX_BD_FLAGS_COAL_NOW | TX_BD_FLAGS_PACKET_END | (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); if (skb->ip_summed == CHECKSUM_PARTIAL) tx_push1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); else tx_push1->tx_bd_hsize_lflags = 0; tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action); end = pdata + length; end = PTR_ALIGN(end, 8) - 1; *end = 0; skb_copy_from_linear_data(skb, pdata, len); pdata += len; for (j = 0; j < last_frag; j++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; void *fptr; fptr = skb_frag_address_safe(frag); if (!fptr) goto normal_tx; memcpy(pdata, fptr, skb_frag_size(frag)); pdata += skb_frag_size(frag); } txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; txbd->tx_bd_haddr = txr->data_mapping; prod = NEXT_TX(prod); txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; memcpy(txbd, tx_push1, sizeof(*txbd)); prod = NEXT_TX(prod); tx_push->doorbell = cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); txr->tx_prod = prod; tx_buf->is_push = 1; netdev_tx_sent_queue(txq, skb->len); wmb(); /* Sync is_push and byte queue before pushing data */ push_len = (length + sizeof(*tx_push) + 7) / 8; if (push_len > 16) { __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16); __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1, (push_len - 16) << 1); } else { __iowrite64_copy(txr->tx_doorbell, tx_push_buf, push_len); } goto tx_done; } normal_tx: if (length < BNXT_MIN_PKT_SIZE) { pad = BNXT_MIN_PKT_SIZE - length; if (skb_pad(skb, pad)) { /* SKB already freed. */ tx_buf->skb = NULL; return NETDEV_TX_OK; } length = BNXT_MIN_PKT_SIZE; } mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { dev_kfree_skb_any(skb); tx_buf->skb = NULL; return NETDEV_TX_OK; } dma_unmap_addr_set(tx_buf, mapping, mapping); flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); txbd->tx_bd_haddr = cpu_to_le64(mapping); prod = NEXT_TX(prod); txbd1 = (struct tx_bd_ext *) &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; txbd1->tx_bd_hsize_lflags = 0; if (skb_is_gso(skb)) { u32 hdr_len; if (skb->encapsulation) hdr_len = skb_inner_network_offset(skb) + skb_inner_network_header_len(skb) + inner_tcp_hdrlen(skb); else hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | TX_BD_FLAGS_T_IPID | (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); length = skb_shinfo(skb)->gso_size; txbd1->tx_bd_mss = cpu_to_le32(length); length += hdr_len; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); txbd1->tx_bd_mss = 0; } length >>= 9; flags |= bnxt_lhint_arr[length]; txbd->tx_bd_len_flags_type = cpu_to_le32(flags); txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action); for (i = 0; i < last_frag; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; prod = NEXT_TX(prod); txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; len = skb_frag_size(frag); mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&pdev->dev, mapping))) goto tx_dma_error; tx_buf = &txr->tx_buf_ring[prod]; dma_unmap_addr_set(tx_buf, mapping, mapping); txbd->tx_bd_haddr = cpu_to_le64(mapping); flags = len << TX_BD_LEN_SHIFT; txbd->tx_bd_len_flags_type = cpu_to_le32(flags); } flags &= ~TX_BD_LEN; txbd->tx_bd_len_flags_type = cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | TX_BD_FLAGS_PACKET_END); netdev_tx_sent_queue(txq, skb->len); /* Sync BD data before updating doorbell */ wmb(); prod = NEXT_TX(prod); txr->tx_prod = prod; writel(DB_KEY_TX | prod, txr->tx_doorbell); writel(DB_KEY_TX | prod, txr->tx_doorbell); tx_done: mmiowb(); if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { netif_tx_stop_queue(txq); /* netif_tx_stop_queue() must be done before checking * tx index in bnxt_tx_avail() below, because in * bnxt_tx_int(), we update tx index before checking for * netif_tx_queue_stopped(). */ smp_mb(); if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) netif_tx_wake_queue(txq); } return NETDEV_TX_OK; tx_dma_error: last_frag = i; /* start back at beginning and unmap skb */ prod = txr->tx_prod; tx_buf = &txr->tx_buf_ring[prod]; tx_buf->skb = NULL; dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); prod = NEXT_TX(prod); /* unmap remaining mapped pages */ for (i = 0; i < last_frag; i++) { prod = NEXT_TX(prod); tx_buf = &txr->tx_buf_ring[prod]; dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), skb_frag_size(&skb_shinfo(skb)->frags[i]), PCI_DMA_TODEVICE); } dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) { struct bnxt_tx_ring_info *txr = bnapi->tx_ring; struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); u16 cons = txr->tx_cons; struct pci_dev *pdev = bp->pdev; int i; unsigned int tx_bytes = 0; for (i = 0; i < nr_pkts; i++) { struct bnxt_sw_tx_bd *tx_buf; struct sk_buff *skb; int j, last; tx_buf = &txr->tx_buf_ring[cons]; cons = NEXT_TX(cons); skb = tx_buf->skb; tx_buf->skb = NULL; if (tx_buf->is_push) { tx_buf->is_push = 0; goto next_tx_int; } dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); last = tx_buf->nr_frags; for (j = 0; j < last; j++) { cons = NEXT_TX(cons); tx_buf = &txr->tx_buf_ring[cons]; dma_unmap_page( &pdev->dev, dma_unmap_addr(tx_buf, mapping), skb_frag_size(&skb_shinfo(skb)->frags[j]), PCI_DMA_TODEVICE); } next_tx_int: cons = NEXT_TX(cons); tx_bytes += skb->len; dev_kfree_skb_any(skb); } netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); txr->tx_cons = cons; /* Need to make the tx_cons update visible to bnxt_start_xmit() * before checking for netif_tx_queue_stopped(). Without the * memory barrier, there is a small possibility that bnxt_start_xmit() * will miss it and cause the queue to be stopped forever. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(txq)) && (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { __netif_tx_lock(txq, smp_processor_id()); if (netif_tx_queue_stopped(txq) && bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && txr->dev_state != BNXT_DEV_STATE_CLOSING) netif_tx_wake_queue(txq); __netif_tx_unlock(txq); } } static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, gfp_t gfp) { struct device *dev = &bp->pdev->dev; struct page *page; page = alloc_page(gfp); if (!page) return NULL; *mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir); if (dma_mapping_error(dev, *mapping)) { __free_page(page); return NULL; } *mapping += bp->rx_dma_offset; return page; } static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, gfp_t gfp) { u8 *data; struct pci_dev *pdev = bp->pdev; data = kmalloc(bp->rx_buf_size, gfp); if (!data) return NULL; *mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset, bp->rx_buf_use_size, bp->rx_dir); if (dma_mapping_error(&pdev->dev, *mapping)) { kfree(data); data = NULL; } return data; } int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, u16 prod, gfp_t gfp) { struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; dma_addr_t mapping; if (BNXT_RX_PAGE_MODE(bp)) { struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp); if (!page) return -ENOMEM; rx_buf->data = page; rx_buf->data_ptr = page_address(page) + bp->rx_offset; } else { u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); if (!data) return -ENOMEM; rx_buf->data = data; rx_buf->data_ptr = data + bp->rx_offset; } rx_buf->mapping = mapping; rxbd->rx_bd_haddr = cpu_to_le64(mapping); return 0; } void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) { u16 prod = rxr->rx_prod; struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; struct rx_bd *cons_bd, *prod_bd; prod_rx_buf = &rxr->rx_buf_ring[prod]; cons_rx_buf = &rxr->rx_buf_ring[cons]; prod_rx_buf->data = data; prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; prod_rx_buf->mapping = cons_rx_buf->mapping; prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; } static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) { u16 next, max = rxr->rx_agg_bmap_size; next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); if (next >= max) next = find_first_zero_bit(rxr->rx_agg_bmap, max); return next; } static inline int bnxt_alloc_rx_page(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, u16 prod, gfp_t gfp) { struct rx_bd *rxbd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; struct bnxt_sw_rx_agg_bd *rx_agg_buf; struct pci_dev *pdev = bp->pdev; struct page *page; dma_addr_t mapping; u16 sw_prod = rxr->rx_sw_agg_prod; unsigned int offset = 0; if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { page = rxr->rx_page; if (!page) { page = alloc_page(gfp); if (!page) return -ENOMEM; rxr->rx_page = page; rxr->rx_page_offset = 0; } offset = rxr->rx_page_offset; rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; if (rxr->rx_page_offset == PAGE_SIZE) rxr->rx_page = NULL; else get_page(page); } else { page = alloc_page(gfp); if (!page) return -ENOMEM; } mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE); if (dma_mapping_error(&pdev->dev, mapping)) { __free_page(page); return -EIO; } if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); __set_bit(sw_prod, rxr->rx_agg_bmap); rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); rx_agg_buf->page = page; rx_agg_buf->offset = offset; rx_agg_buf->mapping = mapping; rxbd->rx_bd_haddr = cpu_to_le64(mapping); rxbd->rx_bd_opaque = sw_prod; return 0; } static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons, u32 agg_bufs) { struct bnxt *bp = bnapi->bp; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; u16 prod = rxr->rx_agg_prod; u16 sw_prod = rxr->rx_sw_agg_prod; u32 i; for (i = 0; i < agg_bufs; i++) { u16 cons; struct rx_agg_cmp *agg; struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; struct rx_bd *prod_bd; struct page *page; agg = (struct rx_agg_cmp *) &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; cons = agg->rx_agg_cmp_opaque; __clear_bit(cons, rxr->rx_agg_bmap); if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); __set_bit(sw_prod, rxr->rx_agg_bmap); prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; cons_rx_buf = &rxr->rx_agg_ring[cons]; /* It is possible for sw_prod to be equal to cons, so * set cons_rx_buf->page to NULL first. */ page = cons_rx_buf->page; cons_rx_buf->page = NULL; prod_rx_buf->page = page; prod_rx_buf->offset = cons_rx_buf->offset; prod_rx_buf->mapping = cons_rx_buf->mapping; prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); prod_bd->rx_bd_opaque = sw_prod; prod = NEXT_RX_AGG(prod); sw_prod = NEXT_RX_AGG(sw_prod); cp_cons = NEXT_CMP(cp_cons); } rxr->rx_agg_prod = prod; rxr->rx_sw_agg_prod = sw_prod; } static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, u16 cons, void *data, u8 *data_ptr, dma_addr_t dma_addr, unsigned int offset_and_len) { unsigned int payload = offset_and_len >> 16; unsigned int len = offset_and_len & 0xffff; struct skb_frag_struct *frag; struct page *page = data; u16 prod = rxr->rx_prod; struct sk_buff *skb; int off, err; err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); if (unlikely(err)) { bnxt_reuse_rx_data(rxr, cons, data); return NULL; } dma_addr -= bp->rx_dma_offset; dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir); if (unlikely(!payload)) payload = eth_get_headlen(data_ptr, len); skb = napi_alloc_skb(&rxr->bnapi->napi, payload); if (!skb) { __free_page(page); return NULL; } off = (void *)data_ptr - page_address(page); skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, payload + NET_IP_ALIGN); frag = &skb_shinfo(skb)->frags[0]; skb_frag_size_sub(frag, payload); frag->page_offset += payload; skb->data_len -= payload; skb->tail += payload; return skb; } static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, u16 cons, void *data, u8 *data_ptr, dma_addr_t dma_addr, unsigned int offset_and_len) { u16 prod = rxr->rx_prod; struct sk_buff *skb; int err; err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); if (unlikely(err)) { bnxt_reuse_rx_data(rxr, cons, data); return NULL; } skb = build_skb(data, 0); dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, bp->rx_dir); if (!skb) { kfree(data); return NULL; } skb_reserve(skb, bp->rx_offset); skb_put(skb, offset_and_len & 0xffff); return skb; } static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi, struct sk_buff *skb, u16 cp_cons, u32 agg_bufs) { struct pci_dev *pdev = bp->pdev; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; u16 prod = rxr->rx_agg_prod; u32 i; for (i = 0; i < agg_bufs; i++) { u16 cons, frag_len; struct rx_agg_cmp *agg; struct bnxt_sw_rx_agg_bd *cons_rx_buf; struct page *page; dma_addr_t mapping; agg = (struct rx_agg_cmp *) &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; cons = agg->rx_agg_cmp_opaque; frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; cons_rx_buf = &rxr->rx_agg_ring[cons]; skb_fill_page_desc(skb, i, cons_rx_buf->page, cons_rx_buf->offset, frag_len); __clear_bit(cons, rxr->rx_agg_bmap); /* It is possible for bnxt_alloc_rx_page() to allocate * a sw_prod index that equals the cons index, so we * need to clear the cons entry now. */ mapping = cons_rx_buf->mapping; page = cons_rx_buf->page; cons_rx_buf->page = NULL; if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { struct skb_shared_info *shinfo; unsigned int nr_frags; shinfo = skb_shinfo(skb); nr_frags = --shinfo->nr_frags; __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); dev_kfree_skb(skb); cons_rx_buf->page = page; /* Update prod since possibly some pages have been * allocated already. */ rxr->rx_agg_prod = prod; bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i); return NULL; } dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE); skb->data_len += frag_len; skb->len += frag_len; skb->truesize += PAGE_SIZE; prod = NEXT_RX_AGG(prod); cp_cons = NEXT_CMP(cp_cons); } rxr->rx_agg_prod = prod; return skb; } static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, u8 agg_bufs, u32 *raw_cons) { u16 last; struct rx_agg_cmp *agg; *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); last = RING_CMP(*raw_cons); agg = (struct rx_agg_cmp *) &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; return RX_AGG_CMP_VALID(agg, *raw_cons); } static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, unsigned int len, dma_addr_t mapping) { struct bnxt *bp = bnapi->bp; struct pci_dev *pdev = bp->pdev; struct sk_buff *skb; skb = napi_alloc_skb(&bnapi->napi, len); if (!skb) return NULL; dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, bp->rx_dir); memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, len + NET_IP_ALIGN); dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, bp->rx_dir); skb_put(skb, len); return skb; } static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, void *cmp) { struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct rx_cmp *rxcmp = cmp; u32 tmp_raw_cons = *raw_cons; u8 cmp_type, agg_bufs = 0; cmp_type = RX_CMP_TYPE(rxcmp); if (cmp_type == CMP_TYPE_RX_L2_CMP) { agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { struct rx_tpa_end_cmp *tpa_end = cmp; agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; } if (agg_bufs) { if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) return -EBUSY; } *raw_cons = tmp_raw_cons; return 0; } static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) { if (!rxr->bnapi->in_reset) { rxr->bnapi->in_reset = true; set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); } rxr->rx_next_cons = 0xffff; } static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, struct rx_tpa_start_cmp *tpa_start, struct rx_tpa_start_cmp_ext *tpa_start1) { u8 agg_id = TPA_START_AGG_ID(tpa_start); u16 cons, prod; struct bnxt_tpa_info *tpa_info; struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; struct rx_bd *prod_bd; dma_addr_t mapping; cons = tpa_start->rx_tpa_start_cmp_opaque; prod = rxr->rx_prod; cons_rx_buf = &rxr->rx_buf_ring[cons]; prod_rx_buf = &rxr->rx_buf_ring[prod]; tpa_info = &rxr->rx_tpa[agg_id]; if (unlikely(cons != rxr->rx_next_cons)) { bnxt_sched_reset(bp, rxr); return; } prod_rx_buf->data = tpa_info->data; prod_rx_buf->data_ptr = tpa_info->data_ptr; mapping = tpa_info->mapping; prod_rx_buf->mapping = mapping; prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; prod_bd->rx_bd_haddr = cpu_to_le64(mapping); tpa_info->data = cons_rx_buf->data; tpa_info->data_ptr = cons_rx_buf->data_ptr; cons_rx_buf->data = NULL; tpa_info->mapping = cons_rx_buf->mapping; tpa_info->len = le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> RX_TPA_START_CMP_LEN_SHIFT; if (likely(TPA_START_HASH_VALID(tpa_start))) { u32 hash_type = TPA_START_HASH_TYPE(tpa_start); tpa_info->hash_type = PKT_HASH_TYPE_L4; tpa_info->gso_type = SKB_GSO_TCPV4; /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ if (hash_type == 3) tpa_info->gso_type = SKB_GSO_TCPV6; tpa_info->rss_hash = le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); } else { tpa_info->hash_type = PKT_HASH_TYPE_NONE; tpa_info->gso_type = 0; if (netif_msg_rx_err(bp)) netdev_warn(bp->dev, "TPA packet without valid hash\n"); } tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); rxr->rx_prod = NEXT_RX(prod); cons = NEXT_RX(cons); rxr->rx_next_cons = NEXT_RX(cons); cons_rx_buf = &rxr->rx_buf_ring[cons]; bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); rxr->rx_prod = NEXT_RX(rxr->rx_prod); cons_rx_buf->data = NULL; } static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi, u16 cp_cons, u32 agg_bufs) { if (agg_bufs) bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); } static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, int payload_off, int tcp_ts, struct sk_buff *skb) { #ifdef CONFIG_INET struct tcphdr *th; int len, nw_off; u16 outer_ip_off, inner_ip_off, inner_mac_off; u32 hdr_info = tpa_info->hdr_info; bool loopback = false; inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); /* If the packet is an internal loopback packet, the offsets will * have an extra 4 bytes. */ if (inner_mac_off == 4) { loopback = true; } else if (inner_mac_off > 4) { __be16 proto = *((__be16 *)(skb->data + inner_ip_off - ETH_HLEN - 2)); /* We only support inner iPv4/ipv6. If we don't see the * correct protocol ID, it must be a loopback packet where * the offsets are off by 4. */ if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) loopback = true; } if (loopback) { /* internal loopback packet, subtract all offsets by 4 */ inner_ip_off -= 4; inner_mac_off -= 4; outer_ip_off -= 4; } nw_off = inner_ip_off - ETH_HLEN; skb_set_network_header(skb, nw_off); if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { struct ipv6hdr *iph = ipv6_hdr(skb); skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); len = skb->len - skb_transport_offset(skb); th = tcp_hdr(skb); th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); } else { struct iphdr *iph = ip_hdr(skb); skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); len = skb->len - skb_transport_offset(skb); th = tcp_hdr(skb); th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); } if (inner_mac_off) { /* tunnel */ struct udphdr *uh = NULL; __be16 proto = *((__be16 *)(skb->data + outer_ip_off - ETH_HLEN - 2)); if (proto == htons(ETH_P_IP)) { struct iphdr *iph = (struct iphdr *)skb->data; if (iph->protocol == IPPROTO_UDP) uh = (struct udphdr *)(iph + 1); } else { struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; if (iph->nexthdr == IPPROTO_UDP) uh = (struct udphdr *)(iph + 1); } if (uh) { if (uh->check) skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; else skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; } } #endif return skb; } #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, int payload_off, int tcp_ts, struct sk_buff *skb) { #ifdef CONFIG_INET struct tcphdr *th; int len, nw_off, tcp_opt_len = 0; if (tcp_ts) tcp_opt_len = 12; if (tpa_info->gso_type == SKB_GSO_TCPV4) { struct iphdr *iph; nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - ETH_HLEN; skb_set_network_header(skb, nw_off); iph = ip_hdr(skb); skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); len = skb->len - skb_transport_offset(skb); th = tcp_hdr(skb); th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { struct ipv6hdr *iph; nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - ETH_HLEN; skb_set_network_header(skb, nw_off); iph = ipv6_hdr(skb); skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); len = skb->len - skb_transport_offset(skb); th = tcp_hdr(skb); th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); } else { dev_kfree_skb_any(skb); return NULL; } if (nw_off) { /* tunnel */ struct udphdr *uh = NULL; if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *iph = (struct iphdr *)skb->data; if (iph->protocol == IPPROTO_UDP) uh = (struct udphdr *)(iph + 1); } else { struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; if (iph->nexthdr == IPPROTO_UDP) uh = (struct udphdr *)(iph + 1); } if (uh) { if (uh->check) skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; else skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; } } #endif return skb; } static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, struct bnxt_tpa_info *tpa_info, struct rx_tpa_end_cmp *tpa_end, struct rx_tpa_end_cmp_ext *tpa_end1, struct sk_buff *skb) { #ifdef CONFIG_INET int payload_off; u16 segs; segs = TPA_END_TPA_SEGS(tpa_end); if (segs == 1) return skb; NAPI_GRO_CB(skb)->count = segs; skb_shinfo(skb)->gso_size = le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); skb_shinfo(skb)->gso_type = tpa_info->gso_type; payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & RX_TPA_END_CMP_PAYLOAD_OFFSET) >> RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT; skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); if (likely(skb)) tcp_gro_complete(skb); #endif return skb; } static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, struct rx_tpa_end_cmp *tpa_end, struct rx_tpa_end_cmp_ext *tpa_end1, u8 *event) { struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; u8 agg_id = TPA_END_AGG_ID(tpa_end); u8 *data_ptr, agg_bufs; u16 cp_cons = RING_CMP(*raw_cons); unsigned int len; struct bnxt_tpa_info *tpa_info; dma_addr_t mapping; struct sk_buff *skb; void *data; if (unlikely(bnapi->in_reset)) { int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end); if (rc < 0) return ERR_PTR(-EBUSY); return NULL; } tpa_info = &rxr->rx_tpa[agg_id]; data = tpa_info->data; data_ptr = tpa_info->data_ptr; prefetch(data_ptr); len = tpa_info->len; mapping = tpa_info->mapping; agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; if (agg_bufs) { if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) return ERR_PTR(-EBUSY); *event |= BNXT_AGG_EVENT; cp_cons = NEXT_CMP(cp_cons); } if (unlikely(agg_bufs > MAX_SKB_FRAGS)) { bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", agg_bufs, (int)MAX_SKB_FRAGS); return NULL; } if (len <= bp->rx_copy_thresh) { skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); if (!skb) { bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); return NULL; } } else { u8 *new_data; dma_addr_t new_mapping; new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); if (!new_data) { bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); return NULL; } tpa_info->data = new_data; tpa_info->data_ptr = new_data + bp->rx_offset; tpa_info->mapping = new_mapping; skb = build_skb(data, 0); dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size, bp->rx_dir); if (!skb) { kfree(data); bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); return NULL; } skb_reserve(skb, bp->rx_offset); skb_put(skb, len); } if (agg_bufs) { skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); if (!skb) { /* Page reuse already handled by bnxt_rx_pages(). */ return NULL; } } skb->protocol = eth_type_trans(skb, bp->dev); if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { u16 vlan_proto = tpa_info->metadata >> RX_CMP_FLAGS2_METADATA_TPID_SFT; u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK; __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); } skb_checksum_none_assert(skb); if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; } if (TPA_END_GRO(tpa_end)) skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); return skb; } /* returns the following: * 1 - 1 packet successfully received * 0 - successful TPA_START, packet not completed yet * -EBUSY - completion ring does not have all the agg buffers yet * -ENOMEM - packet aborted due to out of memory * -EIO - packet aborted due to hw error indicated in BD */ static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, u8 *event) { struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; struct net_device *dev = bp->dev; struct rx_cmp *rxcmp; struct rx_cmp_ext *rxcmp1; u32 tmp_raw_cons = *raw_cons; u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); struct bnxt_sw_rx_bd *rx_buf; unsigned int len; u8 *data_ptr, agg_bufs, cmp_type; dma_addr_t dma_addr; struct sk_buff *skb; void *data; int rc = 0; u32 misc; rxcmp = (struct rx_cmp *) &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); cp_cons = RING_CMP(tmp_raw_cons); rxcmp1 = (struct rx_cmp_ext *) &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) return -EBUSY; cmp_type = RX_CMP_TYPE(rxcmp); prod = rxr->rx_prod; if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, (struct rx_tpa_start_cmp_ext *)rxcmp1); *event |= BNXT_RX_EVENT; goto next_rx_no_prod; } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons, (struct rx_tpa_end_cmp *)rxcmp, (struct rx_tpa_end_cmp_ext *)rxcmp1, event); if (unlikely(IS_ERR(skb))) return -EBUSY; rc = -ENOMEM; if (likely(skb)) { skb_record_rx_queue(skb, bnapi->index); napi_gro_receive(&bnapi->napi, skb); rc = 1; } *event |= BNXT_RX_EVENT; goto next_rx_no_prod; } cons = rxcmp->rx_cmp_opaque; rx_buf = &rxr->rx_buf_ring[cons]; data = rx_buf->data; data_ptr = rx_buf->data_ptr; if (unlikely(cons != rxr->rx_next_cons)) { int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp); bnxt_sched_reset(bp, rxr); return rc1; } prefetch(data_ptr); misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; if (agg_bufs) { if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) return -EBUSY; cp_cons = NEXT_CMP(cp_cons); *event |= BNXT_AGG_EVENT; } *event |= BNXT_RX_EVENT; rx_buf->data = NULL; if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { bnxt_reuse_rx_data(rxr, cons, data); if (agg_bufs) bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); rc = -EIO; goto next_rx; } len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; dma_addr = rx_buf->mapping; if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { rc = 1; goto next_rx; } if (len <= bp->rx_copy_thresh) { skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); bnxt_reuse_rx_data(rxr, cons, data); if (!skb) { rc = -ENOMEM; goto next_rx; } } else { u32 payload; if (rx_buf->data_ptr == data_ptr) payload = misc & RX_CMP_PAYLOAD_OFFSET; else payload = 0; skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, payload | len); if (!skb) { rc = -ENOMEM; goto next_rx; } } if (agg_bufs) { skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); if (!skb) { rc = -ENOMEM; goto next_rx; } } if (RX_CMP_HASH_VALID(rxcmp)) { u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); enum pkt_hash_types type = PKT_HASH_TYPE_L4; /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ if (hash_type != 1 && hash_type != 3) type = PKT_HASH_TYPE_L3; skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); } skb->protocol = eth_type_trans(skb, dev); if ((rxcmp1->rx_cmp_flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK; u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); } skb_checksum_none_assert(skb); if (RX_CMP_L4_CS_OK(rxcmp1)) { if (dev->features & NETIF_F_RXCSUM) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = RX_CMP_ENCAP(rxcmp1); } } else { if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { if (dev->features & NETIF_F_RXCSUM) cpr->rx_l4_csum_errors++; } } skb_record_rx_queue(skb, bnapi->index); napi_gro_receive(&bnapi->napi, skb); rc = 1; next_rx: rxr->rx_prod = NEXT_RX(prod); rxr->rx_next_cons = NEXT_RX(cons); next_rx_no_prod: *raw_cons = tmp_raw_cons; return rc; } #define BNXT_GET_EVENT_PORT(data) \ ((data) & \ ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) static int bnxt_async_event_process(struct bnxt *bp, struct hwrm_async_event_cmpl *cmpl) { u16 event_id = le16_to_cpu(cmpl->event_id); /* TODO CHIMP_FW: Define event id's for link change, error etc */ switch (event_id) { case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { u32 data1 = le32_to_cpu(cmpl->event_data1); struct bnxt_link_info *link_info = &bp->link_info; if (BNXT_VF(bp)) goto async_event_process_exit; if (data1 & 0x20000) { u16 fw_speed = link_info->force_link_speed; u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); netdev_warn(bp->dev, "Link speed %d no longer supported\n", speed); } set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); /* fall thru */ } case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); break; case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); break; case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { u32 data1 = le32_to_cpu(cmpl->event_data1); u16 port_id = BNXT_GET_EVENT_PORT(data1); if (BNXT_VF(bp)) break; if (bp->pf.port_id != port_id) break; set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); break; } case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: if (BNXT_PF(bp)) goto async_event_process_exit; set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); break; default: goto async_event_process_exit; } schedule_work(&bp->sp_task); async_event_process_exit: bnxt_ulp_async_events(bp, cmpl); return 0; } static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) { u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; struct hwrm_fwd_req_cmpl *fwd_req_cmpl = (struct hwrm_fwd_req_cmpl *)txcmp; switch (cmpl_type) { case CMPL_BASE_TYPE_HWRM_DONE: seq_id = le16_to_cpu(h_cmpl->sequence_id); if (seq_id == bp->hwrm_intr_seq_id) bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID; else netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); break; case CMPL_BASE_TYPE_HWRM_FWD_REQ: vf_id = le16_to_cpu(fwd_req_cmpl->source_id); if ((vf_id < bp->pf.first_vf_id) || (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { netdev_err(bp->dev, "Msg contains invalid VF id %x\n", vf_id); return -EINVAL; } set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); break; case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: bnxt_async_event_process(bp, (struct hwrm_async_event_cmpl *)txcmp); default: break; } return 0; } static irqreturn_t bnxt_msix(int irq, void *dev_instance) { struct bnxt_napi *bnapi = dev_instance; struct bnxt *bp = bnapi->bp; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; u32 cons = RING_CMP(cpr->cp_raw_cons); prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); napi_schedule(&bnapi->napi); return IRQ_HANDLED; } static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) { u32 raw_cons = cpr->cp_raw_cons; u16 cons = RING_CMP(raw_cons); struct tx_cmp *txcmp; txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; return TX_CMP_VALID(txcmp, raw_cons); } static irqreturn_t bnxt_inta(int irq, void *dev_instance) { struct bnxt_napi *bnapi = dev_instance; struct bnxt *bp = bnapi->bp; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; u32 cons = RING_CMP(cpr->cp_raw_cons); u32 int_status; prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); if (!bnxt_has_work(bp, cpr)) { int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); /* return if erroneous interrupt */ if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) return IRQ_NONE; } /* disable ring IRQ */ BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell); /* Return here if interrupt is shared and is disabled. */ if (unlikely(atomic_read(&bp->intr_sem) != 0)) return IRQ_HANDLED; napi_schedule(&bnapi->napi); return IRQ_HANDLED; } static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) { struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; u32 raw_cons = cpr->cp_raw_cons; u32 cons; int tx_pkts = 0; int rx_pkts = 0; u8 event = 0; struct tx_cmp *txcmp; while (1) { int rc; cons = RING_CMP(raw_cons); txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; if (!TX_CMP_VALID(txcmp, raw_cons)) break; /* The valid test of the entry must be done first before * reading any further. */ dma_rmb(); if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { tx_pkts++; /* return full budget so NAPI will complete. */ if (unlikely(tx_pkts > bp->tx_wake_thresh)) rx_pkts = budget; } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event); if (likely(rc >= 0)) rx_pkts += rc; else if (rc == -EBUSY) /* partial completion */ break; } else if (unlikely((TX_CMP_TYPE(txcmp) == CMPL_BASE_TYPE_HWRM_DONE) || (TX_CMP_TYPE(txcmp) == CMPL_BASE_TYPE_HWRM_FWD_REQ) || (TX_CMP_TYPE(txcmp) == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { bnxt_hwrm_handler(bp, txcmp); } raw_cons = NEXT_RAW_CMP(raw_cons); if (rx_pkts == budget) break; } if (event & BNXT_TX_EVENT) { struct bnxt_tx_ring_info *txr = bnapi->tx_ring; void __iomem *db = txr->tx_doorbell; u16 prod = txr->tx_prod; /* Sync BD data before updating doorbell */ wmb(); writel(DB_KEY_TX | prod, db); writel(DB_KEY_TX | prod, db); } cpr->cp_raw_cons = raw_cons; /* ACK completion ring before freeing tx ring and producing new * buffers in rx/agg rings to prevent overflowing the completion * ring. */ BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); if (tx_pkts) bnapi->tx_int(bp, bnapi, tx_pkts); if (event & BNXT_RX_EVENT) { struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); if (event & BNXT_AGG_EVENT) { writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); } } return rx_pkts; } static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) { struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); struct bnxt *bp = bnapi->bp; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; struct tx_cmp *txcmp; struct rx_cmp_ext *rxcmp1; u32 cp_cons, tmp_raw_cons; u32 raw_cons = cpr->cp_raw_cons; u32 rx_pkts = 0; u8 event = 0; while (1) { int rc; cp_cons = RING_CMP(raw_cons); txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; if (!TX_CMP_VALID(txcmp, raw_cons)) break; if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { tmp_raw_cons = NEXT_RAW_CMP(raw_cons); cp_cons = RING_CMP(tmp_raw_cons); rxcmp1 = (struct rx_cmp_ext *) &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) break; /* force an error to recycle the buffer */ rxcmp1->rx_cmp_cfa_code_errors_v2 |= cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event); if (likely(rc == -EIO)) rx_pkts++; else if (rc == -EBUSY) /* partial completion */ break; } else if (unlikely(TX_CMP_TYPE(txcmp) == CMPL_BASE_TYPE_HWRM_DONE)) { bnxt_hwrm_handler(bp, txcmp); } else { netdev_err(bp->dev, "Invalid completion received on special ring\n"); } raw_cons = NEXT_RAW_CMP(raw_cons); if (rx_pkts == budget) break; } cpr->cp_raw_cons = raw_cons; BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); if (event & BNXT_AGG_EVENT) { writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); } if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { napi_complete_done(napi, rx_pkts); BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); } return rx_pkts; } static int bnxt_poll(struct napi_struct *napi, int budget) { struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); struct bnxt *bp = bnapi->bp; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; int work_done = 0; while (1) { work_done += bnxt_poll_work(bp, bnapi, budget - work_done); if (work_done >= budget) break; if (!bnxt_has_work(bp, cpr)) { if (napi_complete_done(napi, work_done)) BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); break; } } mmiowb(); return work_done; } static void bnxt_free_tx_skbs(struct bnxt *bp) { int i, max_idx; struct pci_dev *pdev = bp->pdev; if (!bp->tx_ring) return; max_idx = bp->tx_nr_pages * TX_DESC_CNT; for (i = 0; i < bp->tx_nr_rings; i++) { struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; int j; for (j = 0; j < max_idx;) { struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; struct sk_buff *skb = tx_buf->skb; int k, last; if (!skb) { j++; continue; } tx_buf->skb = NULL; if (tx_buf->is_push) { dev_kfree_skb(skb); j += 2; continue; } dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), skb_headlen(skb), PCI_DMA_TODEVICE); last = tx_buf->nr_frags; j += 2; for (k = 0; k < last; k++, j++) { int ring_idx = j & bp->tx_ring_mask; skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; tx_buf = &txr->tx_buf_ring[ring_idx]; dma_unmap_page( &pdev->dev, dma_unmap_addr(tx_buf, mapping), skb_frag_size(frag), PCI_DMA_TODEVICE); } dev_kfree_skb(skb); } netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); } } static void bnxt_free_rx_skbs(struct bnxt *bp) { int i, max_idx, max_agg_idx; struct pci_dev *pdev = bp->pdev; if (!bp->rx_ring) return; max_idx = bp->rx_nr_pages * RX_DESC_CNT; max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; int j; if (rxr->rx_tpa) { for (j = 0; j < MAX_TPA; j++) { struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[j]; u8 *data = tpa_info->data; if (!data) continue; dma_unmap_single(&pdev->dev, tpa_info->mapping, bp->rx_buf_use_size, bp->rx_dir); tpa_info->data = NULL; kfree(data); } } for (j = 0; j < max_idx; j++) { struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; void *data = rx_buf->data; if (!data) continue; dma_unmap_single(&pdev->dev, rx_buf->mapping, bp->rx_buf_use_size, bp->rx_dir); rx_buf->data = NULL; if (BNXT_RX_PAGE_MODE(bp)) __free_page(data); else kfree(data); } for (j = 0; j < max_agg_idx; j++) { struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[j]; struct page *page = rx_agg_buf->page; if (!page) continue; dma_unmap_page(&pdev->dev, rx_agg_buf->mapping, BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE); rx_agg_buf->page = NULL; __clear_bit(j, rxr->rx_agg_bmap); __free_page(page); } if (rxr->rx_page) { __free_page(rxr->rx_page); rxr->rx_page = NULL; } } } static void bnxt_free_skbs(struct bnxt *bp) { bnxt_free_tx_skbs(bp); bnxt_free_rx_skbs(bp); } static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) { struct pci_dev *pdev = bp->pdev; int i; for (i = 0; i < ring->nr_pages; i++) { if (!ring->pg_arr[i]) continue; dma_free_coherent(&pdev->dev, ring->page_size, ring->pg_arr[i], ring->dma_arr[i]); ring->pg_arr[i] = NULL; } if (ring->pg_tbl) { dma_free_coherent(&pdev->dev, ring->nr_pages * 8, ring->pg_tbl, ring->pg_tbl_map); ring->pg_tbl = NULL; } if (ring->vmem_size && *ring->vmem) { vfree(*ring->vmem); *ring->vmem = NULL; } } static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) { int i; struct pci_dev *pdev = bp->pdev; if (ring->nr_pages > 1) { ring->pg_tbl = dma_alloc_coherent(&pdev->dev, ring->nr_pages * 8, &ring->pg_tbl_map, GFP_KERNEL); if (!ring->pg_tbl) return -ENOMEM; } for (i = 0; i < ring->nr_pages; i++) { ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev, ring->page_size, &ring->dma_arr[i], GFP_KERNEL); if (!ring->pg_arr[i]) return -ENOMEM; if (ring->nr_pages > 1) ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]); } if (ring->vmem_size) { *ring->vmem = vzalloc(ring->vmem_size); if (!(*ring->vmem)) return -ENOMEM; } return 0; } static void bnxt_free_rx_rings(struct bnxt *bp) { int i; if (!bp->rx_ring) return; for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; struct bnxt_ring_struct *ring; if (rxr->xdp_prog) bpf_prog_put(rxr->xdp_prog); kfree(rxr->rx_tpa); rxr->rx_tpa = NULL; kfree(rxr->rx_agg_bmap); rxr->rx_agg_bmap = NULL; ring = &rxr->rx_ring_struct; bnxt_free_ring(bp, ring); ring = &rxr->rx_agg_ring_struct; bnxt_free_ring(bp, ring); } } static int bnxt_alloc_rx_rings(struct bnxt *bp) { int i, rc, agg_rings = 0, tpa_rings = 0; if (!bp->rx_ring) return -ENOMEM; if (bp->flags & BNXT_FLAG_AGG_RINGS) agg_rings = 1; if (bp->flags & BNXT_FLAG_TPA) tpa_rings = 1; for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; struct bnxt_ring_struct *ring; ring = &rxr->rx_ring_struct; rc = bnxt_alloc_ring(bp, ring); if (rc) return rc; if (agg_rings) { u16 mem_size; ring = &rxr->rx_agg_ring_struct; rc = bnxt_alloc_ring(bp, ring); if (rc) return rc; rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; mem_size = rxr->rx_agg_bmap_size / 8; rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); if (!rxr->rx_agg_bmap) return -ENOMEM; if (tpa_rings) { rxr->rx_tpa = kcalloc(MAX_TPA, sizeof(struct bnxt_tpa_info), GFP_KERNEL); if (!rxr->rx_tpa) return -ENOMEM; } } } return 0; } static void bnxt_free_tx_rings(struct bnxt *bp) { int i; struct pci_dev *pdev = bp->pdev; if (!bp->tx_ring) return; for (i = 0; i < bp->tx_nr_rings; i++) { struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; struct bnxt_ring_struct *ring; if (txr->tx_push) { dma_free_coherent(&pdev->dev, bp->tx_push_size, txr->tx_push, txr->tx_push_mapping); txr->tx_push = NULL; } ring = &txr->tx_ring_struct; bnxt_free_ring(bp, ring); } } static int bnxt_alloc_tx_rings(struct bnxt *bp) { int i, j, rc; struct pci_dev *pdev = bp->pdev; bp->tx_push_size = 0; if (bp->tx_push_thresh) { int push_size; push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + bp->tx_push_thresh); if (push_size > 256) { push_size = 0; bp->tx_push_thresh = 0; } bp->tx_push_size = push_size; } for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; struct bnxt_ring_struct *ring; ring = &txr->tx_ring_struct; rc = bnxt_alloc_ring(bp, ring); if (rc) return rc; if (bp->tx_push_size) { dma_addr_t mapping; /* One pre-allocated DMA buffer to backup * TX push operation */ txr->tx_push = dma_alloc_coherent(&pdev->dev, bp->tx_push_size, &txr->tx_push_mapping, GFP_KERNEL); if (!txr->tx_push) return -ENOMEM; mapping = txr->tx_push_mapping + sizeof(struct tx_push_bd); txr->data_mapping = cpu_to_le64(mapping); memset(txr->tx_push, 0, sizeof(struct tx_push_bd)); } ring->queue_id = bp->q_info[j].queue_id; if (i < bp->tx_nr_rings_xdp) continue; if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) j++; } return 0; } static void bnxt_free_cp_rings(struct bnxt *bp) { int i; if (!bp->bnapi) return; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr; struct bnxt_ring_struct *ring; if (!bnapi) continue; cpr = &bnapi->cp_ring; ring = &cpr->cp_ring_struct; bnxt_free_ring(bp, ring); } } static int bnxt_alloc_cp_rings(struct bnxt *bp) { int i, rc; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr; struct bnxt_ring_struct *ring; if (!bnapi) continue; cpr = &bnapi->cp_ring; ring = &cpr->cp_ring_struct; rc = bnxt_alloc_ring(bp, ring); if (rc) return rc; } return 0; } static void bnxt_init_ring_struct(struct bnxt *bp) { int i; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr; struct bnxt_rx_ring_info *rxr; struct bnxt_tx_ring_info *txr; struct bnxt_ring_struct *ring; if (!bnapi) continue; cpr = &bnapi->cp_ring; ring = &cpr->cp_ring_struct; ring->nr_pages = bp->cp_nr_pages; ring->page_size = HW_CMPD_RING_SIZE; ring->pg_arr = (void **)cpr->cp_desc_ring; ring->dma_arr = cpr->cp_desc_mapping; ring->vmem_size = 0; rxr = bnapi->rx_ring; if (!rxr) goto skip_rx; ring = &rxr->rx_ring_struct; ring->nr_pages = bp->rx_nr_pages; ring->page_size = HW_RXBD_RING_SIZE; ring->pg_arr = (void **)rxr->rx_desc_ring; ring->dma_arr = rxr->rx_desc_mapping; ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; ring->vmem = (void **)&rxr->rx_buf_ring; ring = &rxr->rx_agg_ring_struct; ring->nr_pages = bp->rx_agg_nr_pages; ring->page_size = HW_RXBD_RING_SIZE; ring->pg_arr = (void **)rxr->rx_agg_desc_ring; ring->dma_arr = rxr->rx_agg_desc_mapping; ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; ring->vmem = (void **)&rxr->rx_agg_ring; skip_rx: txr = bnapi->tx_ring; if (!txr) continue; ring = &txr->tx_ring_struct; ring->nr_pages = bp->tx_nr_pages; ring->page_size = HW_RXBD_RING_SIZE; ring->pg_arr = (void **)txr->tx_desc_ring; ring->dma_arr = txr->tx_desc_mapping; ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; ring->vmem = (void **)&txr->tx_buf_ring; } } static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) { int i; u32 prod; struct rx_bd **rx_buf_ring; rx_buf_ring = (struct rx_bd **)ring->pg_arr; for (i = 0, prod = 0; i < ring->nr_pages; i++) { int j; struct rx_bd *rxbd; rxbd = rx_buf_ring[i]; if (!rxbd) continue; for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { rxbd->rx_bd_len_flags_type = cpu_to_le32(type); rxbd->rx_bd_opaque = prod; } } } static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) { struct net_device *dev = bp->dev; struct bnxt_rx_ring_info *rxr; struct bnxt_ring_struct *ring; u32 prod, type; int i; type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; if (NET_IP_ALIGN == 2) type |= RX_BD_FLAGS_SOP; rxr = &bp->rx_ring[ring_nr]; ring = &rxr->rx_ring_struct; bnxt_init_rxbd_pages(ring, type); if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1); if (IS_ERR(rxr->xdp_prog)) { int rc = PTR_ERR(rxr->xdp_prog); rxr->xdp_prog = NULL; return rc; } } prod = rxr->rx_prod; for (i = 0; i < bp->rx_ring_size; i++) { if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", ring_nr, i, bp->rx_ring_size); break; } prod = NEXT_RX(prod); } rxr->rx_prod = prod; ring->fw_ring_id = INVALID_HW_RING_ID; ring = &rxr->rx_agg_ring_struct; ring->fw_ring_id = INVALID_HW_RING_ID; if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) return 0; type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; bnxt_init_rxbd_pages(ring, type); prod = rxr->rx_agg_prod; for (i = 0; i < bp->rx_agg_ring_size; i++) { if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", ring_nr, i, bp->rx_ring_size); break; } prod = NEXT_RX_AGG(prod); } rxr->rx_agg_prod = prod; if (bp->flags & BNXT_FLAG_TPA) { if (rxr->rx_tpa) { u8 *data; dma_addr_t mapping; for (i = 0; i < MAX_TPA; i++) { data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); if (!data) return -ENOMEM; rxr->rx_tpa[i].data = data; rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; rxr->rx_tpa[i].mapping = mapping; } } else { netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); return -ENOMEM; } } return 0; } static int bnxt_init_rx_rings(struct bnxt *bp) { int i, rc = 0; if (BNXT_RX_PAGE_MODE(bp)) { bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; bp->rx_dma_offset = XDP_PACKET_HEADROOM; } else { bp->rx_offset = BNXT_RX_OFFSET; bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; } for (i = 0; i < bp->rx_nr_rings; i++) { rc = bnxt_init_one_rx_ring(bp, i); if (rc) break; } return rc; } static int bnxt_init_tx_rings(struct bnxt *bp) { u16 i; bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, MAX_SKB_FRAGS + 1); for (i = 0; i < bp->tx_nr_rings; i++) { struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; struct bnxt_ring_struct *ring = &txr->tx_ring_struct; ring->fw_ring_id = INVALID_HW_RING_ID; } return 0; } static void bnxt_free_ring_grps(struct bnxt *bp) { kfree(bp->grp_info); bp->grp_info = NULL; } static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) { int i; if (irq_re_init) { bp->grp_info = kcalloc(bp->cp_nr_rings, sizeof(struct bnxt_ring_grp_info), GFP_KERNEL); if (!bp->grp_info) return -ENOMEM; } for (i = 0; i < bp->cp_nr_rings; i++) { if (irq_re_init) bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; } return 0; } static void bnxt_free_vnics(struct bnxt *bp) { kfree(bp->vnic_info); bp->vnic_info = NULL; bp->nr_vnics = 0; } static int bnxt_alloc_vnics(struct bnxt *bp) { int num_vnics = 1; #ifdef CONFIG_RFS_ACCEL if (bp->flags & BNXT_FLAG_RFS) num_vnics += bp->rx_nr_rings; #endif if (BNXT_CHIP_TYPE_NITRO_A0(bp)) num_vnics++; bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), GFP_KERNEL); if (!bp->vnic_info) return -ENOMEM; bp->nr_vnics = num_vnics; return 0; } static void bnxt_init_vnics(struct bnxt *bp) { int i; for (i = 0; i < bp->nr_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; vnic->fw_vnic_id = INVALID_HW_RING_ID; vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID; vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID; vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; if (bp->vnic_info[i].rss_hash_key) { if (i == 0) prandom_bytes(vnic->rss_hash_key, HW_HASH_KEY_SIZE); else memcpy(vnic->rss_hash_key, bp->vnic_info[0].rss_hash_key, HW_HASH_KEY_SIZE); } } } static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) { int pages; pages = ring_size / desc_per_pg; if (!pages) return 1; pages++; while (pages & (pages - 1)) pages++; return pages; } void bnxt_set_tpa_flags(struct bnxt *bp) { bp->flags &= ~BNXT_FLAG_TPA; if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) return; if (bp->dev->features & NETIF_F_LRO) bp->flags |= BNXT_FLAG_LRO; if (bp->dev->features & NETIF_F_GRO) bp->flags |= BNXT_FLAG_GRO; } /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must * be set on entry. */ void bnxt_set_ring_params(struct bnxt *bp) { u32 ring_size, rx_size, rx_space; u32 agg_factor = 0, agg_ring_size = 0; /* 8 for CRC and VLAN */ rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); rx_space = rx_size + NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; ring_size = bp->rx_ring_size; bp->rx_agg_ring_size = 0; bp->rx_agg_nr_pages = 0; if (bp->flags & BNXT_FLAG_TPA) agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); bp->flags &= ~BNXT_FLAG_JUMBO; if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { u32 jumbo_factor; bp->flags |= BNXT_FLAG_JUMBO; jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; if (jumbo_factor > agg_factor) agg_factor = jumbo_factor; } agg_ring_size = ring_size * agg_factor; if (agg_ring_size) { bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, RX_DESC_CNT); if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { u32 tmp = agg_ring_size; bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", tmp, agg_ring_size); } bp->rx_agg_ring_size = agg_ring_size; bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); rx_space = rx_size + NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } bp->rx_buf_use_size = rx_size; bp->rx_buf_size = rx_space; bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; ring_size = bp->tx_ring_size; bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; bp->cp_ring_size = ring_size; bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); if (bp->cp_nr_pages > MAX_CP_PAGES) { bp->cp_nr_pages = MAX_CP_PAGES; bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", ring_size, bp->cp_ring_size); } bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; bp->cp_ring_mask = bp->cp_bit - 1; } int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) { if (page_mode) { if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) return -EOPNOTSUPP; bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU; bp->flags &= ~BNXT_FLAG_AGG_RINGS; bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; bp->dev->hw_features &= ~NETIF_F_LRO; bp->dev->features &= ~NETIF_F_LRO; bp->rx_dir = DMA_BIDIRECTIONAL; bp->rx_skb_func = bnxt_rx_page_skb; } else { bp->dev->max_mtu = BNXT_MAX_MTU; bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; bp->rx_dir = DMA_FROM_DEVICE; bp->rx_skb_func = bnxt_rx_skb; } return 0; } static void bnxt_free_vnic_attributes(struct bnxt *bp) { int i; struct bnxt_vnic_info *vnic; struct pci_dev *pdev = bp->pdev; if (!bp->vnic_info) return; for (i = 0; i < bp->nr_vnics; i++) { vnic = &bp->vnic_info[i]; kfree(vnic->fw_grp_ids); vnic->fw_grp_ids = NULL; kfree(vnic->uc_list); vnic->uc_list = NULL; if (vnic->mc_list) { dma_free_coherent(&pdev->dev, vnic->mc_list_size, vnic->mc_list, vnic->mc_list_mapping); vnic->mc_list = NULL; } if (vnic->rss_table) { dma_free_coherent(&pdev->dev, PAGE_SIZE, vnic->rss_table, vnic->rss_table_dma_addr); vnic->rss_table = NULL; } vnic->rss_hash_key = NULL; vnic->flags = 0; } } static int bnxt_alloc_vnic_attributes(struct bnxt *bp) { int i, rc = 0, size; struct bnxt_vnic_info *vnic; struct pci_dev *pdev = bp->pdev; int max_rings; for (i = 0; i < bp->nr_vnics; i++) { vnic = &bp->vnic_info[i]; if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; if (mem_size > 0) { vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); if (!vnic->uc_list) { rc = -ENOMEM; goto out; } } } if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; vnic->mc_list = dma_alloc_coherent(&pdev->dev, vnic->mc_list_size, &vnic->mc_list_mapping, GFP_KERNEL); if (!vnic->mc_list) { rc = -ENOMEM; goto out; } } if (vnic->flags & BNXT_VNIC_RSS_FLAG) max_rings = bp->rx_nr_rings; else max_rings = 1; vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); if (!vnic->fw_grp_ids) { rc = -ENOMEM; goto out; } if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && !(vnic->flags & BNXT_VNIC_RSS_FLAG)) continue; /* Allocate rss table and hash key */ vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &vnic->rss_table_dma_addr, GFP_KERNEL); if (!vnic->rss_table) { rc = -ENOMEM; goto out; } size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); vnic->rss_hash_key = ((void *)vnic->rss_table) + size; vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; } return 0; out: return rc; } static void bnxt_free_hwrm_resources(struct bnxt *bp) { struct pci_dev *pdev = bp->pdev; dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, bp->hwrm_cmd_resp_dma_addr); bp->hwrm_cmd_resp_addr = NULL; if (bp->hwrm_dbg_resp_addr) { dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, bp->hwrm_dbg_resp_addr, bp->hwrm_dbg_resp_dma_addr); bp->hwrm_dbg_resp_addr = NULL; } } static int bnxt_alloc_hwrm_resources(struct bnxt *bp) { struct pci_dev *pdev = bp->pdev; bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &bp->hwrm_cmd_resp_dma_addr, GFP_KERNEL); if (!bp->hwrm_cmd_resp_addr) return -ENOMEM; bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, &bp->hwrm_dbg_resp_dma_addr, GFP_KERNEL); if (!bp->hwrm_dbg_resp_addr) netdev_warn(bp->dev, "fail to alloc debug register dma mem\n"); return 0; } static void bnxt_free_stats(struct bnxt *bp) { u32 size, i; struct pci_dev *pdev = bp->pdev; if (bp->hw_rx_port_stats) { dma_free_coherent(&pdev->dev, bp->hw_port_stats_size, bp->hw_rx_port_stats, bp->hw_rx_port_stats_map); bp->hw_rx_port_stats = NULL; bp->flags &= ~BNXT_FLAG_PORT_STATS; } if (!bp->bnapi) return; size = sizeof(struct ctx_hw_stats); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; if (cpr->hw_stats) { dma_free_coherent(&pdev->dev, size, cpr->hw_stats, cpr->hw_stats_map); cpr->hw_stats = NULL; } } } static int bnxt_alloc_stats(struct bnxt *bp) { u32 size, i; struct pci_dev *pdev = bp->pdev; size = sizeof(struct ctx_hw_stats); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, &cpr->hw_stats_map, GFP_KERNEL); if (!cpr->hw_stats) return -ENOMEM; cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; } if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) { bp->hw_port_stats_size = sizeof(struct rx_port_stats) + sizeof(struct tx_port_stats) + 1024; bp->hw_rx_port_stats = dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size, &bp->hw_rx_port_stats_map, GFP_KERNEL); if (!bp->hw_rx_port_stats) return -ENOMEM; bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512; bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map + sizeof(struct rx_port_stats) + 512; bp->flags |= BNXT_FLAG_PORT_STATS; } return 0; } static void bnxt_clear_ring_indices(struct bnxt *bp) { int i; if (!bp->bnapi) return; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr; struct bnxt_rx_ring_info *rxr; struct bnxt_tx_ring_info *txr; if (!bnapi) continue; cpr = &bnapi->cp_ring; cpr->cp_raw_cons = 0; txr = bnapi->tx_ring; if (txr) { txr->tx_prod = 0; txr->tx_cons = 0; } rxr = bnapi->rx_ring; if (rxr) { rxr->rx_prod = 0; rxr->rx_agg_prod = 0; rxr->rx_sw_agg_prod = 0; rxr->rx_next_cons = 0; } } } static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) { #ifdef CONFIG_RFS_ACCEL int i; /* Under rtnl_lock and all our NAPIs have been disabled. It's * safe to delete the hash table. */ for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { struct hlist_head *head; struct hlist_node *tmp; struct bnxt_ntuple_filter *fltr; head = &bp->ntp_fltr_hash_tbl[i]; hlist_for_each_entry_safe(fltr, tmp, head, hash) { hlist_del(&fltr->hash); kfree(fltr); } } if (irq_reinit) { kfree(bp->ntp_fltr_bmap); bp->ntp_fltr_bmap = NULL; } bp->ntp_fltr_count = 0; #endif } static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) { #ifdef CONFIG_RFS_ACCEL int i, rc = 0; if (!(bp->flags & BNXT_FLAG_RFS)) return 0; for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); bp->ntp_fltr_count = 0; bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), GFP_KERNEL); if (!bp->ntp_fltr_bmap) rc = -ENOMEM; return rc; #else return 0; #endif } static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) { bnxt_free_vnic_attributes(bp); bnxt_free_tx_rings(bp); bnxt_free_rx_rings(bp); bnxt_free_cp_rings(bp); bnxt_free_ntp_fltrs(bp, irq_re_init); if (irq_re_init) { bnxt_free_stats(bp); bnxt_free_ring_grps(bp); bnxt_free_vnics(bp); kfree(bp->tx_ring_map); bp->tx_ring_map = NULL; kfree(bp->tx_ring); bp->tx_ring = NULL; kfree(bp->rx_ring); bp->rx_ring = NULL; kfree(bp->bnapi); bp->bnapi = NULL; } else { bnxt_clear_ring_indices(bp); } } static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) { int i, j, rc, size, arr_size; void *bnapi; if (irq_re_init) { /* Allocate bnapi mem pointer array and mem block for * all queues */ arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * bp->cp_nr_rings); size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); if (!bnapi) return -ENOMEM; bp->bnapi = bnapi; bnapi += arr_size; for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { bp->bnapi[i] = bnapi; bp->bnapi[i]->index = i; bp->bnapi[i]->bp = bp; } bp->rx_ring = kcalloc(bp->rx_nr_rings, sizeof(struct bnxt_rx_ring_info), GFP_KERNEL); if (!bp->rx_ring) return -ENOMEM; for (i = 0; i < bp->rx_nr_rings; i++) { bp->rx_ring[i].bnapi = bp->bnapi[i]; bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; } bp->tx_ring = kcalloc(bp->tx_nr_rings, sizeof(struct bnxt_tx_ring_info), GFP_KERNEL); if (!bp->tx_ring) return -ENOMEM; bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), GFP_KERNEL); if (!bp->tx_ring_map) return -ENOMEM; if (bp->flags & BNXT_FLAG_SHARED_RINGS) j = 0; else j = bp->rx_nr_rings; for (i = 0; i < bp->tx_nr_rings; i++, j++) { bp->tx_ring[i].bnapi = bp->bnapi[j]; bp->bnapi[j]->tx_ring = &bp->tx_ring[i]; bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; if (i >= bp->tx_nr_rings_xdp) { bp->tx_ring[i].txq_index = i - bp->tx_nr_rings_xdp; bp->bnapi[j]->tx_int = bnxt_tx_int; } else { bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; } } rc = bnxt_alloc_stats(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_ntp_fltrs(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_vnics(bp); if (rc) goto alloc_mem_err; } bnxt_init_ring_struct(bp); rc = bnxt_alloc_rx_rings(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_tx_rings(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_cp_rings(bp); if (rc) goto alloc_mem_err; bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | BNXT_VNIC_UCAST_FLAG; rc = bnxt_alloc_vnic_attributes(bp); if (rc) goto alloc_mem_err; return 0; alloc_mem_err: bnxt_free_mem(bp, true); return rc; } static void bnxt_disable_int(struct bnxt *bp) { int i; if (!bp->bnapi) return; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; if (ring->fw_ring_id != INVALID_HW_RING_ID) BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); } } static void bnxt_disable_int_sync(struct bnxt *bp) { int i; atomic_inc(&bp->intr_sem); bnxt_disable_int(bp); for (i = 0; i < bp->cp_nr_rings; i++) synchronize_irq(bp->irq_tbl[i].vector); } static void bnxt_enable_int(struct bnxt *bp) { int i; atomic_set(&bp->intr_sem, 0); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); } } void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, u16 cmpl_ring, u16 target_id) { struct input *req = request; req->req_type = cpu_to_le16(req_type); req->cmpl_ring = cpu_to_le16(cmpl_ring); req->target_id = cpu_to_le16(target_id); req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); } static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, int timeout, bool silent) { int i, intr_process, rc, tmo_count; struct input *req = msg; u32 *data = msg; __le32 *resp_len, *valid; u16 cp_ring_id, len = 0; struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++); memset(resp, 0, PAGE_SIZE); cp_ring_id = le16_to_cpu(req->cmpl_ring); intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; /* Write request msg to hwrm channel */ __iowrite32_copy(bp->bar0, data, msg_len / 4); for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4) writel(0, bp->bar0 + i); /* currently supports only one outstanding message */ if (intr_process) bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); /* Ring channel doorbell */ writel(1, bp->bar0 + 0x100); if (!timeout) timeout = DFLT_HWRM_CMD_TIMEOUT; i = 0; tmo_count = timeout * 40; if (intr_process) { /* Wait until hwrm response cmpl interrupt is processed */ while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID && i++ < tmo_count) { usleep_range(25, 40); } if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) { netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", le16_to_cpu(req->req_type)); return -1; } } else { /* Check if response len is updated */ resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET; for (i = 0; i < tmo_count; i++) { len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >> HWRM_RESP_LEN_SFT; if (len) break; usleep_range(25, 40); } if (i >= tmo_count) { netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", timeout, le16_to_cpu(req->req_type), le16_to_cpu(req->seq_id), len); return -1; } /* Last word of resp contains valid bit */ valid = bp->hwrm_cmd_resp_addr + len - 4; for (i = 0; i < 5; i++) { if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK) break; udelay(1); } if (i >= 5) { netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", timeout, le16_to_cpu(req->req_type), le16_to_cpu(req->seq_id), len, *valid); return -1; } } rc = le16_to_cpu(resp->error_code); if (rc && !silent) netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", le16_to_cpu(resp->req_type), le16_to_cpu(resp->seq_id), rc); return rc; } int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) { return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); } int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) { int rc; mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, msg, msg_len, timeout); mutex_unlock(&bp->hwrm_cmd_lock); return rc; } int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, int timeout) { int rc; mutex_lock(&bp->hwrm_cmd_lock); rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); mutex_unlock(&bp->hwrm_cmd_lock); return rc; } int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap, int bmap_size) { struct hwrm_func_drv_rgtr_input req = {0}; DECLARE_BITMAP(async_events_bmap, 256); u32 *events = (u32 *)async_events_bmap; int i; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); req.enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); memset(async_events_bmap, 0, sizeof(async_events_bmap)); for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) __set_bit(bnxt_async_events_arr[i], async_events_bmap); if (bmap && bmap_size) { for (i = 0; i < bmap_size; i++) { if (test_bit(i, bmap)) __set_bit(i, async_events_bmap); } } for (i = 0; i < 8; i++) req.async_event_fwd[i] |= cpu_to_le32(events[i]); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp) { struct hwrm_func_drv_rgtr_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); req.enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | FUNC_DRV_RGTR_REQ_ENABLES_VER); req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); req.ver_maj = DRV_VER_MAJ; req.ver_min = DRV_VER_MIN; req.ver_upd = DRV_VER_UPD; if (BNXT_PF(bp)) { DECLARE_BITMAP(vf_req_snif_bmap, 256); u32 *data = (u32 *)vf_req_snif_bmap; int i; memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap)); for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap); for (i = 0; i < 8; i++) req.vf_req_fwd[i] = cpu_to_le32(data[i]); req.enables |= cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); } return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) { struct hwrm_func_drv_unrgtr_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) { u32 rc = 0; struct hwrm_tunnel_dst_port_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); req.tunnel_type = tunnel_type; switch (tunnel_type) { case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; break; case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; break; default: break; } rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", rc); return rc; } static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, u8 tunnel_type) { u32 rc = 0; struct hwrm_tunnel_dst_port_alloc_input req = {0}; struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); req.tunnel_type = tunnel_type; req.tunnel_dst_port_val = port; mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", rc); goto err_out; } switch (tunnel_type) { case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; break; case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; break; default: break; } err_out: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) { struct hwrm_cfa_l2_set_rx_mask_input req = {0}; struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); req.mask = cpu_to_le32(vnic->rx_mask); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } #ifdef CONFIG_RFS_ACCEL static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) { struct hwrm_cfa_ntuple_filter_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); req.ntuple_filter_id = fltr->filter_id; return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } #define BNXT_NTP_FLTR_FLAGS \ (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) #define BNXT_NTP_TUNNEL_FLTR_FLAG \ CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) { int rc = 0; struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; struct hwrm_cfa_ntuple_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; struct flow_keys *keys = &fltr->fkeys; struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1]; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); req.ethertype = htons(ETH_P_IP); memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; req.ip_protocol = keys->basic.ip_proto; if (keys->basic.n_proto == htons(ETH_P_IPV6)) { int i; req.ethertype = htons(ETH_P_IPV6); req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; *(struct in6_addr *)&req.src_ipaddr[0] = keys->addrs.v6addrs.src; *(struct in6_addr *)&req.dst_ipaddr[0] = keys->addrs.v6addrs.dst; for (i = 0; i < 4; i++) { req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); } } else { req.src_ipaddr[0] = keys->addrs.v4addrs.src; req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); } if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); req.tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; } req.src_port = keys->ports.src; req.src_port_mask = cpu_to_be16(0xffff); req.dst_port = keys->ports.dst; req.dst_port_mask = cpu_to_be16(0xffff); req.dst_id = cpu_to_le16(vnic->fw_vnic_id); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) fltr->filter_id = resp->ntuple_filter_id; mutex_unlock(&bp->hwrm_cmd_lock); return rc; } #endif static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, u8 *mac_addr) { u32 rc = 0; struct hwrm_cfa_l2_filter_alloc_input req = {0}; struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) req.flags |= cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); req.enables = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); memcpy(req.l2_addr, mac_addr, ETH_ALEN); req.l2_addr_mask[0] = 0xff; req.l2_addr_mask[1] = 0xff; req.l2_addr_mask[2] = 0xff; req.l2_addr_mask[3] = 0xff; req.l2_addr_mask[4] = 0xff; req.l2_addr_mask[5] = 0xff; mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = resp->l2_filter_id; mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) { u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ int rc = 0; /* Any associated ntuple filters will also be cleared by firmware. */ mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < num_of_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; for (j = 0; j < vnic->uc_filter_count; j++) { struct hwrm_cfa_l2_filter_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, -1); req.l2_filter_id = vnic->fw_l2_filter_id[j]; rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } vnic->uc_filter_count = 0; } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) { struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; struct hwrm_vnic_tpa_cfg_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); if (tpa_flags) { u16 mss = bp->dev->mtu - 40; u32 nsegs, n, segs = 0, flags; flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; if (tpa_flags & BNXT_FLAG_GRO) flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; req.flags = cpu_to_le32(flags); req.enables = cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); /* Number of segs are log2 units, and first packet is not * included as part of this units. */ if (mss <= BNXT_RX_PAGE_SIZE) { n = BNXT_RX_PAGE_SIZE / mss; nsegs = (MAX_SKB_FRAGS - 1) * n; } else { n = mss / BNXT_RX_PAGE_SIZE; if (mss & (BNXT_RX_PAGE_SIZE - 1)) n++; nsegs = (MAX_SKB_FRAGS - n) / n; } segs = ilog2(nsegs); req.max_agg_segs = cpu_to_le16(segs); req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX); req.min_agg_len = cpu_to_le32(512); } req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) { u32 i, j, max_rings; struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; struct hwrm_vnic_rss_cfg_input req = {0}; if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); if (set_rss) { req.hash_type = cpu_to_le32(bp->rss_hash_cfg); if (vnic->flags & BNXT_VNIC_RSS_FLAG) { if (BNXT_CHIP_TYPE_NITRO_A0(bp)) max_rings = bp->rx_nr_rings - 1; else max_rings = bp->rx_nr_rings; } else { max_rings = 1; } /* Fill the RSS indirection table with ring group ids */ for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { if (j == max_rings) j = 0; vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); } req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); } req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) { struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; struct hwrm_vnic_plcmodes_cfg_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); req.enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); /* thresholds not implemented in firmware yet */ req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) { struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); req.rss_cos_lb_ctx_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; } static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) { int i, j; for (i = 0; i < bp->nr_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) bnxt_hwrm_vnic_ctx_free_one(bp, i, j); } } bp->rsscos_nr_ctxs = 0; } static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) { int rc; struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = le16_to_cpu(resp->rss_cos_lb_ctx_id); mutex_unlock(&bp->hwrm_cmd_lock); return rc; } int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) { unsigned int ring = 0, grp_idx; struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; struct hwrm_vnic_cfg_input req = {0}; u16 def_vlan = 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); /* Only RSS support for now TBD: COS & LB */ if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | VNIC_CFG_REQ_ENABLES_MRU); } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { req.rss_rule = cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | VNIC_CFG_REQ_ENABLES_MRU); req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); } else { req.rss_rule = cpu_to_le16(0xffff); } if (BNXT_CHIP_TYPE_NITRO_A0(bp) && (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); } else { req.cos_rule = cpu_to_le16(0xffff); } if (vnic->flags & BNXT_VNIC_RSS_FLAG) ring = 0; else if (vnic->flags & BNXT_VNIC_RFS_FLAG) ring = vnic_id - 1; else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) ring = bp->rx_nr_rings - 1; grp_idx = bp->rx_ring[ring].bnapi->index; req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); req.lb_rule = cpu_to_le16(0xffff); req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); #ifdef CONFIG_BNXT_SRIOV if (BNXT_VF(bp)) def_vlan = bp->vf.vlan; #endif if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) { u32 rc = 0; if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { struct hwrm_vnic_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); req.vnic_id = cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) return rc; bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; } return rc; } static void bnxt_hwrm_vnic_free(struct bnxt *bp) { u16 i; for (i = 0; i < bp->nr_vnics; i++) bnxt_hwrm_vnic_free_one(bp, i); } static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, unsigned int start_rx_ring_idx, unsigned int nr_rings) { int rc = 0; unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; struct hwrm_vnic_alloc_input req = {0}; struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; /* map ring groups to this vnic */ for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { grp_idx = bp->rx_ring[i].bnapi->index; if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", j, nr_rings); break; } bp->vnic_info[vnic_id].fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; } bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID; bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID; if (vnic_id == 0) req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id); mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) { struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; struct hwrm_vnic_qcaps_input req = {0}; int rc; if (bp->hwrm_spec_code < 0x10600) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { if (resp->flags & cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) bp->flags |= BNXT_FLAG_NEW_RSS_CAP; } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) { u16 i; u32 rc = 0; mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < bp->rx_nr_rings; i++) { struct hwrm_ring_grp_alloc_input req = {0}; struct hwrm_ring_grp_alloc_output *resp = bp->hwrm_cmd_resp_addr; unsigned int grp_idx = bp->rx_ring[i].bnapi->index; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) break; bp->grp_info[grp_idx].fw_grp_id = le32_to_cpu(resp->ring_group_id); } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_ring_grp_free(struct bnxt *bp) { u16 i; u32 rc = 0; struct hwrm_ring_grp_free_input req = {0}; if (!bp->grp_info) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < bp->cp_nr_rings; i++) { if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) continue; req.ring_group_id = cpu_to_le32(bp->grp_info[i].fw_grp_id); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) break; bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int hwrm_ring_alloc_send_msg(struct bnxt *bp, struct bnxt_ring_struct *ring, u32 ring_type, u32 map_index, u32 stats_ctx_id) { int rc = 0, err = 0; struct hwrm_ring_alloc_input req = {0}; struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; u16 ring_id; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); req.enables = 0; if (ring->nr_pages > 1) { req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map); /* Page size is in log2 units */ req.page_size = BNXT_PAGE_SHIFT; req.page_tbl_depth = 1; } else { req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]); } req.fbo = 0; /* Association of ring index with doorbell index and MSIX number */ req.logical_id = cpu_to_le16(map_index); switch (ring_type) { case HWRM_RING_ALLOC_TX: req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; /* Association of transmit ring with completion ring */ req.cmpl_ring_id = cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id); req.length = cpu_to_le32(bp->tx_ring_mask + 1); req.stat_ctx_id = cpu_to_le32(stats_ctx_id); req.queue_id = cpu_to_le16(ring->queue_id); break; case HWRM_RING_ALLOC_RX: req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; req.length = cpu_to_le32(bp->rx_ring_mask + 1); break; case HWRM_RING_ALLOC_AGG: req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); break; case HWRM_RING_ALLOC_CMPL: req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; req.length = cpu_to_le32(bp->cp_ring_mask + 1); if (bp->flags & BNXT_FLAG_USING_MSIX) req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; break; default: netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", ring_type); return -1; } mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); err = le16_to_cpu(resp->error_code); ring_id = le16_to_cpu(resp->ring_id); mutex_unlock(&bp->hwrm_cmd_lock); if (rc || err) { switch (ring_type) { case RING_FREE_REQ_RING_TYPE_L2_CMPL: netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n", rc, err); return -1; case RING_FREE_REQ_RING_TYPE_RX: netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n", rc, err); return -1; case RING_FREE_REQ_RING_TYPE_TX: netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n", rc, err); return -1; default: netdev_err(bp->dev, "Invalid ring\n"); return -1; } } ring->fw_ring_id = ring_id; return rc; } static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) { int rc; if (BNXT_PF(bp)) { struct hwrm_func_cfg_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(0xffff); req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); req.async_event_cr = cpu_to_le16(idx); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } else { struct hwrm_func_vf_cfg_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); req.async_event_cr = cpu_to_le16(idx); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } return rc; } static int bnxt_hwrm_ring_alloc(struct bnxt *bp) { int i, rc = 0; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; cpr->cp_doorbell = bp->bar1 + i * 0x80; rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i, INVALID_STATS_CTX_ID); if (rc) goto err_out; BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; if (!i) { rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); if (rc) netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); } } for (i = 0; i < bp->tx_nr_rings; i++) { struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; struct bnxt_ring_struct *ring = &txr->tx_ring_struct; u32 map_idx = txr->bnapi->index; u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx; rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX, map_idx, fw_stats_ctx); if (rc) goto err_out; txr->tx_doorbell = bp->bar1 + map_idx * 0x80; } for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; u32 map_idx = rxr->bnapi->index; rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX, map_idx, INVALID_STATS_CTX_ID); if (rc) goto err_out; rxr->rx_doorbell = bp->bar1 + map_idx * 0x80; writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; } if (bp->flags & BNXT_FLAG_AGG_RINGS) { for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; u32 grp_idx = rxr->bnapi->index; u32 map_idx = grp_idx + bp->rx_nr_rings; rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_AGG, map_idx, INVALID_STATS_CTX_ID); if (rc) goto err_out; rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80; writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell); bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; } } err_out: return rc; } static int hwrm_ring_free_send_msg(struct bnxt *bp, struct bnxt_ring_struct *ring, u32 ring_type, int cmpl_ring_id) { int rc; struct hwrm_ring_free_input req = {0}; struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; u16 error_code; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); req.ring_type = ring_type; req.ring_id = cpu_to_le16(ring->fw_ring_id); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); error_code = le16_to_cpu(resp->error_code); mutex_unlock(&bp->hwrm_cmd_lock); if (rc || error_code) { switch (ring_type) { case RING_FREE_REQ_RING_TYPE_L2_CMPL: netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n", rc); return rc; case RING_FREE_REQ_RING_TYPE_RX: netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n", rc); return rc; case RING_FREE_REQ_RING_TYPE_TX: netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n", rc); return rc; default: netdev_err(bp->dev, "Invalid ring\n"); return -1; } } return 0; } static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) { int i; if (!bp->bnapi) return; for (i = 0; i < bp->tx_nr_rings; i++) { struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; struct bnxt_ring_struct *ring = &txr->tx_ring_struct; u32 grp_idx = txr->bnapi->index; u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; if (ring->fw_ring_id != INVALID_HW_RING_ID) { hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, close_path ? cmpl_ring_id : INVALID_HW_RING_ID); ring->fw_ring_id = INVALID_HW_RING_ID; } } for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; u32 grp_idx = rxr->bnapi->index; u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; if (ring->fw_ring_id != INVALID_HW_RING_ID) { hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_RX, close_path ? cmpl_ring_id : INVALID_HW_RING_ID); ring->fw_ring_id = INVALID_HW_RING_ID; bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; } } for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; u32 grp_idx = rxr->bnapi->index; u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; if (ring->fw_ring_id != INVALID_HW_RING_ID) { hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_RX, close_path ? cmpl_ring_id : INVALID_HW_RING_ID); ring->fw_ring_id = INVALID_HW_RING_ID; bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; } } /* The completion rings are about to be freed. After that the * IRQ doorbell will not work anymore. So we need to disable * IRQ here. */ bnxt_disable_int_sync(bp); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; if (ring->fw_ring_id != INVALID_HW_RING_ID) { hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, INVALID_HW_RING_ID); ring->fw_ring_id = INVALID_HW_RING_ID; bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; } } } /* Caller must hold bp->hwrm_cmd_lock */ int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) { struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; struct hwrm_func_qcfg_input req = {0}; int rc; if (bp->hwrm_spec_code < 0x10601) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); req.fid = cpu_to_le16(fid); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) *tx_rings = le16_to_cpu(resp->alloc_tx_rings); return rc; } static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings) { struct hwrm_func_cfg_input req = {0}; int rc; if (bp->hwrm_spec_code < 0x10601) return 0; if (BNXT_VF(bp)) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(0xffff); req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS); req.num_tx_rings = cpu_to_le16(*tx_rings); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) return rc; mutex_lock(&bp->hwrm_cmd_lock); rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings); mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs, u32 buf_tmrs, u16 flags, struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) { req->flags = cpu_to_le16(flags); req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs); req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16); req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs); req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16); /* Minimum time between 2 interrupts set to buf_tmr x 2 */ req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2); req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4); req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4); } int bnxt_hwrm_set_coal(struct bnxt *bp) { int i, rc = 0; struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, req_tx = {0}, *req; u16 max_buf, max_buf_irq; u16 buf_tmr, buf_tmr_irq; u32 flags; bnxt_hwrm_cmd_hdr_init(bp, &req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); bnxt_hwrm_cmd_hdr_init(bp, &req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); /* Each rx completion (2 records) should be DMAed immediately. * DMA 1/4 of the completion buffers at a time. */ max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2); /* max_buf must not be zero */ max_buf = clamp_t(u16, max_buf, 1, 63); max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63); buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks); /* buf timer set to 1/4 of interrupt timer */ buf_tmr = max_t(u16, buf_tmr / 4, 1); buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq); buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; /* RING_IDLE generates more IRQs for lower latency. Enable it only * if coal_ticks is less than 25 us. */ if (bp->rx_coal_ticks < 25) flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, buf_tmr_irq << 16 | buf_tmr, flags, &req_rx); /* max_buf must not be zero */ max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63); max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63); buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks); /* buf timer set to 1/4 of interrupt timer */ buf_tmr = max_t(u16, buf_tmr / 4, 1); buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq); buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, buf_tmr_irq << 16 | buf_tmr, flags, &req_tx); mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; req = &req_rx; if (!bnapi->rx_ring) req = &req_tx; req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); rc = _hwrm_send_message(bp, req, sizeof(*req), HWRM_CMD_TIMEOUT); if (rc) break; } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp) { int rc = 0, i; struct hwrm_stat_ctx_free_input req = {0}; if (!bp->bnapi) return 0; if (BNXT_CHIP_TYPE_NITRO_A0(bp)) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) break; cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; } } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) { int rc = 0, i; struct hwrm_stat_ctx_alloc_input req = {0}; struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; if (BNXT_CHIP_TYPE_NITRO_A0(bp)) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) break; cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_func_qcfg(struct bnxt *bp) { struct hwrm_func_qcfg_input req = {0}; struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); req.fid = cpu_to_le16(0xffff); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) goto func_qcfg_exit; #ifdef CONFIG_BNXT_SRIOV if (BNXT_VF(bp)) { struct bnxt_vf_info *vf = &bp->vf; vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; } #endif if (BNXT_PF(bp) && (le16_to_cpu(resp->flags) & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)) bp->flags |= BNXT_FLAG_FW_LLDP_AGENT; switch (resp->port_partition_type) { case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: bp->port_partition_type = resp->port_partition_type; break; } func_qcfg_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_func_qcaps(struct bnxt *bp) { int rc = 0; struct hwrm_func_qcaps_input req = {0}; struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); req.fid = cpu_to_le16(0xffff); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) goto hwrm_func_qcaps_exit; if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)) bp->flags |= BNXT_FLAG_ROCEV1_CAP; if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)) bp->flags |= BNXT_FLAG_ROCEV2_CAP; bp->tx_push_thresh = 0; if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)) bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; if (BNXT_PF(bp)) { struct bnxt_pf_info *pf = &bp->pf; pf->fw_fid = le16_to_cpu(resp->fid); pf->port_id = le16_to_cpu(resp->port_id); bp->dev->dev_port = pf->port_id; memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN); pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); if (!pf->max_hw_ring_grps) pf->max_hw_ring_grps = pf->max_tx_rings; pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); pf->max_vnics = le16_to_cpu(resp->max_vnics); pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); pf->first_vf_id = le16_to_cpu(resp->first_vf_id); pf->max_vfs = le16_to_cpu(resp->max_vfs); pf->max_encap_records = le32_to_cpu(resp->max_encap_records); pf->max_decap_records = le32_to_cpu(resp->max_decap_records); pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)) bp->flags |= BNXT_FLAG_WOL_CAP; } else { #ifdef CONFIG_BNXT_SRIOV struct bnxt_vf_info *vf = &bp->vf; vf->fw_fid = le16_to_cpu(resp->fid); vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); if (!vf->max_hw_ring_grps) vf->max_hw_ring_grps = vf->max_tx_rings; vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); vf->max_vnics = le16_to_cpu(resp->max_vnics); vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); mutex_unlock(&bp->hwrm_cmd_lock); if (is_valid_ether_addr(vf->mac_addr)) { /* overwrite netdev dev_adr with admin VF MAC */ memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); } else { eth_hw_addr_random(bp->dev); rc = bnxt_approve_mac(bp, bp->dev->dev_addr); } return rc; #endif } hwrm_func_qcaps_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_func_reset(struct bnxt *bp) { struct hwrm_func_reset_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); req.enables = 0; return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); } static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) { int rc = 0; struct hwrm_queue_qportcfg_input req = {0}; struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; u8 i, *qptr; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) goto qportcfg_exit; if (!resp->max_configurable_queues) { rc = -EINVAL; goto qportcfg_exit; } bp->max_tc = resp->max_configurable_queues; bp->max_lltc = resp->max_configurable_lossless_queues; if (bp->max_tc > BNXT_MAX_QUEUE) bp->max_tc = BNXT_MAX_QUEUE; if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) bp->max_tc = 1; if (bp->max_lltc > bp->max_tc) bp->max_lltc = bp->max_tc; qptr = &resp->queue_id0; for (i = 0; i < bp->max_tc; i++) { bp->q_info[i].queue_id = *qptr++; bp->q_info[i].queue_profile = *qptr++; } qportcfg_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_ver_get(struct bnxt *bp) { int rc; struct hwrm_ver_get_input req = {0}; struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); req.hwrm_intf_maj = HWRM_VERSION_MAJOR; req.hwrm_intf_min = HWRM_VERSION_MINOR; req.hwrm_intf_upd = HWRM_VERSION_UPDATE; mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) goto hwrm_ver_get_exit; memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 | resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd; if (resp->hwrm_intf_maj < 1) { netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); } snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d", resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld, resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); if (!bp->hwrm_cmd_timeout) bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; if (resp->hwrm_intf_maj >= 1) bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); bp->chip_num = le16_to_cpu(resp->chip_num); if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && !resp->chip_metal) bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; hwrm_ver_get_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } int bnxt_hwrm_fw_set_time(struct bnxt *bp) { #if IS_ENABLED(CONFIG_RTC_LIB) struct hwrm_fw_set_time_input req = {0}; struct rtc_time tm; struct timeval tv; if (bp->hwrm_spec_code < 0x10400) return -EOPNOTSUPP; do_gettimeofday(&tv); rtc_time_to_tm(tv.tv_sec, &tm); bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); req.year = cpu_to_le16(1900 + tm.tm_year); req.month = 1 + tm.tm_mon; req.day = tm.tm_mday; req.hour = tm.tm_hour; req.minute = tm.tm_min; req.second = tm.tm_sec; return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); #else return -EOPNOTSUPP; #endif } static int bnxt_hwrm_port_qstats(struct bnxt *bp) { int rc; struct bnxt_pf_info *pf = &bp->pf; struct hwrm_port_qstats_input req = {0}; if (!(bp->flags & BNXT_FLAG_PORT_STATS)) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); req.port_id = cpu_to_le16(pf->port_id); req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map); req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); return rc; } static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) { if (bp->vxlan_port_cnt) { bnxt_hwrm_tunnel_dst_port_free( bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); } bp->vxlan_port_cnt = 0; if (bp->nge_port_cnt) { bnxt_hwrm_tunnel_dst_port_free( bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); } bp->nge_port_cnt = 0; } static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) { int rc, i; u32 tpa_flags = 0; if (set_tpa) tpa_flags = bp->flags & BNXT_FLAG_TPA; for (i = 0; i < bp->nr_vnics; i++) { rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); if (rc) { netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", rc, i); return rc; } } return 0; } static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) { int i; for (i = 0; i < bp->nr_vnics; i++) bnxt_hwrm_vnic_set_rss(bp, i, false); } static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, bool irq_re_init) { if (bp->vnic_info) { bnxt_hwrm_clear_vnic_filter(bp); /* clear all RSS setting before free vnic ctx */ bnxt_hwrm_clear_vnic_rss(bp); bnxt_hwrm_vnic_ctx_free(bp); /* before free the vnic, undo the vnic tpa settings */ if (bp->flags & BNXT_FLAG_TPA) bnxt_set_tpa(bp, false); bnxt_hwrm_vnic_free(bp); } bnxt_hwrm_ring_free(bp, close_path); bnxt_hwrm_ring_grp_free(bp); if (irq_re_init) { bnxt_hwrm_stat_ctx_free(bp); bnxt_hwrm_free_tunnel_ports(bp); } } static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) { struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; int rc; if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) goto skip_rss_ctx; /* allocate context for vnic */ rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); if (rc) { netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", vnic_id, rc); goto vnic_setup_err; } bp->rsscos_nr_ctxs++; if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); if (rc) { netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", vnic_id, rc); goto vnic_setup_err; } bp->rsscos_nr_ctxs++; } skip_rss_ctx: /* configure default vnic, ring grp */ rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); if (rc) { netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", vnic_id, rc); goto vnic_setup_err; } /* Enable RSS hashing on vnic */ rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); if (rc) { netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", vnic_id, rc); goto vnic_setup_err; } if (bp->flags & BNXT_FLAG_AGG_RINGS) { rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); if (rc) { netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", vnic_id, rc); } } vnic_setup_err: return rc; } static int bnxt_alloc_rfs_vnics(struct bnxt *bp) { #ifdef CONFIG_RFS_ACCEL int i, rc = 0; for (i = 0; i < bp->rx_nr_rings; i++) { struct bnxt_vnic_info *vnic; u16 vnic_id = i + 1; u16 ring_id = i; if (vnic_id >= bp->nr_vnics) break; vnic = &bp->vnic_info[vnic_id]; vnic->flags |= BNXT_VNIC_RFS_FLAG; if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); if (rc) { netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", vnic_id, rc); break; } rc = bnxt_setup_vnic(bp, vnic_id); if (rc) break; } return rc; #else return 0; #endif } /* Allow PF and VF with default VLAN to be in promiscuous mode */ static bool bnxt_promisc_ok(struct bnxt *bp) { #ifdef CONFIG_BNXT_SRIOV if (BNXT_VF(bp) && !bp->vf.vlan) return false; #endif return true; } static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) { unsigned int rc = 0; rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); if (rc) { netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", rc); return rc; } rc = bnxt_hwrm_vnic_cfg(bp, 1); if (rc) { netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", rc); return rc; } return rc; } static int bnxt_cfg_rx_mode(struct bnxt *); static bool bnxt_mc_list_updated(struct bnxt *, u32 *); static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) { struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; int rc = 0; unsigned int rx_nr_rings = bp->rx_nr_rings; if (irq_re_init) { rc = bnxt_hwrm_stat_ctx_alloc(bp); if (rc) { netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", rc); goto err_out; } } rc = bnxt_hwrm_ring_alloc(bp); if (rc) { netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_hwrm_ring_grp_alloc(bp); if (rc) { netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); goto err_out; } if (BNXT_CHIP_TYPE_NITRO_A0(bp)) rx_nr_rings--; /* default vnic 0 */ rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); if (rc) { netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_setup_vnic(bp, 0); if (rc) goto err_out; if (bp->flags & BNXT_FLAG_RFS) { rc = bnxt_alloc_rfs_vnics(bp); if (rc) goto err_out; } if (bp->flags & BNXT_FLAG_TPA) { rc = bnxt_set_tpa(bp, true); if (rc) goto err_out; } if (BNXT_VF(bp)) bnxt_update_vf_mac(bp); /* Filter for default vnic 0 */ rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); if (rc) { netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); goto err_out; } vnic->uc_filter_count = 1; vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; if (bp->dev->flags & IFF_ALLMULTI) { vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; vnic->mc_list_count = 0; } else { u32 mask = 0; bnxt_mc_list_updated(bp, &mask); vnic->rx_mask |= mask; } rc = bnxt_cfg_rx_mode(bp); if (rc) goto err_out; rc = bnxt_hwrm_set_coal(bp); if (rc) netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", rc); if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { rc = bnxt_setup_nitroa0_vnic(bp); if (rc) netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", rc); } if (BNXT_VF(bp)) { bnxt_hwrm_func_qcfg(bp); netdev_update_features(bp->dev); } return 0; err_out: bnxt_hwrm_resource_free(bp, 0, true); return rc; } static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) { bnxt_hwrm_resource_free(bp, 1, irq_re_init); return 0; } static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) { bnxt_init_rx_rings(bp); bnxt_init_tx_rings(bp); bnxt_init_ring_grps(bp, irq_re_init); bnxt_init_vnics(bp); return bnxt_init_chip(bp, irq_re_init); } static int bnxt_set_real_num_queues(struct bnxt *bp) { int rc; struct net_device *dev = bp->dev; rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - bp->tx_nr_rings_xdp); if (rc) return rc; rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); if (rc) return rc; #ifdef CONFIG_RFS_ACCEL if (bp->flags & BNXT_FLAG_RFS) dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); #endif return rc; } static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, bool shared) { int _rx = *rx, _tx = *tx; if (shared) { *rx = min_t(int, _rx, max); *tx = min_t(int, _tx, max); } else { if (max < 2) return -ENOMEM; while (_rx + _tx > max) { if (_rx > _tx && _rx > 1) _rx--; else if (_tx > 1) _tx--; } *rx = _rx; *tx = _tx; } return 0; } static void bnxt_setup_msix(struct bnxt *bp) { const int len = sizeof(bp->irq_tbl[0].name); struct net_device *dev = bp->dev; int tcs, i; tcs = netdev_get_num_tc(dev); if (tcs > 1) { int i, off, count; for (i = 0; i < tcs; i++) { count = bp->tx_nr_rings_per_tc; off = i * count; netdev_set_tc_queue(dev, i, count, off); } } for (i = 0; i < bp->cp_nr_rings; i++) { char *attr; if (bp->flags & BNXT_FLAG_SHARED_RINGS) attr = "TxRx"; else if (i < bp->rx_nr_rings) attr = "rx"; else attr = "tx"; snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr, i); bp->irq_tbl[i].handler = bnxt_msix; } } static void bnxt_setup_inta(struct bnxt *bp) { const int len = sizeof(bp->irq_tbl[0].name); if (netdev_get_num_tc(bp->dev)) netdev_reset_tc(bp->dev); snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 0); bp->irq_tbl[0].handler = bnxt_inta; } static int bnxt_setup_int_mode(struct bnxt *bp) { int rc; if (bp->flags & BNXT_FLAG_USING_MSIX) bnxt_setup_msix(bp); else bnxt_setup_inta(bp); rc = bnxt_set_real_num_queues(bp); return rc; } #ifdef CONFIG_RFS_ACCEL static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) return bp->vf.max_rsscos_ctxs; #endif return bp->pf.max_rsscos_ctxs; } static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) return bp->vf.max_vnics; #endif return bp->pf.max_vnics; } #endif unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) return bp->vf.max_stat_ctxs; #endif return bp->pf.max_stat_ctxs; } void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) bp->vf.max_stat_ctxs = max; else #endif bp->pf.max_stat_ctxs = max; } unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) return bp->vf.max_cp_rings; #endif return bp->pf.max_cp_rings; } void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) bp->vf.max_cp_rings = max; else #endif bp->pf.max_cp_rings = max; } static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) return bp->vf.max_irqs; #endif return bp->pf.max_irqs; } void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) { #if defined(CONFIG_BNXT_SRIOV) if (BNXT_VF(bp)) bp->vf.max_irqs = max_irqs; else #endif bp->pf.max_irqs = max_irqs; } static int bnxt_init_msix(struct bnxt *bp) { int i, total_vecs, rc = 0, min = 1; struct msix_entry *msix_ent; total_vecs = bnxt_get_max_func_irqs(bp); msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); if (!msix_ent) return -ENOMEM; for (i = 0; i < total_vecs; i++) { msix_ent[i].entry = i; msix_ent[i].vector = 0; } if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) min = 2; total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); if (total_vecs < 0) { rc = -ENODEV; goto msix_setup_exit; } bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); if (bp->irq_tbl) { for (i = 0; i < total_vecs; i++) bp->irq_tbl[i].vector = msix_ent[i].vector; bp->total_irqs = total_vecs; /* Trim rings based upon num of vectors allocated */ rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, total_vecs, min == 1); if (rc) goto msix_setup_exit; bp->tx_nr_rings_per_tc = bp->tx_nr_rings; bp->cp_nr_rings = (min == 1) ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : bp->tx_nr_rings + bp->rx_nr_rings; } else { rc = -ENOMEM; goto msix_setup_exit; } bp->flags |= BNXT_FLAG_USING_MSIX; kfree(msix_ent); return 0; msix_setup_exit: netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); kfree(bp->irq_tbl); bp->irq_tbl = NULL; pci_disable_msix(bp->pdev); kfree(msix_ent); return rc; } static int bnxt_init_inta(struct bnxt *bp) { bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); if (!bp->irq_tbl) return -ENOMEM; bp->total_irqs = 1; bp->rx_nr_rings = 1; bp->tx_nr_rings = 1; bp->cp_nr_rings = 1; bp->tx_nr_rings_per_tc = bp->tx_nr_rings; bp->flags |= BNXT_FLAG_SHARED_RINGS; bp->irq_tbl[0].vector = bp->pdev->irq; return 0; } static int bnxt_init_int_mode(struct bnxt *bp) { int rc = 0; if (bp->flags & BNXT_FLAG_MSIX_CAP) rc = bnxt_init_msix(bp); if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { /* fallback to INTA */ rc = bnxt_init_inta(bp); } return rc; } static void bnxt_clear_int_mode(struct bnxt *bp) { if (bp->flags & BNXT_FLAG_USING_MSIX) pci_disable_msix(bp->pdev); kfree(bp->irq_tbl); bp->irq_tbl = NULL; bp->flags &= ~BNXT_FLAG_USING_MSIX; } static void bnxt_free_irq(struct bnxt *bp) { struct bnxt_irq *irq; int i; #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); bp->dev->rx_cpu_rmap = NULL; #endif if (!bp->irq_tbl) return; for (i = 0; i < bp->cp_nr_rings; i++) { irq = &bp->irq_tbl[i]; if (irq->requested) free_irq(irq->vector, bp->bnapi[i]); irq->requested = 0; } } static int bnxt_request_irq(struct bnxt *bp) { int i, j, rc = 0; unsigned long flags = 0; #ifdef CONFIG_RFS_ACCEL struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap; #endif if (!(bp->flags & BNXT_FLAG_USING_MSIX)) flags = IRQF_SHARED; for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { struct bnxt_irq *irq = &bp->irq_tbl[i]; #ifdef CONFIG_RFS_ACCEL if (rmap && bp->bnapi[i]->rx_ring) { rc = irq_cpu_rmap_add(rmap, irq->vector); if (rc) netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", j); j++; } #endif rc = request_irq(irq->vector, irq->handler, flags, irq->name, bp->bnapi[i]); if (rc) break; irq->requested = 1; } return rc; } static void bnxt_del_napi(struct bnxt *bp) { int i; if (!bp->bnapi) return; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; napi_hash_del(&bnapi->napi); netif_napi_del(&bnapi->napi); } /* We called napi_hash_del() before netif_napi_del(), we need * to respect an RCU grace period before freeing napi structures. */ synchronize_net(); } static void bnxt_init_napi(struct bnxt *bp) { int i; unsigned int cp_nr_rings = bp->cp_nr_rings; struct bnxt_napi *bnapi; if (bp->flags & BNXT_FLAG_USING_MSIX) { if (BNXT_CHIP_TYPE_NITRO_A0(bp)) cp_nr_rings--; for (i = 0; i < cp_nr_rings; i++) { bnapi = bp->bnapi[i]; netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); } if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { bnapi = bp->bnapi[cp_nr_rings]; netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll_nitroa0, 64); } } else { bnapi = bp->bnapi[0]; netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); } } static void bnxt_disable_napi(struct bnxt *bp) { int i; if (!bp->bnapi) return; for (i = 0; i < bp->cp_nr_rings; i++) napi_disable(&bp->bnapi[i]->napi); } static void bnxt_enable_napi(struct bnxt *bp) { int i; for (i = 0; i < bp->cp_nr_rings; i++) { bp->bnapi[i]->in_reset = false; napi_enable(&bp->bnapi[i]->napi); } } void bnxt_tx_disable(struct bnxt *bp) { int i; struct bnxt_tx_ring_info *txr; struct netdev_queue *txq; if (bp->tx_ring) { for (i = 0; i < bp->tx_nr_rings; i++) { txr = &bp->tx_ring[i]; txq = netdev_get_tx_queue(bp->dev, i); txr->dev_state = BNXT_DEV_STATE_CLOSING; } } /* Stop all TX queues */ netif_tx_disable(bp->dev); netif_carrier_off(bp->dev); } void bnxt_tx_enable(struct bnxt *bp) { int i; struct bnxt_tx_ring_info *txr; struct netdev_queue *txq; for (i = 0; i < bp->tx_nr_rings; i++) { txr = &bp->tx_ring[i]; txq = netdev_get_tx_queue(bp->dev, i); txr->dev_state = 0; } netif_tx_wake_all_queues(bp->dev); if (bp->link_info.link_up) netif_carrier_on(bp->dev); } static void bnxt_report_link(struct bnxt *bp) { if (bp->link_info.link_up) { const char *duplex; const char *flow_ctrl; u16 speed, fec; netif_carrier_on(bp->dev); if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) duplex = "full"; else duplex = "half"; if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) flow_ctrl = "ON - receive & transmit"; else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) flow_ctrl = "ON - transmit"; else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) flow_ctrl = "ON - receive"; else flow_ctrl = "none"; speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", speed, duplex, flow_ctrl); if (bp->flags & BNXT_FLAG_EEE_CAP) netdev_info(bp->dev, "EEE is %s\n", bp->eee.eee_active ? "active" : "not active"); fec = bp->link_info.fec_cfg; if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n", (fec & BNXT_FEC_AUTONEG) ? "on" : "off", (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" : (fec & BNXT_FEC_ENC_RS) ? "RS" : "None"); } else { netif_carrier_off(bp->dev); netdev_err(bp->dev, "NIC Link is Down\n"); } } static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) { int rc = 0; struct hwrm_port_phy_qcaps_input req = {0}; struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; struct bnxt_link_info *link_info = &bp->link_info; if (bp->hwrm_spec_code < 0x10201) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) goto hwrm_phy_qcaps_exit; if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) { struct ethtool_eee *eee = &bp->eee; u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); bp->flags |= BNXT_FLAG_EEE_CAP; eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; } if (resp->supported_speeds_auto_mode) link_info->support_auto_speeds = le16_to_cpu(resp->supported_speeds_auto_mode); hwrm_phy_qcaps_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) { int rc = 0; struct bnxt_link_info *link_info = &bp->link_info; struct hwrm_port_phy_qcfg_input req = {0}; struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; u8 link_up = link_info->link_up; u16 diff; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { mutex_unlock(&bp->hwrm_cmd_lock); return rc; } memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); link_info->phy_link_status = resp->link; link_info->duplex = resp->duplex; link_info->pause = resp->pause; link_info->auto_mode = resp->auto_mode; link_info->auto_pause_setting = resp->auto_pause; link_info->lp_pause = resp->link_partner_adv_pause; link_info->force_pause_setting = resp->force_pause; link_info->duplex_setting = resp->duplex; if (link_info->phy_link_status == BNXT_LINK_LINK) link_info->link_speed = le16_to_cpu(resp->link_speed); else link_info->link_speed = 0; link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); link_info->support_speeds = le16_to_cpu(resp->support_speeds); link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); link_info->lp_auto_link_speeds = le16_to_cpu(resp->link_partner_adv_speeds); link_info->preemphasis = le32_to_cpu(resp->preemphasis); link_info->phy_ver[0] = resp->phy_maj; link_info->phy_ver[1] = resp->phy_min; link_info->phy_ver[2] = resp->phy_bld; link_info->media_type = resp->media_type; link_info->phy_type = resp->phy_type; link_info->transceiver = resp->xcvr_pkg_type; link_info->phy_addr = resp->eee_config_phy_addr & PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; link_info->module_status = resp->module_status; if (bp->flags & BNXT_FLAG_EEE_CAP) { struct ethtool_eee *eee = &bp->eee; u16 fw_speeds; eee->eee_active = 0; if (resp->eee_config_phy_addr & PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { eee->eee_active = 1; fw_speeds = le16_to_cpu( resp->link_partner_adv_eee_link_speed_mask); eee->lp_advertised = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); } /* Pull initial EEE config */ if (!chng_link_state) { if (resp->eee_config_phy_addr & PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) eee->eee_enabled = 1; fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); eee->advertised = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); if (resp->eee_config_phy_addr & PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { __le32 tmr; eee->tx_lpi_enabled = 1; tmr = resp->xcvr_identifier_type_tx_lpi_timer; eee->tx_lpi_timer = le32_to_cpu(tmr) & PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; } } } link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; if (bp->hwrm_spec_code >= 0x10504) link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); /* TODO: need to add more logic to report VF link */ if (chng_link_state) { if (link_info->phy_link_status == BNXT_LINK_LINK) link_info->link_up = 1; else link_info->link_up = 0; if (link_up != link_info->link_up) bnxt_report_link(bp); } else { /* alwasy link down if not require to update link state */ link_info->link_up = 0; } mutex_unlock(&bp->hwrm_cmd_lock); diff = link_info->support_auto_speeds ^ link_info->advertising; if ((link_info->support_auto_speeds | diff) != link_info->support_auto_speeds) { /* An advertised speed is no longer supported, so we need to * update the advertisement settings. Caller holds RTNL * so we can modify link settings. */ link_info->advertising = link_info->support_auto_speeds; if (link_info->autoneg & BNXT_AUTONEG_SPEED) bnxt_hwrm_set_link_setting(bp, true, false); } return 0; } static void bnxt_get_port_module_status(struct bnxt *bp) { struct bnxt_link_info *link_info = &bp->link_info; struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; u8 module_status; if (bnxt_update_link(bp, true)) return; module_status = link_info->module_status; switch (module_status) { case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", bp->pf.port_id); if (bp->hwrm_spec_code >= 0x10201) { netdev_warn(bp->dev, "Module part number %s\n", resp->phy_vendor_partnumber); } if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) netdev_warn(bp->dev, "TX is disabled\n"); if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) netdev_warn(bp->dev, "SFP+ module is shutdown\n"); } } static void bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) { if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { if (bp->hwrm_spec_code >= 0x10201) req->auto_pause = PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); } else { if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); if (bp->hwrm_spec_code >= 0x10201) { req->auto_pause = req->force_pause; req->enables |= cpu_to_le32( PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); } } } static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) { u8 autoneg = bp->link_info.autoneg; u16 fw_link_speed = bp->link_info.req_link_speed; u16 advertising = bp->link_info.advertising; if (autoneg & BNXT_AUTONEG_SPEED) { req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; req->enables |= cpu_to_le32( PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); req->auto_link_speed_mask = cpu_to_le16(advertising); req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); } else { req->force_link_speed = cpu_to_le16(fw_link_speed); req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); } /* tell chimp that the setting takes effect immediately */ req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); } int bnxt_hwrm_set_pause(struct bnxt *bp) { struct hwrm_port_phy_cfg_input req = {0}; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); bnxt_hwrm_set_pause_common(bp, &req); if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || bp->link_info.force_link_chng) bnxt_hwrm_set_link_common(bp, &req); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { /* since changing of pause setting doesn't trigger any link * change event, the driver needs to update the current pause * result upon successfully return of the phy_cfg command */ bp->link_info.pause = bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; bp->link_info.auto_pause_setting = 0; if (!bp->link_info.force_link_chng) bnxt_report_link(bp); } bp->link_info.force_link_chng = false; mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static void bnxt_hwrm_set_eee(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) { struct ethtool_eee *eee = &bp->eee; if (eee->eee_enabled) { u16 eee_speeds; u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; if (eee->tx_lpi_enabled) flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; else flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; req->flags |= cpu_to_le32(flags); eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); req->eee_link_speed_mask = cpu_to_le16(eee_speeds); req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); } else { req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); } } int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) { struct hwrm_port_phy_cfg_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); if (set_pause) bnxt_hwrm_set_pause_common(bp, &req); bnxt_hwrm_set_link_common(bp, &req); if (set_eee) bnxt_hwrm_set_eee(bp, &req); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_shutdown_link(struct bnxt *bp) { struct hwrm_port_phy_cfg_input req = {0}; if (!BNXT_SINGLE_PF(bp)) return 0; if (pci_num_vf(bp->pdev)) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) { struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; struct hwrm_port_led_qcaps_input req = {0}; struct bnxt_pf_info *pf = &bp->pf; int rc; if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); req.port_id = cpu_to_le16(pf->port_id); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { mutex_unlock(&bp->hwrm_cmd_lock); return rc; } if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { int i; bp->num_leds = resp->num_leds; memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * bp->num_leds); for (i = 0; i < bp->num_leds; i++) { struct bnxt_led_info *led = &bp->leds[i]; __le16 caps = led->led_state_caps; if (!led->led_group_id || !BNXT_LED_ALT_BLINK_CAP(caps)) { bp->num_leds = 0; break; } } } mutex_unlock(&bp->hwrm_cmd_lock); return 0; } int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) { struct hwrm_wol_filter_alloc_input req = {0}; struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); req.port_id = cpu_to_le16(bp->pf.port_id); req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) bp->wol_filter_id = resp->wol_filter_id; mutex_unlock(&bp->hwrm_cmd_lock); return rc; } int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) { struct hwrm_wol_filter_free_input req = {0}; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); req.port_id = cpu_to_le16(bp->pf.port_id); req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); req.wol_filter_id = bp->wol_filter_id; rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); return rc; } static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) { struct hwrm_wol_filter_qcfg_input req = {0}; struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; u16 next_handle = 0; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); req.port_id = cpu_to_le16(bp->pf.port_id); req.handle = cpu_to_le16(handle); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { next_handle = le16_to_cpu(resp->next_handle); if (next_handle != 0) { if (resp->wol_type == WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { bp->wol = 1; bp->wol_filter_id = resp->wol_filter_id; } } } mutex_unlock(&bp->hwrm_cmd_lock); return next_handle; } static void bnxt_get_wol_settings(struct bnxt *bp) { u16 handle = 0; if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) return; do { handle = bnxt_hwrm_get_wol_fltrs(bp, handle); } while (handle && handle != 0xffff); } static bool bnxt_eee_config_ok(struct bnxt *bp) { struct ethtool_eee *eee = &bp->eee; struct bnxt_link_info *link_info = &bp->link_info; if (!(bp->flags & BNXT_FLAG_EEE_CAP)) return true; if (eee->eee_enabled) { u32 advertising = _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { eee->eee_enabled = 0; return false; } if (eee->advertised & ~advertising) { eee->advertised = advertising & eee->supported; return false; } } return true; } static int bnxt_update_phy_setting(struct bnxt *bp) { int rc; bool update_link = false; bool update_pause = false; bool update_eee = false; struct bnxt_link_info *link_info = &bp->link_info; rc = bnxt_update_link(bp, true); if (rc) { netdev_err(bp->dev, "failed to update link (rc: %x)\n", rc); return rc; } if (!BNXT_SINGLE_PF(bp)) return 0; if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != link_info->req_flow_ctrl) update_pause = true; if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && link_info->force_pause_setting != link_info->req_flow_ctrl) update_pause = true; if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { if (BNXT_AUTO_MODE(link_info->auto_mode)) update_link = true; if (link_info->req_link_speed != link_info->force_link_speed) update_link = true; if (link_info->req_duplex != link_info->duplex_setting) update_link = true; } else { if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) update_link = true; if (link_info->advertising != link_info->auto_link_speeds) update_link = true; } /* The last close may have shutdown the link, so need to call * PHY_CFG to bring it back up. */ if (!netif_carrier_ok(bp->dev)) update_link = true; if (!bnxt_eee_config_ok(bp)) update_eee = true; if (update_link) rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); else if (update_pause) rc = bnxt_hwrm_set_pause(bp); if (rc) { netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", rc); return rc; } return rc; } /* Common routine to pre-map certain register block to different GRC window. * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows * in PF and 3 windows in VF that can be customized to map in different * register blocks. */ static void bnxt_preset_reg_win(struct bnxt *bp) { if (BNXT_PF(bp)) { /* CAG registers map to GRC window #4 */ writel(BNXT_CAG_REG_BASE, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); } } static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) { int rc = 0; bnxt_preset_reg_win(bp); netif_carrier_off(bp->dev); if (irq_re_init) { rc = bnxt_setup_int_mode(bp); if (rc) { netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", rc); return rc; } } if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_USING_MSIX)) { /* disable RFS if falling back to INTA */ bp->dev->hw_features &= ~NETIF_F_NTUPLE; bp->flags &= ~BNXT_FLAG_RFS; } rc = bnxt_alloc_mem(bp, irq_re_init); if (rc) { netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); goto open_err_free_mem; } if (irq_re_init) { bnxt_init_napi(bp); rc = bnxt_request_irq(bp); if (rc) { netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); goto open_err; } } bnxt_enable_napi(bp); rc = bnxt_init_nic(bp, irq_re_init); if (rc) { netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); goto open_err; } if (link_re_init) { rc = bnxt_update_phy_setting(bp); if (rc) netdev_warn(bp->dev, "failed to update phy settings\n"); } if (irq_re_init) udp_tunnel_get_rx_info(bp->dev); set_bit(BNXT_STATE_OPEN, &bp->state); bnxt_enable_int(bp); /* Enable TX queues */ bnxt_tx_enable(bp); mod_timer(&bp->timer, jiffies + bp->current_interval); /* Poll link status and check for SFP+ module status */ bnxt_get_port_module_status(bp); return 0; open_err: bnxt_disable_napi(bp); bnxt_del_napi(bp); open_err_free_mem: bnxt_free_skbs(bp); bnxt_free_irq(bp); bnxt_free_mem(bp, true); return rc; } /* rtnl_lock held */ int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) { int rc = 0; rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); if (rc) { netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); dev_close(bp->dev); } return rc; } static int bnxt_open(struct net_device *dev) { struct bnxt *bp = netdev_priv(dev); return __bnxt_open_nic(bp, true, true); } int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) { int rc = 0; #ifdef CONFIG_BNXT_SRIOV if (bp->sriov_cfg) { rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, !bp->sriov_cfg, BNXT_SRIOV_CFG_WAIT_TMO); if (rc) netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); } #endif /* Change device state to avoid TX queue wake up's */ bnxt_tx_disable(bp); clear_bit(BNXT_STATE_OPEN, &bp->state); smp_mb__after_atomic(); while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state)) msleep(20); /* Flush rings and and disable interrupts */ bnxt_shutdown_nic(bp, irq_re_init); /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ bnxt_disable_napi(bp); del_timer_sync(&bp->timer); bnxt_free_skbs(bp); if (irq_re_init) { bnxt_free_irq(bp); bnxt_del_napi(bp); } bnxt_free_mem(bp, irq_re_init); return rc; } static int bnxt_close(struct net_device *dev) { struct bnxt *bp = netdev_priv(dev); bnxt_close_nic(bp, true, true); bnxt_hwrm_shutdown_link(bp); return 0; } /* rtnl_lock held */ static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: /* fallthru */ case SIOCGMIIREG: { if (!netif_running(dev)) return -EAGAIN; return 0; } case SIOCSMIIREG: if (!netif_running(dev)) return -EAGAIN; return 0; default: /* do nothing */ break; } return -EOPNOTSUPP; } static void bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { u32 i; struct bnxt *bp = netdev_priv(dev); if (!bp->bnapi) return; /* TODO check if we need to synchronize with bnxt_close path */ for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_napi *bnapi = bp->bnapi[i]; struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; struct ctx_hw_stats *hw_stats = cpr->hw_stats; stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); stats->rx_missed_errors += le64_to_cpu(hw_stats->rx_discard_pkts); stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); } if (bp->flags & BNXT_FLAG_PORT_STATS) { struct rx_port_stats *rx = bp->hw_rx_port_stats; struct tx_port_stats *tx = bp->hw_tx_port_stats; stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames); stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames); stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) + le64_to_cpu(rx->rx_ovrsz_frames) + le64_to_cpu(rx->rx_runt_frames); stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) + le64_to_cpu(rx->rx_jbr_frames); stats->collisions = le64_to_cpu(tx->tx_total_collisions); stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns); stats->tx_errors = le64_to_cpu(tx->tx_err); } } static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) { struct net_device *dev = bp->dev; struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; struct netdev_hw_addr *ha; u8 *haddr; int mc_count = 0; bool update = false; int off = 0; netdev_for_each_mc_addr(ha, dev) { if (mc_count >= BNXT_MAX_MC_ADDRS) { *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; vnic->mc_list_count = 0; return false; } haddr = ha->addr; if (!ether_addr_equal(haddr, vnic->mc_list + off)) { memcpy(vnic->mc_list + off, haddr, ETH_ALEN); update = true; } off += ETH_ALEN; mc_count++; } if (mc_count) *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; if (mc_count != vnic->mc_list_count) { vnic->mc_list_count = mc_count; update = true; } return update; } static bool bnxt_uc_list_updated(struct bnxt *bp) { struct net_device *dev = bp->dev; struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; struct netdev_hw_addr *ha; int off = 0; if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) return true; netdev_for_each_uc_addr(ha, dev) { if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) return true; off += ETH_ALEN; } return false; } static void bnxt_set_rx_mode(struct net_device *dev) { struct bnxt *bp = netdev_priv(dev); struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; u32 mask = vnic->rx_mask; bool mc_update = false; bool uc_update; if (!netif_running(dev)) return; mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST); if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; uc_update = bnxt_uc_list_updated(bp); if (dev->flags & IFF_ALLMULTI) { mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; vnic->mc_list_count = 0; } else { mc_update = bnxt_mc_list_updated(bp, &mask); } if (mask != vnic->rx_mask || uc_update || mc_update) { vnic->rx_mask = mask; set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); } } static int bnxt_cfg_rx_mode(struct bnxt *bp) { struct net_device *dev = bp->dev; struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; struct netdev_hw_addr *ha; int i, off = 0, rc; bool uc_update; netif_addr_lock_bh(dev); uc_update = bnxt_uc_list_updated(bp); netif_addr_unlock_bh(dev); if (!uc_update) goto skip_uc; mutex_lock(&bp->hwrm_cmd_lock); for (i = 1; i < vnic->uc_filter_count; i++) { struct hwrm_cfa_l2_filter_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, -1); req.l2_filter_id = vnic->fw_l2_filter_id[i]; rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } mutex_unlock(&bp->hwrm_cmd_lock); vnic->uc_filter_count = 1; netif_addr_lock_bh(dev); if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; } else { netdev_for_each_uc_addr(ha, dev) { memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); off += ETH_ALEN; vnic->uc_filter_count++; } } netif_addr_unlock_bh(dev); for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); if (rc) { netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); vnic->uc_filter_count = i; return rc; } } skip_uc: rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); if (rc) netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", rc); return rc; } /* If the chip and firmware supports RFS */ static bool bnxt_rfs_supported(struct bnxt *bp) { if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) return true; if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) return true; return false; } /* If runtime conditions support RFS */ static bool bnxt_rfs_capable(struct bnxt *bp) { #ifdef CONFIG_RFS_ACCEL int vnics, max_vnics, max_rss_ctxs; if (!(bp->flags & BNXT_FLAG_MSIX_CAP)) return false; vnics = 1 + bp->rx_nr_rings; max_vnics = bnxt_get_max_func_vnics(bp); max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); /* RSS contexts not a limiting factor */ if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) max_rss_ctxs = max_vnics; if (vnics > max_vnics || vnics > max_rss_ctxs) { netdev_warn(bp->dev, "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", min(max_rss_ctxs - 1, max_vnics - 1)); return false; } return true; #else return false; #endif } static netdev_features_t bnxt_fix_features(struct net_device *dev, netdev_features_t features) { struct bnxt *bp = netdev_priv(dev); if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) features &= ~NETIF_F_NTUPLE; /* Both CTAG and STAG VLAN accelaration on the RX side have to be * turned on or off together. */ if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) != (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) { if (dev->features & NETIF_F_HW_VLAN_CTAG_RX) features &= ~(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); else features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; } #ifdef CONFIG_BNXT_SRIOV if (BNXT_VF(bp)) { if (bp->vf.vlan) { features &= ~(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); } } #endif return features; } static int bnxt_set_features(struct net_device *dev, netdev_features_t features) { struct bnxt *bp = netdev_priv(dev); u32 flags = bp->flags; u32 changes; int rc = 0; bool re_init = false; bool update_tpa = false; flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) flags |= BNXT_FLAG_GRO; if (features & NETIF_F_LRO) flags |= BNXT_FLAG_LRO; if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) flags &= ~BNXT_FLAG_TPA; if (features & NETIF_F_HW_VLAN_CTAG_RX) flags |= BNXT_FLAG_STRIP_VLAN; if (features & NETIF_F_NTUPLE) flags |= BNXT_FLAG_RFS; changes = flags ^ bp->flags; if (changes & BNXT_FLAG_TPA) { update_tpa = true; if ((bp->flags & BNXT_FLAG_TPA) == 0 || (flags & BNXT_FLAG_TPA) == 0) re_init = true; } if (changes & ~BNXT_FLAG_TPA) re_init = true; if (flags != bp->flags) { u32 old_flags = bp->flags; bp->flags = flags; if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { if (update_tpa) bnxt_set_ring_params(bp); return rc; } if (re_init) { bnxt_close_nic(bp, false, false); if (update_tpa) bnxt_set_ring_params(bp); return bnxt_open_nic(bp, false, false); } if (update_tpa) { rc = bnxt_set_tpa(bp, (flags & BNXT_FLAG_TPA) ? true : false); if (rc) bp->flags = old_flags; } } return rc; } static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) { struct bnxt_tx_ring_info *txr = bnapi->tx_ring; int i = bnapi->index; if (!txr) return; netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, txr->tx_cons); } static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) { struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; int i = bnapi->index; if (!rxr) return; netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, rxr->rx_sw_agg_prod); } static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) { struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; int i = bnapi->index; netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); } static void bnxt_dbg_dump_states(struct bnxt *bp) { int i; struct bnxt_napi *bnapi; for (i = 0; i < bp->cp_nr_rings; i++) { bnapi = bp->bnapi[i]; if (netif_msg_drv(bp)) { bnxt_dump_tx_sw_state(bnapi); bnxt_dump_rx_sw_state(bnapi); bnxt_dump_cp_sw_state(bnapi); } } } static void bnxt_reset_task(struct bnxt *bp, bool silent) { if (!silent) bnxt_dbg_dump_states(bp); if (netif_running(bp->dev)) { int rc; if (!silent) bnxt_ulp_stop(bp); bnxt_close_nic(bp, false, false); rc = bnxt_open_nic(bp, false, false); if (!silent && !rc) bnxt_ulp_start(bp); } } static void bnxt_tx_timeout(struct net_device *dev) { struct bnxt *bp = netdev_priv(dev); netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); } #ifdef CONFIG_NET_POLL_CONTROLLER static void bnxt_poll_controller(struct net_device *dev) { struct bnxt *bp = netdev_priv(dev); int i; for (i = 0; i < bp->cp_nr_rings; i++) { struct bnxt_irq *irq = &bp->irq_tbl[i]; disable_irq(irq->vector); irq->handler(irq->vector, bp->bnapi[i]); enable_irq(irq->vector); } } #endif static void bnxt_timer(unsigned long data) { struct bnxt *bp = (struct bnxt *)data; struct net_device *dev = bp->dev; if (!netif_running(dev)) return; if (atomic_read(&bp->intr_sem) != 0) goto bnxt_restart_timer; if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) { set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); } bnxt_restart_timer: mod_timer(&bp->timer, jiffies + bp->current_interval); } static void bnxt_rtnl_lock_sp(struct bnxt *bp) { /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK * set. If the device is being closed, bnxt_close() may be holding * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). */ clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); rtnl_lock(); } static void bnxt_rtnl_unlock_sp(struct bnxt *bp) { set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); rtnl_unlock(); } /* Only called from bnxt_sp_task() */ static void bnxt_reset(struct bnxt *bp, bool silent) { bnxt_rtnl_lock_sp(bp); if (test_bit(BNXT_STATE_OPEN, &bp->state)) bnxt_reset_task(bp, silent); bnxt_rtnl_unlock_sp(bp); } static void bnxt_cfg_ntp_filters(struct bnxt *); static void bnxt_sp_task(struct work_struct *work) { struct bnxt *bp = container_of(work, struct bnxt, sp_task); set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); smp_mb__after_atomic(); if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); return; } if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) bnxt_cfg_rx_mode(bp); if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) bnxt_cfg_ntp_filters(bp); if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) bnxt_hwrm_exec_fwd_req(bp); if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { bnxt_hwrm_tunnel_dst_port_alloc( bp, bp->vxlan_port, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); } if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { bnxt_hwrm_tunnel_dst_port_free( bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); } if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) { bnxt_hwrm_tunnel_dst_port_alloc( bp, bp->nge_port, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); } if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) { bnxt_hwrm_tunnel_dst_port_free( bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); } if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) bnxt_hwrm_port_qstats(bp); /* These functions below will clear BNXT_STATE_IN_SP_TASK. They * must be the last functions to be called before exiting. */ if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { int rc = 0; if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event)) bnxt_hwrm_phy_qcaps(bp); bnxt_rtnl_lock_sp(bp); if (test_bit(BNXT_STATE_OPEN, &bp->state)) rc = bnxt_update_link(bp, true); bnxt_rtnl_unlock_sp(bp); if (rc) netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", rc); } if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { bnxt_rtnl_lock_sp(bp); if (test_bit(BNXT_STATE_OPEN, &bp->state)) bnxt_get_port_module_status(bp); bnxt_rtnl_unlock_sp(bp); } if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) bnxt_reset(bp, false); if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) bnxt_reset(bp, true); smp_mb__before_atomic(); clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); } /* Under rtnl_lock */ int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp) { int max_rx, max_tx, tx_sets = 1; int tx_rings_needed; bool sh = true; int rc; if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) sh = false; if (tcs) tx_sets = tcs; rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); if (rc) return rc; if (max_rx < rx) return -ENOMEM; tx_rings_needed = tx * tx_sets + tx_xdp; if (max_tx < tx_rings_needed) return -ENOMEM; if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) || tx_rings_needed < (tx * tx_sets + tx_xdp)) return -ENOMEM; return 0; } static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) { if (bp->bar2) { pci_iounmap(pdev, bp->bar2); bp->bar2 = NULL; } if (bp->bar1) { pci_iounmap(pdev, bp->bar1); bp->bar1 = NULL; } if (bp->bar0) { pci_iounmap(pdev, bp->bar0); bp->bar0 = NULL; } } static void bnxt_cleanup_pci(struct bnxt *bp) { bnxt_unmap_bars(bp, bp->pdev); pci_release_regions(bp->pdev); pci_disable_device(bp->pdev); } static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) { int rc; struct bnxt *bp = netdev_priv(dev); SET_NETDEV_DEV(dev, &pdev->dev); /* enable device (incl. PCI PM wakeup), and bus-mastering */ rc = pci_enable_device(pdev); if (rc) { dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); goto init_err; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Cannot find PCI device base address, aborting\n"); rc = -ENODEV; goto init_err_disable; } rc = pci_request_regions(pdev, DRV_MODULE_NAME); if (rc) { dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); goto init_err_disable; } if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { dev_err(&pdev->dev, "System does not support DMA, aborting\n"); goto init_err_disable; } pci_set_master(pdev); bp->dev = dev; bp->pdev = pdev; bp->bar0 = pci_ioremap_bar(pdev, 0); if (!bp->bar0) { dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); rc = -ENOMEM; goto init_err_release; } bp->bar1 = pci_ioremap_bar(pdev, 2); if (!bp->bar1) { dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n"); rc = -ENOMEM; goto init_err_release; } bp->bar2 = pci_ioremap_bar(pdev, 4); if (!bp->bar2) { dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); rc = -ENOMEM; goto init_err_release; } pci_enable_pcie_error_reporting(pdev); INIT_WORK(&bp->sp_task, bnxt_sp_task); spin_lock_init(&bp->ntp_fltr_lock); bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; /* tick values in micro seconds */ bp->rx_coal_ticks = 12; bp->rx_coal_bufs = 30; bp->rx_coal_ticks_irq = 1; bp->rx_coal_bufs_irq = 2; bp->tx_coal_ticks = 25; bp->tx_coal_bufs = 30; bp->tx_coal_ticks_irq = 2; bp->tx_coal_bufs_irq = 2; bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; init_timer(&bp->timer); bp->timer.data = (unsigned long)bp; bp->timer.function = bnxt_timer; bp->current_interval = BNXT_TIMER_INTERVAL; clear_bit(BNXT_STATE_OPEN, &bp->state); return 0; init_err_release: bnxt_unmap_bars(bp, pdev); pci_release_regions(pdev); init_err_disable: pci_disable_device(pdev); init_err: return rc; } /* rtnl_lock held */ static int bnxt_change_mac_addr(struct net_device *dev, void *p) { struct sockaddr *addr = p; struct bnxt *bp = netdev_priv(dev); int rc = 0; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; rc = bnxt_approve_mac(bp, addr->sa_data); if (rc) return rc; if (ether_addr_equal(addr->sa_data, dev->dev_addr)) return 0; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); if (netif_running(dev)) { bnxt_close_nic(bp, false, false); rc = bnxt_open_nic(bp, false, false); } return rc; } /* rtnl_lock held */ static int bnxt_change_mtu(struct net_device *dev, int new_mtu) { struct bnxt *bp = netdev_priv(dev); if (netif_running(dev)) bnxt_close_nic(bp, false, false); dev->mtu = new_mtu; bnxt_set_ring_params(bp); if (netif_running(dev)) return bnxt_open_nic(bp, false, false); return 0; } int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) { struct bnxt *bp = netdev_priv(dev); bool sh = false; int rc; if (tc > bp->max_tc) { netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", tc, bp->max_tc); return -EINVAL; } if (netdev_get_num_tc(dev) == tc) return 0; if (bp->flags & BNXT_FLAG_SHARED_RINGS) sh = true; rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, tc, bp->tx_nr_rings_xdp); if (rc) return rc; /* Needs to close the device and do hw resource re-allocations */ if (netif_running(bp->dev)) bnxt_close_nic(bp, true, false); if (tc) { bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; netdev_set_num_tc(dev, tc); } else { bp->tx_nr_rings = bp->tx_nr_rings_per_tc; netdev_reset_tc(dev); } bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : bp->tx_nr_rings + bp->rx_nr_rings; bp->num_stat_ctxs = bp->cp_nr_rings; if (netif_running(bp->dev)) return bnxt_open_nic(bp, true, false); return 0; } static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto, struct tc_to_netdev *ntc) { if (ntc->type != TC_SETUP_MQPRIO) return -EINVAL; ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; return bnxt_setup_mq_tc(dev, ntc->mqprio->num_tc); } #ifdef CONFIG_RFS_ACCEL static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, struct bnxt_ntuple_filter *f2) { struct flow_keys *keys1 = &f1->fkeys; struct flow_keys *keys2 = &f2->fkeys; if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src && keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst && keys1->ports.ports == keys2->ports.ports && keys1->basic.ip_proto == keys2->basic.ip_proto && keys1->basic.n_proto == keys2->basic.n_proto && keys1->control.flags == keys2->control.flags && ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) return true; return false; } static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct bnxt *bp = netdev_priv(dev); struct bnxt_ntuple_filter *fltr, *new_fltr; struct flow_keys *fkeys; struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); int rc = 0, idx, bit_id, l2_idx = 0; struct hlist_head *head; if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; int off = 0, j; netif_addr_lock_bh(dev); for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { if (ether_addr_equal(eth->h_dest, vnic->uc_list + off)) { l2_idx = j + 1; break; } } netif_addr_unlock_bh(dev); if (!l2_idx) return -EINVAL; } new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); if (!new_fltr) return -ENOMEM; fkeys = &new_fltr->fkeys; if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { rc = -EPROTONOSUPPORT; goto err_free; } if ((fkeys->basic.n_proto != htons(ETH_P_IP) && fkeys->basic.n_proto != htons(ETH_P_IPV6)) || ((fkeys->basic.ip_proto != IPPROTO_TCP) && (fkeys->basic.ip_proto != IPPROTO_UDP))) { rc = -EPROTONOSUPPORT; goto err_free; } if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && bp->hwrm_spec_code < 0x10601) { rc = -EPROTONOSUPPORT; goto err_free; } if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) && bp->hwrm_spec_code < 0x10601) { rc = -EPROTONOSUPPORT; goto err_free; } memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; head = &bp->ntp_fltr_hash_tbl[idx]; rcu_read_lock(); hlist_for_each_entry_rcu(fltr, head, hash) { if (bnxt_fltr_match(fltr, new_fltr)) { rcu_read_unlock(); rc = 0; goto err_free; } } rcu_read_unlock(); spin_lock_bh(&bp->ntp_fltr_lock); bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, BNXT_NTP_FLTR_MAX_FLTR, 0); if (bit_id < 0) { spin_unlock_bh(&bp->ntp_fltr_lock); rc = -ENOMEM; goto err_free; } new_fltr->sw_id = (u16)bit_id; new_fltr->flow_id = flow_id; new_fltr->l2_fltr_idx = l2_idx; new_fltr->rxq = rxq_index; hlist_add_head_rcu(&new_fltr->hash, head); bp->ntp_fltr_count++; spin_unlock_bh(&bp->ntp_fltr_lock); set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); return new_fltr->sw_id; err_free: kfree(new_fltr); return rc; } static void bnxt_cfg_ntp_filters(struct bnxt *bp) { int i; for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { struct hlist_head *head; struct hlist_node *tmp; struct bnxt_ntuple_filter *fltr; int rc; head = &bp->ntp_fltr_hash_tbl[i]; hlist_for_each_entry_safe(fltr, tmp, head, hash) { bool del = false; if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { if (rps_may_expire_flow(bp->dev, fltr->rxq, fltr->flow_id, fltr->sw_id)) { bnxt_hwrm_cfa_ntuple_filter_free(bp, fltr); del = true; } } else { rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, fltr); if (rc) del = true; else set_bit(BNXT_FLTR_VALID, &fltr->state); } if (del) { spin_lock_bh(&bp->ntp_fltr_lock); hlist_del_rcu(&fltr->hash); bp->ntp_fltr_count--; spin_unlock_bh(&bp->ntp_fltr_lock); synchronize_rcu(); clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); kfree(fltr); } } } if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) netdev_info(bp->dev, "Receive PF driver unload event!"); } #else static void bnxt_cfg_ntp_filters(struct bnxt *bp) { } #endif /* CONFIG_RFS_ACCEL */ static void bnxt_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) { struct bnxt *bp = netdev_priv(dev); if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) return; if (!netif_running(dev)) return; switch (ti->type) { case UDP_TUNNEL_TYPE_VXLAN: if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port) return; bp->vxlan_port_cnt++; if (bp->vxlan_port_cnt == 1) { bp->vxlan_port = ti->port; set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); schedule_work(&bp->sp_task); } break; case UDP_TUNNEL_TYPE_GENEVE: if (bp->nge_port_cnt && bp->nge_port != ti->port) return; bp->nge_port_cnt++; if (bp->nge_port_cnt == 1) { bp->nge_port = ti->port; set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event); } break; default: return; } schedule_work(&bp->sp_task); } static void bnxt_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) { struct bnxt *bp = netdev_priv(dev); if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) return; if (!netif_running(dev)) return; switch (ti->type) { case UDP_TUNNEL_TYPE_VXLAN: if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port) return; bp->vxlan_port_cnt--; if (bp->vxlan_port_cnt != 0) return; set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); break; case UDP_TUNNEL_TYPE_GENEVE: if (!bp->nge_port_cnt || bp->nge_port != ti->port) return; bp->nge_port_cnt--; if (bp->nge_port_cnt != 0) return; set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event); break; default: return; } schedule_work(&bp->sp_task); } static const struct net_device_ops bnxt_netdev_ops = { .ndo_open = bnxt_open, .ndo_start_xmit = bnxt_start_xmit, .ndo_stop = bnxt_close, .ndo_get_stats64 = bnxt_get_stats64, .ndo_set_rx_mode = bnxt_set_rx_mode, .ndo_do_ioctl = bnxt_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = bnxt_change_mac_addr, .ndo_change_mtu = bnxt_change_mtu, .ndo_fix_features = bnxt_fix_features, .ndo_set_features = bnxt_set_features, .ndo_tx_timeout = bnxt_tx_timeout, #ifdef CONFIG_BNXT_SRIOV .ndo_get_vf_config = bnxt_get_vf_config, .ndo_set_vf_mac = bnxt_set_vf_mac, .ndo_set_vf_vlan = bnxt_set_vf_vlan, .ndo_set_vf_rate = bnxt_set_vf_bw, .ndo_set_vf_link_state = bnxt_set_vf_link_state, .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, #endif #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = bnxt_poll_controller, #endif .ndo_setup_tc = bnxt_setup_tc, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = bnxt_rx_flow_steer, #endif .ndo_udp_tunnel_add = bnxt_udp_tunnel_add, .ndo_udp_tunnel_del = bnxt_udp_tunnel_del, .ndo_xdp = bnxt_xdp, }; static void bnxt_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnxt *bp = netdev_priv(dev); if (BNXT_PF(bp)) bnxt_sriov_disable(bp); pci_disable_pcie_error_reporting(pdev); unregister_netdev(dev); cancel_work_sync(&bp->sp_task); bp->sp_event = 0; bnxt_clear_int_mode(bp); bnxt_hwrm_func_drv_unrgtr(bp); bnxt_free_hwrm_resources(bp); bnxt_dcb_free(bp); kfree(bp->edev); bp->edev = NULL; if (bp->xdp_prog) bpf_prog_put(bp->xdp_prog); bnxt_cleanup_pci(bp); free_netdev(dev); } static int bnxt_probe_phy(struct bnxt *bp) { int rc = 0; struct bnxt_link_info *link_info = &bp->link_info; rc = bnxt_hwrm_phy_qcaps(bp); if (rc) { netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", rc); return rc; } rc = bnxt_update_link(bp, false); if (rc) { netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", rc); return rc; } /* Older firmware does not have supported_auto_speeds, so assume * that all supported speeds can be autonegotiated. */ if (link_info->auto_link_speeds && !link_info->support_auto_speeds) link_info->support_auto_speeds = link_info->support_speeds; /*initialize the ethool setting copy with NVM settings */ if (BNXT_AUTO_MODE(link_info->auto_mode)) { link_info->autoneg = BNXT_AUTONEG_SPEED; if (bp->hwrm_spec_code >= 0x10201) { if (link_info->auto_pause_setting & PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; } else { link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; } link_info->advertising = link_info->auto_link_speeds; } else { link_info->req_link_speed = link_info->force_link_speed; link_info->req_duplex = link_info->duplex_setting; } if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) link_info->req_flow_ctrl = link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; else link_info->req_flow_ctrl = link_info->force_pause_setting; return rc; } static int bnxt_get_max_irq(struct pci_dev *pdev) { u16 ctrl; if (!pdev->msix_cap) return 1; pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; } static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, int *max_cp) { int max_ring_grps = 0; #ifdef CONFIG_BNXT_SRIOV if (!BNXT_PF(bp)) { *max_tx = bp->vf.max_tx_rings; *max_rx = bp->vf.max_rx_rings; *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings); *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs); max_ring_grps = bp->vf.max_hw_ring_grps; } else #endif { *max_tx = bp->pf.max_tx_rings; *max_rx = bp->pf.max_rx_rings; *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings); *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs); max_ring_grps = bp->pf.max_hw_ring_grps; } if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { *max_cp -= 1; *max_rx -= 2; } if (bp->flags & BNXT_FLAG_AGG_RINGS) *max_rx >>= 1; *max_rx = min_t(int, *max_rx, max_ring_grps); } int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) { int rx, tx, cp; _bnxt_get_max_rings(bp, &rx, &tx, &cp); if (!rx || !tx || !cp) return -ENOMEM; *max_rx = rx; *max_tx = tx; return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); } static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) { int rc; rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { /* Not enough rings, try disabling agg rings. */ bp->flags &= ~BNXT_FLAG_AGG_RINGS; rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); if (rc) return rc; bp->flags |= BNXT_FLAG_NO_AGG_RINGS; bp->dev->hw_features &= ~NETIF_F_LRO; bp->dev->features &= ~NETIF_F_LRO; bnxt_set_ring_params(bp); } if (bp->flags & BNXT_FLAG_ROCE_CAP) { int max_cp, max_stat, max_irq; /* Reserve minimum resources for RoCE */ max_cp = bnxt_get_max_func_cp_rings(bp); max_stat = bnxt_get_max_func_stat_ctxs(bp); max_irq = bnxt_get_max_func_irqs(bp); if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || max_irq <= BNXT_MIN_ROCE_CP_RINGS || max_stat <= BNXT_MIN_ROCE_STAT_CTXS) return 0; max_cp -= BNXT_MIN_ROCE_CP_RINGS; max_irq -= BNXT_MIN_ROCE_CP_RINGS; max_stat -= BNXT_MIN_ROCE_STAT_CTXS; max_cp = min_t(int, max_cp, max_irq); max_cp = min_t(int, max_cp, max_stat); rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); if (rc) rc = 0; } return rc; } static int bnxt_set_dflt_rings(struct bnxt *bp) { int dflt_rings, max_rx_rings, max_tx_rings, rc; bool sh = true; if (sh) bp->flags |= BNXT_FLAG_SHARED_RINGS; dflt_rings = netif_get_num_default_rss_queues(); rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); if (rc) return rc; bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc); if (rc) netdev_warn(bp->dev, "Unable to reserve tx rings\n"); bp->tx_nr_rings = bp->tx_nr_rings_per_tc; bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : bp->tx_nr_rings + bp->rx_nr_rings; bp->num_stat_ctxs = bp->cp_nr_rings; if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { bp->rx_nr_rings++; bp->cp_nr_rings++; } return rc; } void bnxt_restore_pf_fw_resources(struct bnxt *bp) { ASSERT_RTNL(); bnxt_hwrm_func_qcaps(bp); bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP); } static void bnxt_parse_log_pcie_link(struct bnxt *bp) { enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN; enum pci_bus_speed speed = PCI_SPEED_UNKNOWN; if (pcie_get_minimum_link(bp->pdev, &speed, &width) || speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) netdev_info(bp->dev, "Failed to determine PCIe Link Info\n"); else netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n", speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : "Unknown", width); } static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int version_printed; struct net_device *dev; struct bnxt *bp; int rc, max_irqs; if (pci_is_bridge(pdev)) return -ENODEV; if (version_printed++ == 0) pr_info("%s", version); max_irqs = bnxt_get_max_irq(pdev); dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); if (!dev) return -ENOMEM; bp = netdev_priv(dev); if (bnxt_vf_pciid(ent->driver_data)) bp->flags |= BNXT_FLAG_VF; if (pdev->msix_cap) bp->flags |= BNXT_FLAG_MSIX_CAP; rc = bnxt_init_board(pdev, dev); if (rc < 0) goto init_err_free; dev->netdev_ops = &bnxt_netdev_ops; dev->watchdog_timeo = BNXT_TX_TIMEOUT; dev->ethtool_ops = &bnxt_ethtool_ops; pci_set_drvdata(pdev, dev); rc = bnxt_alloc_hwrm_resources(bp); if (rc) goto init_err_pci_clean; mutex_init(&bp->hwrm_cmd_lock); rc = bnxt_hwrm_ver_get(bp); if (rc) goto init_err_pci_clean; rc = bnxt_hwrm_func_reset(bp); if (rc) goto init_err_pci_clean; bnxt_hwrm_fw_set_time(bp); dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | NETIF_F_RXCSUM | NETIF_F_GRO; if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) dev->hw_features |= NETIF_F_LRO; dev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM; dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; dev->features |= dev->hw_features | NETIF_F_HIGHDMA; dev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 60 - 9500 */ dev->min_mtu = ETH_ZLEN; dev->max_mtu = BNXT_MAX_MTU; bnxt_dcb_init(bp); #ifdef CONFIG_BNXT_SRIOV init_waitqueue_head(&bp->sriov_cfg_wait); #endif bp->gro_func = bnxt_gro_func_5730x; if (BNXT_CHIP_NUM_57X1X(bp->chip_num)) bp->gro_func = bnxt_gro_func_5731x; rc = bnxt_hwrm_func_drv_rgtr(bp); if (rc) goto init_err_pci_clean; rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0); if (rc) goto init_err_pci_clean; bp->ulp_probe = bnxt_ulp_probe; /* Get the MAX capabilities for this function */ rc = bnxt_hwrm_func_qcaps(bp); if (rc) { netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", rc); rc = -1; goto init_err_pci_clean; } rc = bnxt_hwrm_queue_qportcfg(bp); if (rc) { netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n", rc); rc = -1; goto init_err_pci_clean; } bnxt_hwrm_func_qcfg(bp); bnxt_hwrm_port_led_qcaps(bp); bnxt_set_rx_skb_mode(bp, false); bnxt_set_tpa_flags(bp); bnxt_set_ring_params(bp); bnxt_set_max_func_irqs(bp, max_irqs); rc = bnxt_set_dflt_rings(bp); if (rc) { netdev_err(bp->dev, "Not enough rings available.\n"); rc = -ENOMEM; goto init_err_pci_clean; } /* Default RSS hash cfg. */ bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) && !BNXT_CHIP_TYPE_NITRO_A0(bp) && bp->hwrm_spec_code >= 0x10501) { bp->flags |= BNXT_FLAG_UDP_RSS_CAP; bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; } bnxt_hwrm_vnic_qcaps(bp); if (bnxt_rfs_supported(bp)) { dev->hw_features |= NETIF_F_NTUPLE; if (bnxt_rfs_capable(bp)) { bp->flags |= BNXT_FLAG_RFS; dev->features |= NETIF_F_NTUPLE; } } if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) bp->flags |= BNXT_FLAG_STRIP_VLAN; rc = bnxt_probe_phy(bp); if (rc) goto init_err_pci_clean; rc = bnxt_init_int_mode(bp); if (rc) goto init_err_pci_clean; bnxt_get_wol_settings(bp); if (bp->flags & BNXT_FLAG_WOL_CAP) device_set_wakeup_enable(&pdev->dev, bp->wol); else device_set_wakeup_capable(&pdev->dev, false); rc = register_netdev(dev); if (rc) goto init_err_clr_int; netdev_info(dev, "%s found at mem %lx, node addr %pM\n", board_info[ent->driver_data].name, (long)pci_resource_start(pdev, 0), dev->dev_addr); bnxt_parse_log_pcie_link(bp); return 0; init_err_clr_int: bnxt_clear_int_mode(bp); init_err_pci_clean: bnxt_cleanup_pci(bp); init_err_free: free_netdev(dev); return rc; } static void bnxt_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnxt *bp; if (!dev) return; rtnl_lock(); bp = netdev_priv(dev); if (!bp) goto shutdown_exit; if (netif_running(dev)) dev_close(dev); if (system_state == SYSTEM_POWER_OFF) { bnxt_clear_int_mode(bp); pci_wake_from_d3(pdev, bp->wol); pci_set_power_state(pdev, PCI_D3hot); } shutdown_exit: rtnl_unlock(); } /** * bnxt_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct bnxt *bp = netdev_priv(netdev); netdev_info(netdev, "PCI I/O error detected\n"); rtnl_lock(); netif_device_detach(netdev); bnxt_ulp_stop(bp); if (state == pci_channel_io_perm_failure) { rtnl_unlock(); return PCI_ERS_RESULT_DISCONNECT; } if (netif_running(netdev)) bnxt_close(netdev); pci_disable_device(pdev); rtnl_unlock(); /* Request a slot slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * bnxt_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. * At this point, the card has exprienced a hard reset, * followed by fixups by BIOS, and has its config space * set up identically to what it was at cold boot. */ static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct bnxt *bp = netdev_priv(netdev); int err = 0; pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; netdev_info(bp->dev, "PCI Slot Reset\n"); rtnl_lock(); if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset.\n"); } else { pci_set_master(pdev); err = bnxt_hwrm_func_reset(bp); if (!err && netif_running(netdev)) err = bnxt_open(netdev); if (!err) { result = PCI_ERS_RESULT_RECOVERED; bnxt_ulp_start(bp); } } if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev)) dev_close(netdev); rtnl_unlock(); err = pci_cleanup_aer_uncorrect_error_status(pdev); if (err) { dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", err); /* non-fatal, continue */ } return PCI_ERS_RESULT_RECOVERED; } /** * bnxt_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells * us that its OK to resume normal operation. */ static void bnxt_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); rtnl_lock(); netif_device_attach(netdev); rtnl_unlock(); } static const struct pci_error_handlers bnxt_err_handler = { .error_detected = bnxt_io_error_detected, .slot_reset = bnxt_io_slot_reset, .resume = bnxt_io_resume }; static struct pci_driver bnxt_pci_driver = { .name = DRV_MODULE_NAME, .id_table = bnxt_pci_tbl, .probe = bnxt_init_one, .remove = bnxt_remove_one, .shutdown = bnxt_shutdown, .err_handler = &bnxt_err_handler, #if defined(CONFIG_BNXT_SRIOV) .sriov_configure = bnxt_sriov_configure, #endif }; module_pci_driver(bnxt_pci_driver);