/* * Copyright (c) 2001 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith * Andy Adamson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include "xdr4.h" #include "xdr4cb.h" #include "vfs.h" #include "current_stateid.h" #include "netns.h" #define NFSDDBG_FACILITY NFSDDBG_PROC #define all_ones {{~0,~0},~0} static const stateid_t one_stateid = { .si_generation = ~0, .si_opaque = all_ones, }; static const stateid_t zero_stateid = { /* all fields zero */ }; static const stateid_t currentstateid = { .si_generation = 1, }; static u64 current_sessionid = 1; #define ZERO_STATEID(stateid) (!memcmp((stateid), &zero_stateid, sizeof(stateid_t))) #define ONE_STATEID(stateid) (!memcmp((stateid), &one_stateid, sizeof(stateid_t))) #define CURRENT_STATEID(stateid) (!memcmp((stateid), ¤tstateid, sizeof(stateid_t))) /* forward declarations */ static bool check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner); static void nfs4_free_ol_stateid(struct nfs4_stid *stid); /* Locking: */ /* Currently used for almost all code touching nfsv4 state: */ static DEFINE_MUTEX(client_mutex); /* * Currently used for the del_recall_lru and file hash table. In an * effort to decrease the scope of the client_mutex, this spinlock may * eventually cover more: */ static DEFINE_SPINLOCK(state_lock); /* * A waitqueue for all in-progress 4.0 CLOSE operations that are waiting for * the refcount on the open stateid to drop. */ static DECLARE_WAIT_QUEUE_HEAD(close_wq); static struct kmem_cache *openowner_slab; static struct kmem_cache *lockowner_slab; static struct kmem_cache *file_slab; static struct kmem_cache *stateid_slab; static struct kmem_cache *deleg_slab; void nfs4_lock_state(void) { mutex_lock(&client_mutex); } static void free_session(struct nfsd4_session *); static bool is_session_dead(struct nfsd4_session *ses) { return ses->se_flags & NFS4_SESSION_DEAD; } static __be32 mark_session_dead_locked(struct nfsd4_session *ses, int ref_held_by_me) { if (atomic_read(&ses->se_ref) > ref_held_by_me) return nfserr_jukebox; ses->se_flags |= NFS4_SESSION_DEAD; return nfs_ok; } void nfs4_unlock_state(void) { mutex_unlock(&client_mutex); } static bool is_client_expired(struct nfs4_client *clp) { return clp->cl_time == 0; } static __be32 get_client_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); if (is_client_expired(clp)) return nfserr_expired; atomic_inc(&clp->cl_refcount); return nfs_ok; } /* must be called under the client_lock */ static inline void renew_client_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); if (is_client_expired(clp)) { WARN_ON(1); printk("%s: client (clientid %08x/%08x) already expired\n", __func__, clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); return; } dprintk("renewing client (clientid %08x/%08x)\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); list_move_tail(&clp->cl_lru, &nn->client_lru); clp->cl_time = get_seconds(); } static inline void renew_client(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); spin_lock(&nn->client_lock); renew_client_locked(clp); spin_unlock(&nn->client_lock); } static void put_client_renew_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); if (!atomic_dec_and_test(&clp->cl_refcount)) return; if (!is_client_expired(clp)) renew_client_locked(clp); } static void put_client_renew(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); if (!atomic_dec_and_lock(&clp->cl_refcount, &nn->client_lock)) return; if (!is_client_expired(clp)) renew_client_locked(clp); spin_unlock(&nn->client_lock); } static __be32 nfsd4_get_session_locked(struct nfsd4_session *ses) { __be32 status; if (is_session_dead(ses)) return nfserr_badsession; status = get_client_locked(ses->se_client); if (status) return status; atomic_inc(&ses->se_ref); return nfs_ok; } static void nfsd4_put_session_locked(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); if (atomic_dec_and_test(&ses->se_ref) && is_session_dead(ses)) free_session(ses); put_client_renew_locked(clp); } static void nfsd4_put_session(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); spin_lock(&nn->client_lock); nfsd4_put_session_locked(ses); spin_unlock(&nn->client_lock); } static int same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner) { return (sop->so_owner.len == owner->len) && 0 == memcmp(sop->so_owner.data, owner->data, owner->len); } static struct nfs4_openowner * find_openstateowner_str_locked(unsigned int hashval, struct nfsd4_open *open, struct nfs4_client *clp) { struct nfs4_stateowner *so; lockdep_assert_held(&clp->cl_lock); list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[hashval], so_strhash) { if (!so->so_is_open_owner) continue; if (same_owner_str(so, &open->op_owner)) { atomic_inc(&so->so_count); return openowner(so); } } return NULL; } static struct nfs4_openowner * find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open, struct nfs4_client *clp) { struct nfs4_openowner *oo; spin_lock(&clp->cl_lock); oo = find_openstateowner_str_locked(hashval, open, clp); spin_unlock(&clp->cl_lock); return oo; } static inline u32 opaque_hashval(const void *ptr, int nbytes) { unsigned char *cptr = (unsigned char *) ptr; u32 x = 0; while (nbytes--) { x *= 37; x += *cptr++; } return x; } static void nfsd4_free_file(struct nfs4_file *f) { kmem_cache_free(file_slab, f); } static inline void put_nfs4_file(struct nfs4_file *fi) { might_lock(&state_lock); if (atomic_dec_and_lock(&fi->fi_ref, &state_lock)) { hlist_del(&fi->fi_hash); spin_unlock(&state_lock); nfsd4_free_file(fi); } } static inline void get_nfs4_file(struct nfs4_file *fi) { atomic_inc(&fi->fi_ref); } static struct file * __nfs4_get_fd(struct nfs4_file *f, int oflag) { if (f->fi_fds[oflag]) return get_file(f->fi_fds[oflag]); return NULL; } static struct file * find_writeable_file_locked(struct nfs4_file *f) { struct file *ret; lockdep_assert_held(&f->fi_lock); ret = __nfs4_get_fd(f, O_WRONLY); if (!ret) ret = __nfs4_get_fd(f, O_RDWR); return ret; } static struct file * find_writeable_file(struct nfs4_file *f) { struct file *ret; spin_lock(&f->fi_lock); ret = find_writeable_file_locked(f); spin_unlock(&f->fi_lock); return ret; } static struct file *find_readable_file_locked(struct nfs4_file *f) { struct file *ret; lockdep_assert_held(&f->fi_lock); ret = __nfs4_get_fd(f, O_RDONLY); if (!ret) ret = __nfs4_get_fd(f, O_RDWR); return ret; } static struct file * find_readable_file(struct nfs4_file *f) { struct file *ret; spin_lock(&f->fi_lock); ret = find_readable_file_locked(f); spin_unlock(&f->fi_lock); return ret; } static struct file * find_any_file(struct nfs4_file *f) { struct file *ret; spin_lock(&f->fi_lock); ret = __nfs4_get_fd(f, O_RDWR); if (!ret) { ret = __nfs4_get_fd(f, O_WRONLY); if (!ret) ret = __nfs4_get_fd(f, O_RDONLY); } spin_unlock(&f->fi_lock); return ret; } static atomic_long_t num_delegations; unsigned long max_delegations; /* * Open owner state (share locks) */ /* hash tables for lock and open owners */ #define OWNER_HASH_BITS 8 #define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS) #define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1) static unsigned int ownerstr_hashval(struct xdr_netobj *ownername) { unsigned int ret; ret = opaque_hashval(ownername->data, ownername->len); return ret & OWNER_HASH_MASK; } /* hash table for nfs4_file */ #define FILE_HASH_BITS 8 #define FILE_HASH_SIZE (1 << FILE_HASH_BITS) static unsigned int nfsd_fh_hashval(struct knfsd_fh *fh) { return jhash2(fh->fh_base.fh_pad, XDR_QUADLEN(fh->fh_size), 0); } static unsigned int file_hashval(struct knfsd_fh *fh) { return nfsd_fh_hashval(fh) & (FILE_HASH_SIZE - 1); } static bool nfsd_fh_match(struct knfsd_fh *fh1, struct knfsd_fh *fh2) { return fh1->fh_size == fh2->fh_size && !memcmp(fh1->fh_base.fh_pad, fh2->fh_base.fh_pad, fh1->fh_size); } static struct hlist_head file_hashtbl[FILE_HASH_SIZE]; static void __nfs4_file_get_access(struct nfs4_file *fp, u32 access) { lockdep_assert_held(&fp->fi_lock); if (access & NFS4_SHARE_ACCESS_WRITE) atomic_inc(&fp->fi_access[O_WRONLY]); if (access & NFS4_SHARE_ACCESS_READ) atomic_inc(&fp->fi_access[O_RDONLY]); } static __be32 nfs4_file_get_access(struct nfs4_file *fp, u32 access) { lockdep_assert_held(&fp->fi_lock); /* Does this access mode make sense? */ if (access & ~NFS4_SHARE_ACCESS_BOTH) return nfserr_inval; /* Does it conflict with a deny mode already set? */ if ((access & fp->fi_share_deny) != 0) return nfserr_share_denied; __nfs4_file_get_access(fp, access); return nfs_ok; } static __be32 nfs4_file_check_deny(struct nfs4_file *fp, u32 deny) { /* Common case is that there is no deny mode. */ if (deny) { /* Does this deny mode make sense? */ if (deny & ~NFS4_SHARE_DENY_BOTH) return nfserr_inval; if ((deny & NFS4_SHARE_DENY_READ) && atomic_read(&fp->fi_access[O_RDONLY])) return nfserr_share_denied; if ((deny & NFS4_SHARE_DENY_WRITE) && atomic_read(&fp->fi_access[O_WRONLY])) return nfserr_share_denied; } return nfs_ok; } static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag) { might_lock(&fp->fi_lock); if (atomic_dec_and_lock(&fp->fi_access[oflag], &fp->fi_lock)) { struct file *f1 = NULL; struct file *f2 = NULL; swap(f1, fp->fi_fds[oflag]); if (atomic_read(&fp->fi_access[1 - oflag]) == 0) swap(f2, fp->fi_fds[O_RDWR]); spin_unlock(&fp->fi_lock); if (f1) fput(f1); if (f2) fput(f2); } } static void nfs4_file_put_access(struct nfs4_file *fp, u32 access) { WARN_ON_ONCE(access & ~NFS4_SHARE_ACCESS_BOTH); if (access & NFS4_SHARE_ACCESS_WRITE) __nfs4_file_put_access(fp, O_WRONLY); if (access & NFS4_SHARE_ACCESS_READ) __nfs4_file_put_access(fp, O_RDONLY); } static struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct kmem_cache *slab) { struct nfs4_stid *stid; int new_id; stid = kmem_cache_zalloc(slab, GFP_KERNEL); if (!stid) return NULL; idr_preload(GFP_KERNEL); spin_lock(&cl->cl_lock); new_id = idr_alloc_cyclic(&cl->cl_stateids, stid, 0, 0, GFP_NOWAIT); spin_unlock(&cl->cl_lock); idr_preload_end(); if (new_id < 0) goto out_free; stid->sc_client = cl; stid->sc_stateid.si_opaque.so_id = new_id; stid->sc_stateid.si_opaque.so_clid = cl->cl_clientid; /* Will be incremented before return to client: */ atomic_set(&stid->sc_count, 1); /* * It shouldn't be a problem to reuse an opaque stateid value. * I don't think it is for 4.1. But with 4.0 I worry that, for * example, a stray write retransmission could be accepted by * the server when it should have been rejected. Therefore, * adopt a trick from the sctp code to attempt to maximize the * amount of time until an id is reused, by ensuring they always * "increase" (mod INT_MAX): */ return stid; out_free: kmem_cache_free(slab, stid); return NULL; } static struct nfs4_ol_stateid * nfs4_alloc_open_stateid(struct nfs4_client *clp) { struct nfs4_stid *stid; struct nfs4_ol_stateid *stp; stid = nfs4_alloc_stid(clp, stateid_slab); if (!stid) return NULL; stp = openlockstateid(stid); stp->st_stid.sc_free = nfs4_free_ol_stateid; return stp; } static void nfs4_free_deleg(struct nfs4_stid *stid) { kmem_cache_free(deleg_slab, stid); atomic_long_dec(&num_delegations); } /* * When we recall a delegation, we should be careful not to hand it * out again straight away. * To ensure this we keep a pair of bloom filters ('new' and 'old') * in which the filehandles of recalled delegations are "stored". * If a filehandle appear in either filter, a delegation is blocked. * When a delegation is recalled, the filehandle is stored in the "new" * filter. * Every 30 seconds we swap the filters and clear the "new" one, * unless both are empty of course. * * Each filter is 256 bits. We hash the filehandle to 32bit and use the * low 3 bytes as hash-table indices. * * 'blocked_delegations_lock', which is always taken in block_delegations(), * is used to manage concurrent access. Testing does not need the lock * except when swapping the two filters. */ static DEFINE_SPINLOCK(blocked_delegations_lock); static struct bloom_pair { int entries, old_entries; time_t swap_time; int new; /* index into 'set' */ DECLARE_BITMAP(set[2], 256); } blocked_delegations; static int delegation_blocked(struct knfsd_fh *fh) { u32 hash; struct bloom_pair *bd = &blocked_delegations; if (bd->entries == 0) return 0; if (seconds_since_boot() - bd->swap_time > 30) { spin_lock(&blocked_delegations_lock); if (seconds_since_boot() - bd->swap_time > 30) { bd->entries -= bd->old_entries; bd->old_entries = bd->entries; memset(bd->set[bd->new], 0, sizeof(bd->set[0])); bd->new = 1-bd->new; bd->swap_time = seconds_since_boot(); } spin_unlock(&blocked_delegations_lock); } hash = arch_fast_hash(&fh->fh_base, fh->fh_size, 0); if (test_bit(hash&255, bd->set[0]) && test_bit((hash>>8)&255, bd->set[0]) && test_bit((hash>>16)&255, bd->set[0])) return 1; if (test_bit(hash&255, bd->set[1]) && test_bit((hash>>8)&255, bd->set[1]) && test_bit((hash>>16)&255, bd->set[1])) return 1; return 0; } static void block_delegations(struct knfsd_fh *fh) { u32 hash; struct bloom_pair *bd = &blocked_delegations; hash = arch_fast_hash(&fh->fh_base, fh->fh_size, 0); spin_lock(&blocked_delegations_lock); __set_bit(hash&255, bd->set[bd->new]); __set_bit((hash>>8)&255, bd->set[bd->new]); __set_bit((hash>>16)&255, bd->set[bd->new]); if (bd->entries == 0) bd->swap_time = seconds_since_boot(); bd->entries += 1; spin_unlock(&blocked_delegations_lock); } static struct nfs4_delegation * alloc_init_deleg(struct nfs4_client *clp, struct svc_fh *current_fh) { struct nfs4_delegation *dp; long n; dprintk("NFSD alloc_init_deleg\n"); n = atomic_long_inc_return(&num_delegations); if (n < 0 || n > max_delegations) goto out_dec; if (delegation_blocked(¤t_fh->fh_handle)) goto out_dec; dp = delegstateid(nfs4_alloc_stid(clp, deleg_slab)); if (dp == NULL) goto out_dec; dp->dl_stid.sc_free = nfs4_free_deleg; /* * delegation seqid's are never incremented. The 4.1 special * meaning of seqid 0 isn't meaningful, really, but let's avoid * 0 anyway just for consistency and use 1: */ dp->dl_stid.sc_stateid.si_generation = 1; INIT_LIST_HEAD(&dp->dl_perfile); INIT_LIST_HEAD(&dp->dl_perclnt); INIT_LIST_HEAD(&dp->dl_recall_lru); dp->dl_type = NFS4_OPEN_DELEGATE_READ; INIT_WORK(&dp->dl_recall.cb_work, nfsd4_run_cb_recall); return dp; out_dec: atomic_long_dec(&num_delegations); return NULL; } void nfs4_put_stid(struct nfs4_stid *s) { struct nfs4_file *fp = s->sc_file; struct nfs4_client *clp = s->sc_client; might_lock(&clp->cl_lock); if (!atomic_dec_and_lock(&s->sc_count, &clp->cl_lock)) { wake_up_all(&close_wq); return; } idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id); spin_unlock(&clp->cl_lock); s->sc_free(s); if (fp) put_nfs4_file(fp); } static void nfs4_put_deleg_lease(struct nfs4_file *fp) { lockdep_assert_held(&state_lock); if (!fp->fi_lease) return; if (atomic_dec_and_test(&fp->fi_delegees)) { vfs_setlease(fp->fi_deleg_file, F_UNLCK, &fp->fi_lease); fp->fi_lease = NULL; fput(fp->fi_deleg_file); fp->fi_deleg_file = NULL; } } static void unhash_stid(struct nfs4_stid *s) { s->sc_type = 0; } static void hash_delegation_locked(struct nfs4_delegation *dp, struct nfs4_file *fp) { lockdep_assert_held(&state_lock); lockdep_assert_held(&fp->fi_lock); atomic_inc(&dp->dl_stid.sc_count); dp->dl_stid.sc_type = NFS4_DELEG_STID; list_add(&dp->dl_perfile, &fp->fi_delegations); list_add(&dp->dl_perclnt, &dp->dl_stid.sc_client->cl_delegations); } static void unhash_delegation_locked(struct nfs4_delegation *dp) { struct nfs4_file *fp = dp->dl_stid.sc_file; lockdep_assert_held(&state_lock); dp->dl_stid.sc_type = NFS4_CLOSED_DELEG_STID; /* Ensure that deleg break won't try to requeue it */ ++dp->dl_time; spin_lock(&fp->fi_lock); list_del_init(&dp->dl_perclnt); list_del_init(&dp->dl_recall_lru); list_del_init(&dp->dl_perfile); spin_unlock(&fp->fi_lock); if (fp) nfs4_put_deleg_lease(fp); } static void destroy_delegation(struct nfs4_delegation *dp) { spin_lock(&state_lock); unhash_delegation_locked(dp); spin_unlock(&state_lock); nfs4_put_stid(&dp->dl_stid); } static void revoke_delegation(struct nfs4_delegation *dp) { struct nfs4_client *clp = dp->dl_stid.sc_client; WARN_ON(!list_empty(&dp->dl_recall_lru)); if (clp->cl_minorversion == 0) nfs4_put_stid(&dp->dl_stid); else { dp->dl_stid.sc_type = NFS4_REVOKED_DELEG_STID; spin_lock(&clp->cl_lock); list_add(&dp->dl_recall_lru, &clp->cl_revoked); spin_unlock(&clp->cl_lock); } } /* * SETCLIENTID state */ static unsigned int clientid_hashval(u32 id) { return id & CLIENT_HASH_MASK; } static unsigned int clientstr_hashval(const char *name) { return opaque_hashval(name, 8) & CLIENT_HASH_MASK; } /* * We store the NONE, READ, WRITE, and BOTH bits separately in the * st_{access,deny}_bmap field of the stateid, in order to track not * only what share bits are currently in force, but also what * combinations of share bits previous opens have used. This allows us * to enforce the recommendation of rfc 3530 14.2.19 that the server * return an error if the client attempt to downgrade to a combination * of share bits not explicable by closing some of its previous opens. * * XXX: This enforcement is actually incomplete, since we don't keep * track of access/deny bit combinations; so, e.g., we allow: * * OPEN allow read, deny write * OPEN allow both, deny none * DOWNGRADE allow read, deny none * * which we should reject. */ static unsigned int bmap_to_share_mode(unsigned long bmap) { int i; unsigned int access = 0; for (i = 1; i < 4; i++) { if (test_bit(i, &bmap)) access |= i; } return access; } /* set share access for a given stateid */ static inline void set_access(u32 access, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << access; WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH); stp->st_access_bmap |= mask; } /* clear share access for a given stateid */ static inline void clear_access(u32 access, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << access; WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH); stp->st_access_bmap &= ~mask; } /* test whether a given stateid has access */ static inline bool test_access(u32 access, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << access; return (bool)(stp->st_access_bmap & mask); } /* set share deny for a given stateid */ static inline void set_deny(u32 deny, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << deny; WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH); stp->st_deny_bmap |= mask; } /* clear share deny for a given stateid */ static inline void clear_deny(u32 deny, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << deny; WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH); stp->st_deny_bmap &= ~mask; } /* test whether a given stateid is denying specific access */ static inline bool test_deny(u32 deny, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << deny; return (bool)(stp->st_deny_bmap & mask); } static int nfs4_access_to_omode(u32 access) { switch (access & NFS4_SHARE_ACCESS_BOTH) { case NFS4_SHARE_ACCESS_READ: return O_RDONLY; case NFS4_SHARE_ACCESS_WRITE: return O_WRONLY; case NFS4_SHARE_ACCESS_BOTH: return O_RDWR; } WARN_ON_ONCE(1); return O_RDONLY; } /* * A stateid that had a deny mode associated with it is being released * or downgraded. Recalculate the deny mode on the file. */ static void recalculate_deny_mode(struct nfs4_file *fp) { struct nfs4_ol_stateid *stp; spin_lock(&fp->fi_lock); fp->fi_share_deny = 0; list_for_each_entry(stp, &fp->fi_stateids, st_perfile) fp->fi_share_deny |= bmap_to_share_mode(stp->st_deny_bmap); spin_unlock(&fp->fi_lock); } static void reset_union_bmap_deny(u32 deny, struct nfs4_ol_stateid *stp) { int i; bool change = false; for (i = 1; i < 4; i++) { if ((i & deny) != i) { change = true; clear_deny(i, stp); } } /* Recalculate per-file deny mode if there was a change */ if (change) recalculate_deny_mode(stp->st_stid.sc_file); } /* release all access and file references for a given stateid */ static void release_all_access(struct nfs4_ol_stateid *stp) { int i; struct nfs4_file *fp = stp->st_stid.sc_file; if (fp && stp->st_deny_bmap != 0) recalculate_deny_mode(fp); for (i = 1; i < 4; i++) { if (test_access(i, stp)) nfs4_file_put_access(stp->st_stid.sc_file, i); clear_access(i, stp); } } static void nfs4_put_stateowner(struct nfs4_stateowner *sop) { struct nfs4_client *clp = sop->so_client; might_lock(&clp->cl_lock); if (!atomic_dec_and_lock(&sop->so_count, &clp->cl_lock)) return; sop->so_ops->so_unhash(sop); spin_unlock(&clp->cl_lock); kfree(sop->so_owner.data); sop->so_ops->so_free(sop); } static void unhash_ol_stateid(struct nfs4_ol_stateid *stp) { struct nfs4_file *fp = stp->st_stid.sc_file; lockdep_assert_held(&stp->st_stateowner->so_client->cl_lock); spin_lock(&fp->fi_lock); list_del(&stp->st_perfile); spin_unlock(&fp->fi_lock); list_del(&stp->st_perstateowner); } static void nfs4_free_ol_stateid(struct nfs4_stid *stid) { struct nfs4_ol_stateid *stp = openlockstateid(stid); release_all_access(stp); if (stp->st_stateowner) nfs4_put_stateowner(stp->st_stateowner); kmem_cache_free(stateid_slab, stid); } static void nfs4_free_lock_stateid(struct nfs4_stid *stid) { struct nfs4_ol_stateid *stp = openlockstateid(stid); struct nfs4_lockowner *lo = lockowner(stp->st_stateowner); struct file *file; file = find_any_file(stp->st_stid.sc_file); if (file) filp_close(file, (fl_owner_t)lo); nfs4_free_ol_stateid(stid); } /* * Put the persistent reference to an already unhashed generic stateid, while * holding the cl_lock. If it's the last reference, then put it onto the * reaplist for later destruction. */ static void put_ol_stateid_locked(struct nfs4_ol_stateid *stp, struct list_head *reaplist) { struct nfs4_stid *s = &stp->st_stid; struct nfs4_client *clp = s->sc_client; lockdep_assert_held(&clp->cl_lock); WARN_ON_ONCE(!list_empty(&stp->st_locks)); if (!atomic_dec_and_test(&s->sc_count)) { wake_up_all(&close_wq); return; } idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id); list_add(&stp->st_locks, reaplist); } static void unhash_lock_stateid(struct nfs4_ol_stateid *stp) { struct nfs4_openowner *oo = openowner(stp->st_openstp->st_stateowner); lockdep_assert_held(&oo->oo_owner.so_client->cl_lock); list_del_init(&stp->st_locks); unhash_ol_stateid(stp); unhash_stid(&stp->st_stid); } static void release_lock_stateid(struct nfs4_ol_stateid *stp) { struct nfs4_openowner *oo = openowner(stp->st_openstp->st_stateowner); spin_lock(&oo->oo_owner.so_client->cl_lock); unhash_lock_stateid(stp); spin_unlock(&oo->oo_owner.so_client->cl_lock); nfs4_put_stid(&stp->st_stid); } static void unhash_lockowner_locked(struct nfs4_lockowner *lo) { struct nfs4_client *clp = lo->lo_owner.so_client; lockdep_assert_held(&clp->cl_lock); list_del_init(&lo->lo_owner.so_strhash); } /* * Free a list of generic stateids that were collected earlier after being * fully unhashed. */ static void free_ol_stateid_reaplist(struct list_head *reaplist) { struct nfs4_ol_stateid *stp; struct nfs4_file *fp; might_sleep(); while (!list_empty(reaplist)) { stp = list_first_entry(reaplist, struct nfs4_ol_stateid, st_locks); list_del(&stp->st_locks); fp = stp->st_stid.sc_file; stp->st_stid.sc_free(&stp->st_stid); if (fp) put_nfs4_file(fp); } } static void release_lockowner(struct nfs4_lockowner *lo) { struct nfs4_client *clp = lo->lo_owner.so_client; struct nfs4_ol_stateid *stp; struct list_head reaplist; INIT_LIST_HEAD(&reaplist); spin_lock(&clp->cl_lock); unhash_lockowner_locked(lo); while (!list_empty(&lo->lo_owner.so_stateids)) { stp = list_first_entry(&lo->lo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); unhash_lock_stateid(stp); put_ol_stateid_locked(stp, &reaplist); } spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); nfs4_put_stateowner(&lo->lo_owner); } static void release_open_stateid_locks(struct nfs4_ol_stateid *open_stp, struct list_head *reaplist) { struct nfs4_ol_stateid *stp; while (!list_empty(&open_stp->st_locks)) { stp = list_entry(open_stp->st_locks.next, struct nfs4_ol_stateid, st_locks); unhash_lock_stateid(stp); put_ol_stateid_locked(stp, reaplist); } } static void unhash_open_stateid(struct nfs4_ol_stateid *stp, struct list_head *reaplist) { lockdep_assert_held(&stp->st_stid.sc_client->cl_lock); unhash_ol_stateid(stp); release_open_stateid_locks(stp, reaplist); } static void release_open_stateid(struct nfs4_ol_stateid *stp) { LIST_HEAD(reaplist); spin_lock(&stp->st_stid.sc_client->cl_lock); unhash_open_stateid(stp, &reaplist); put_ol_stateid_locked(stp, &reaplist); spin_unlock(&stp->st_stid.sc_client->cl_lock); free_ol_stateid_reaplist(&reaplist); } static void unhash_openowner_locked(struct nfs4_openowner *oo) { struct nfs4_client *clp = oo->oo_owner.so_client; lockdep_assert_held(&clp->cl_lock); list_del_init(&oo->oo_owner.so_strhash); list_del_init(&oo->oo_perclient); } static void release_last_closed_stateid(struct nfs4_openowner *oo) { struct nfsd_net *nn = net_generic(oo->oo_owner.so_client->net, nfsd_net_id); struct nfs4_ol_stateid *s; spin_lock(&nn->client_lock); s = oo->oo_last_closed_stid; if (s) { list_del_init(&oo->oo_close_lru); oo->oo_last_closed_stid = NULL; } spin_unlock(&nn->client_lock); if (s) nfs4_put_stid(&s->st_stid); } static void release_openowner(struct nfs4_openowner *oo) { struct nfs4_ol_stateid *stp; struct nfs4_client *clp = oo->oo_owner.so_client; struct list_head reaplist; INIT_LIST_HEAD(&reaplist); spin_lock(&clp->cl_lock); unhash_openowner_locked(oo); while (!list_empty(&oo->oo_owner.so_stateids)) { stp = list_first_entry(&oo->oo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); unhash_open_stateid(stp, &reaplist); put_ol_stateid_locked(stp, &reaplist); } spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); release_last_closed_stateid(oo); nfs4_put_stateowner(&oo->oo_owner); } static inline int hash_sessionid(struct nfs4_sessionid *sessionid) { struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid; return sid->sequence % SESSION_HASH_SIZE; } #ifdef NFSD_DEBUG static inline void dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid) { u32 *ptr = (u32 *)(&sessionid->data[0]); dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]); } #else static inline void dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid) { } #endif /* * Bump the seqid on cstate->replay_owner, and clear replay_owner if it * won't be used for replay. */ void nfsd4_bump_seqid(struct nfsd4_compound_state *cstate, __be32 nfserr) { struct nfs4_stateowner *so = cstate->replay_owner; if (nfserr == nfserr_replay_me) return; if (!seqid_mutating_err(ntohl(nfserr))) { nfsd4_cstate_clear_replay(cstate); return; } if (!so) return; if (so->so_is_open_owner) release_last_closed_stateid(openowner(so)); so->so_seqid++; return; } static void gen_sessionid(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd4_sessionid *sid; sid = (struct nfsd4_sessionid *)ses->se_sessionid.data; sid->clientid = clp->cl_clientid; sid->sequence = current_sessionid++; sid->reserved = 0; } /* * The protocol defines ca_maxresponssize_cached to include the size of * the rpc header, but all we need to cache is the data starting after * the end of the initial SEQUENCE operation--the rest we regenerate * each time. Therefore we can advertise a ca_maxresponssize_cached * value that is the number of bytes in our cache plus a few additional * bytes. In order to stay on the safe side, and not promise more than * we can cache, those additional bytes must be the minimum possible: 24 * bytes of rpc header (xid through accept state, with AUTH_NULL * verifier), 12 for the compound header (with zero-length tag), and 44 * for the SEQUENCE op response: */ #define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44) static void free_session_slots(struct nfsd4_session *ses) { int i; for (i = 0; i < ses->se_fchannel.maxreqs; i++) kfree(ses->se_slots[i]); } /* * We don't actually need to cache the rpc and session headers, so we * can allocate a little less for each slot: */ static inline u32 slot_bytes(struct nfsd4_channel_attrs *ca) { u32 size; if (ca->maxresp_cached < NFSD_MIN_HDR_SEQ_SZ) size = 0; else size = ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ; return size + sizeof(struct nfsd4_slot); } /* * XXX: If we run out of reserved DRC memory we could (up to a point) * re-negotiate active sessions and reduce their slot usage to make * room for new connections. For now we just fail the create session. */ static u32 nfsd4_get_drc_mem(struct nfsd4_channel_attrs *ca) { u32 slotsize = slot_bytes(ca); u32 num = ca->maxreqs; int avail; spin_lock(&nfsd_drc_lock); avail = min((unsigned long)NFSD_MAX_MEM_PER_SESSION, nfsd_drc_max_mem - nfsd_drc_mem_used); num = min_t(int, num, avail / slotsize); nfsd_drc_mem_used += num * slotsize; spin_unlock(&nfsd_drc_lock); return num; } static void nfsd4_put_drc_mem(struct nfsd4_channel_attrs *ca) { int slotsize = slot_bytes(ca); spin_lock(&nfsd_drc_lock); nfsd_drc_mem_used -= slotsize * ca->maxreqs; spin_unlock(&nfsd_drc_lock); } static struct nfsd4_session *alloc_session(struct nfsd4_channel_attrs *fattrs, struct nfsd4_channel_attrs *battrs) { int numslots = fattrs->maxreqs; int slotsize = slot_bytes(fattrs); struct nfsd4_session *new; int mem, i; BUILD_BUG_ON(NFSD_MAX_SLOTS_PER_SESSION * sizeof(struct nfsd4_slot *) + sizeof(struct nfsd4_session) > PAGE_SIZE); mem = numslots * sizeof(struct nfsd4_slot *); new = kzalloc(sizeof(*new) + mem, GFP_KERNEL); if (!new) return NULL; /* allocate each struct nfsd4_slot and data cache in one piece */ for (i = 0; i < numslots; i++) { new->se_slots[i] = kzalloc(slotsize, GFP_KERNEL); if (!new->se_slots[i]) goto out_free; } memcpy(&new->se_fchannel, fattrs, sizeof(struct nfsd4_channel_attrs)); memcpy(&new->se_bchannel, battrs, sizeof(struct nfsd4_channel_attrs)); return new; out_free: while (i--) kfree(new->se_slots[i]); kfree(new); return NULL; } static void free_conn(struct nfsd4_conn *c) { svc_xprt_put(c->cn_xprt); kfree(c); } static void nfsd4_conn_lost(struct svc_xpt_user *u) { struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user); struct nfs4_client *clp = c->cn_session->se_client; spin_lock(&clp->cl_lock); if (!list_empty(&c->cn_persession)) { list_del(&c->cn_persession); free_conn(c); } nfsd4_probe_callback(clp); spin_unlock(&clp->cl_lock); } static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags) { struct nfsd4_conn *conn; conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL); if (!conn) return NULL; svc_xprt_get(rqstp->rq_xprt); conn->cn_xprt = rqstp->rq_xprt; conn->cn_flags = flags; INIT_LIST_HEAD(&conn->cn_xpt_user.list); return conn; } static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses) { conn->cn_session = ses; list_add(&conn->cn_persession, &ses->se_conns); } static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; spin_lock(&clp->cl_lock); __nfsd4_hash_conn(conn, ses); spin_unlock(&clp->cl_lock); } static int nfsd4_register_conn(struct nfsd4_conn *conn) { conn->cn_xpt_user.callback = nfsd4_conn_lost; return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user); } static void nfsd4_init_conn(struct svc_rqst *rqstp, struct nfsd4_conn *conn, struct nfsd4_session *ses) { int ret; nfsd4_hash_conn(conn, ses); ret = nfsd4_register_conn(conn); if (ret) /* oops; xprt is already down: */ nfsd4_conn_lost(&conn->cn_xpt_user); /* We may have gained or lost a callback channel: */ nfsd4_probe_callback_sync(ses->se_client); } static struct nfsd4_conn *alloc_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_create_session *cses) { u32 dir = NFS4_CDFC4_FORE; if (cses->flags & SESSION4_BACK_CHAN) dir |= NFS4_CDFC4_BACK; return alloc_conn(rqstp, dir); } /* must be called under client_lock */ static void nfsd4_del_conns(struct nfsd4_session *s) { struct nfs4_client *clp = s->se_client; struct nfsd4_conn *c; spin_lock(&clp->cl_lock); while (!list_empty(&s->se_conns)) { c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession); list_del_init(&c->cn_persession); spin_unlock(&clp->cl_lock); unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user); free_conn(c); spin_lock(&clp->cl_lock); } spin_unlock(&clp->cl_lock); } static void __free_session(struct nfsd4_session *ses) { free_session_slots(ses); kfree(ses); } static void free_session(struct nfsd4_session *ses) { nfsd4_del_conns(ses); nfsd4_put_drc_mem(&ses->se_fchannel); __free_session(ses); } static void init_session(struct svc_rqst *rqstp, struct nfsd4_session *new, struct nfs4_client *clp, struct nfsd4_create_session *cses) { int idx; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); new->se_client = clp; gen_sessionid(new); INIT_LIST_HEAD(&new->se_conns); new->se_cb_seq_nr = 1; new->se_flags = cses->flags; new->se_cb_prog = cses->callback_prog; new->se_cb_sec = cses->cb_sec; atomic_set(&new->se_ref, 0); idx = hash_sessionid(&new->se_sessionid); list_add(&new->se_hash, &nn->sessionid_hashtbl[idx]); spin_lock(&clp->cl_lock); list_add(&new->se_perclnt, &clp->cl_sessions); spin_unlock(&clp->cl_lock); if (cses->flags & SESSION4_BACK_CHAN) { struct sockaddr *sa = svc_addr(rqstp); /* * This is a little silly; with sessions there's no real * use for the callback address. Use the peer address * as a reasonable default for now, but consider fixing * the rpc client not to require an address in the * future: */ rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa); clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa); } } /* caller must hold client_lock */ static struct nfsd4_session * __find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net) { struct nfsd4_session *elem; int idx; struct nfsd_net *nn = net_generic(net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); dump_sessionid(__func__, sessionid); idx = hash_sessionid(sessionid); /* Search in the appropriate list */ list_for_each_entry(elem, &nn->sessionid_hashtbl[idx], se_hash) { if (!memcmp(elem->se_sessionid.data, sessionid->data, NFS4_MAX_SESSIONID_LEN)) { return elem; } } dprintk("%s: session not found\n", __func__); return NULL; } static struct nfsd4_session * find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net, __be32 *ret) { struct nfsd4_session *session; __be32 status = nfserr_badsession; session = __find_in_sessionid_hashtbl(sessionid, net); if (!session) goto out; status = nfsd4_get_session_locked(session); if (status) session = NULL; out: *ret = status; return session; } /* caller must hold client_lock */ static void unhash_session(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); list_del(&ses->se_hash); spin_lock(&ses->se_client->cl_lock); list_del(&ses->se_perclnt); spin_unlock(&ses->se_client->cl_lock); } /* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */ static int STALE_CLIENTID(clientid_t *clid, struct nfsd_net *nn) { if (clid->cl_boot == nn->boot_time) return 0; dprintk("NFSD stale clientid (%08x/%08x) boot_time %08lx\n", clid->cl_boot, clid->cl_id, nn->boot_time); return 1; } /* * XXX Should we use a slab cache ? * This type of memory management is somewhat inefficient, but we use it * anyway since SETCLIENTID is not a common operation. */ static struct nfs4_client *alloc_client(struct xdr_netobj name) { struct nfs4_client *clp; int i; clp = kzalloc(sizeof(struct nfs4_client), GFP_KERNEL); if (clp == NULL) return NULL; clp->cl_name.data = kmemdup(name.data, name.len, GFP_KERNEL); if (clp->cl_name.data == NULL) goto err_no_name; clp->cl_ownerstr_hashtbl = kmalloc(sizeof(struct list_head) * OWNER_HASH_SIZE, GFP_KERNEL); if (!clp->cl_ownerstr_hashtbl) goto err_no_hashtbl; for (i = 0; i < OWNER_HASH_SIZE; i++) INIT_LIST_HEAD(&clp->cl_ownerstr_hashtbl[i]); clp->cl_name.len = name.len; INIT_LIST_HEAD(&clp->cl_sessions); idr_init(&clp->cl_stateids); atomic_set(&clp->cl_refcount, 0); clp->cl_cb_state = NFSD4_CB_UNKNOWN; INIT_LIST_HEAD(&clp->cl_idhash); INIT_LIST_HEAD(&clp->cl_openowners); INIT_LIST_HEAD(&clp->cl_delegations); INIT_LIST_HEAD(&clp->cl_lru); INIT_LIST_HEAD(&clp->cl_callbacks); INIT_LIST_HEAD(&clp->cl_revoked); spin_lock_init(&clp->cl_lock); rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table"); return clp; err_no_hashtbl: kfree(clp->cl_name.data); err_no_name: kfree(clp); return NULL; } static void free_client(struct nfs4_client *clp) { while (!list_empty(&clp->cl_sessions)) { struct nfsd4_session *ses; ses = list_entry(clp->cl_sessions.next, struct nfsd4_session, se_perclnt); list_del(&ses->se_perclnt); WARN_ON_ONCE(atomic_read(&ses->se_ref)); free_session(ses); } rpc_destroy_wait_queue(&clp->cl_cb_waitq); free_svc_cred(&clp->cl_cred); kfree(clp->cl_ownerstr_hashtbl); kfree(clp->cl_name.data); idr_destroy(&clp->cl_stateids); kfree(clp); } /* must be called under the client_lock */ static void unhash_client_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); struct nfsd4_session *ses; lockdep_assert_held(&nn->client_lock); /* Mark the client as expired! */ clp->cl_time = 0; /* Make it invisible */ if (!list_empty(&clp->cl_idhash)) { list_del_init(&clp->cl_idhash); if (test_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags)) rb_erase(&clp->cl_namenode, &nn->conf_name_tree); else rb_erase(&clp->cl_namenode, &nn->unconf_name_tree); } list_del_init(&clp->cl_lru); spin_lock(&clp->cl_lock); list_for_each_entry(ses, &clp->cl_sessions, se_perclnt) list_del_init(&ses->se_hash); spin_unlock(&clp->cl_lock); } static void unhash_client(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); spin_lock(&nn->client_lock); unhash_client_locked(clp); spin_unlock(&nn->client_lock); } static __be32 mark_client_expired_locked(struct nfs4_client *clp) { if (atomic_read(&clp->cl_refcount)) return nfserr_jukebox; unhash_client_locked(clp); return nfs_ok; } static void __destroy_client(struct nfs4_client *clp) { struct nfs4_openowner *oo; struct nfs4_delegation *dp; struct list_head reaplist; INIT_LIST_HEAD(&reaplist); spin_lock(&state_lock); while (!list_empty(&clp->cl_delegations)) { dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt); unhash_delegation_locked(dp); list_add(&dp->dl_recall_lru, &reaplist); } spin_unlock(&state_lock); while (!list_empty(&reaplist)) { dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); nfs4_put_stid(&dp->dl_stid); } while (!list_empty(&clp->cl_revoked)) { dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); nfs4_put_stid(&dp->dl_stid); } while (!list_empty(&clp->cl_openowners)) { oo = list_entry(clp->cl_openowners.next, struct nfs4_openowner, oo_perclient); atomic_inc(&oo->oo_owner.so_count); release_openowner(oo); } nfsd4_shutdown_callback(clp); if (clp->cl_cb_conn.cb_xprt) svc_xprt_put(clp->cl_cb_conn.cb_xprt); free_client(clp); } static void destroy_client(struct nfs4_client *clp) { unhash_client(clp); __destroy_client(clp); } static void expire_client(struct nfs4_client *clp) { unhash_client(clp); nfsd4_client_record_remove(clp); __destroy_client(clp); } static void copy_verf(struct nfs4_client *target, nfs4_verifier *source) { memcpy(target->cl_verifier.data, source->data, sizeof(target->cl_verifier.data)); } static void copy_clid(struct nfs4_client *target, struct nfs4_client *source) { target->cl_clientid.cl_boot = source->cl_clientid.cl_boot; target->cl_clientid.cl_id = source->cl_clientid.cl_id; } static int copy_cred(struct svc_cred *target, struct svc_cred *source) { if (source->cr_principal) { target->cr_principal = kstrdup(source->cr_principal, GFP_KERNEL); if (target->cr_principal == NULL) return -ENOMEM; } else target->cr_principal = NULL; target->cr_flavor = source->cr_flavor; target->cr_uid = source->cr_uid; target->cr_gid = source->cr_gid; target->cr_group_info = source->cr_group_info; get_group_info(target->cr_group_info); target->cr_gss_mech = source->cr_gss_mech; if (source->cr_gss_mech) gss_mech_get(source->cr_gss_mech); return 0; } static long long compare_blob(const struct xdr_netobj *o1, const struct xdr_netobj *o2) { long long res; res = o1->len - o2->len; if (res) return res; return (long long)memcmp(o1->data, o2->data, o1->len); } static int same_name(const char *n1, const char *n2) { return 0 == memcmp(n1, n2, HEXDIR_LEN); } static int same_verf(nfs4_verifier *v1, nfs4_verifier *v2) { return 0 == memcmp(v1->data, v2->data, sizeof(v1->data)); } static int same_clid(clientid_t *cl1, clientid_t *cl2) { return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id); } static bool groups_equal(struct group_info *g1, struct group_info *g2) { int i; if (g1->ngroups != g2->ngroups) return false; for (i=0; ingroups; i++) if (!gid_eq(GROUP_AT(g1, i), GROUP_AT(g2, i))) return false; return true; } /* * RFC 3530 language requires clid_inuse be returned when the * "principal" associated with a requests differs from that previously * used. We use uid, gid's, and gss principal string as our best * approximation. We also don't want to allow non-gss use of a client * established using gss: in theory cr_principal should catch that * change, but in practice cr_principal can be null even in the gss case * since gssd doesn't always pass down a principal string. */ static bool is_gss_cred(struct svc_cred *cr) { /* Is cr_flavor one of the gss "pseudoflavors"?: */ return (cr->cr_flavor > RPC_AUTH_MAXFLAVOR); } static bool same_creds(struct svc_cred *cr1, struct svc_cred *cr2) { if ((is_gss_cred(cr1) != is_gss_cred(cr2)) || (!uid_eq(cr1->cr_uid, cr2->cr_uid)) || (!gid_eq(cr1->cr_gid, cr2->cr_gid)) || !groups_equal(cr1->cr_group_info, cr2->cr_group_info)) return false; if (cr1->cr_principal == cr2->cr_principal) return true; if (!cr1->cr_principal || !cr2->cr_principal) return false; return 0 == strcmp(cr1->cr_principal, cr2->cr_principal); } static bool svc_rqst_integrity_protected(struct svc_rqst *rqstp) { struct svc_cred *cr = &rqstp->rq_cred; u32 service; if (!cr->cr_gss_mech) return false; service = gss_pseudoflavor_to_service(cr->cr_gss_mech, cr->cr_flavor); return service == RPC_GSS_SVC_INTEGRITY || service == RPC_GSS_SVC_PRIVACY; } static bool mach_creds_match(struct nfs4_client *cl, struct svc_rqst *rqstp) { struct svc_cred *cr = &rqstp->rq_cred; if (!cl->cl_mach_cred) return true; if (cl->cl_cred.cr_gss_mech != cr->cr_gss_mech) return false; if (!svc_rqst_integrity_protected(rqstp)) return false; if (!cr->cr_principal) return false; return 0 == strcmp(cl->cl_cred.cr_principal, cr->cr_principal); } static void gen_confirm(struct nfs4_client *clp, struct nfsd_net *nn) { __be32 verf[2]; /* * This is opaque to client, so no need to byte-swap. Use * __force to keep sparse happy */ verf[0] = (__force __be32)get_seconds(); verf[1] = (__force __be32)nn->clientid_counter; memcpy(clp->cl_confirm.data, verf, sizeof(clp->cl_confirm.data)); } static void gen_clid(struct nfs4_client *clp, struct nfsd_net *nn) { clp->cl_clientid.cl_boot = nn->boot_time; clp->cl_clientid.cl_id = nn->clientid_counter++; gen_confirm(clp, nn); } static struct nfs4_stid * find_stateid_locked(struct nfs4_client *cl, stateid_t *t) { struct nfs4_stid *ret; ret = idr_find(&cl->cl_stateids, t->si_opaque.so_id); if (!ret || !ret->sc_type) return NULL; return ret; } static struct nfs4_stid * find_stateid_by_type(struct nfs4_client *cl, stateid_t *t, char typemask) { struct nfs4_stid *s; spin_lock(&cl->cl_lock); s = find_stateid_locked(cl, t); if (s != NULL) { if (typemask & s->sc_type) atomic_inc(&s->sc_count); else s = NULL; } spin_unlock(&cl->cl_lock); return s; } static struct nfs4_client *create_client(struct xdr_netobj name, struct svc_rqst *rqstp, nfs4_verifier *verf) { struct nfs4_client *clp; struct sockaddr *sa = svc_addr(rqstp); int ret; struct net *net = SVC_NET(rqstp); clp = alloc_client(name); if (clp == NULL) return NULL; ret = copy_cred(&clp->cl_cred, &rqstp->rq_cred); if (ret) { free_client(clp); return NULL; } INIT_WORK(&clp->cl_cb_null.cb_work, nfsd4_run_cb_null); clp->cl_time = get_seconds(); clear_bit(0, &clp->cl_cb_slot_busy); copy_verf(clp, verf); rpc_copy_addr((struct sockaddr *) &clp->cl_addr, sa); clp->cl_cb_session = NULL; clp->net = net; return clp; } static void add_clp_to_name_tree(struct nfs4_client *new_clp, struct rb_root *root) { struct rb_node **new = &(root->rb_node), *parent = NULL; struct nfs4_client *clp; while (*new) { clp = rb_entry(*new, struct nfs4_client, cl_namenode); parent = *new; if (compare_blob(&clp->cl_name, &new_clp->cl_name) > 0) new = &((*new)->rb_left); else new = &((*new)->rb_right); } rb_link_node(&new_clp->cl_namenode, parent, new); rb_insert_color(&new_clp->cl_namenode, root); } static struct nfs4_client * find_clp_in_name_tree(struct xdr_netobj *name, struct rb_root *root) { long long cmp; struct rb_node *node = root->rb_node; struct nfs4_client *clp; while (node) { clp = rb_entry(node, struct nfs4_client, cl_namenode); cmp = compare_blob(&clp->cl_name, name); if (cmp > 0) node = node->rb_left; else if (cmp < 0) node = node->rb_right; else return clp; } return NULL; } static void add_to_unconfirmed(struct nfs4_client *clp) { unsigned int idhashval; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); clear_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags); add_clp_to_name_tree(clp, &nn->unconf_name_tree); idhashval = clientid_hashval(clp->cl_clientid.cl_id); list_add(&clp->cl_idhash, &nn->unconf_id_hashtbl[idhashval]); renew_client_locked(clp); } static void move_to_confirmed(struct nfs4_client *clp) { unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id); struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp); list_move(&clp->cl_idhash, &nn->conf_id_hashtbl[idhashval]); rb_erase(&clp->cl_namenode, &nn->unconf_name_tree); add_clp_to_name_tree(clp, &nn->conf_name_tree); set_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags); renew_client_locked(clp); } static struct nfs4_client * find_client_in_id_table(struct list_head *tbl, clientid_t *clid, bool sessions) { struct nfs4_client *clp; unsigned int idhashval = clientid_hashval(clid->cl_id); list_for_each_entry(clp, &tbl[idhashval], cl_idhash) { if (same_clid(&clp->cl_clientid, clid)) { if ((bool)clp->cl_minorversion != sessions) return NULL; renew_client_locked(clp); return clp; } } return NULL; } static struct nfs4_client * find_confirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn) { struct list_head *tbl = nn->conf_id_hashtbl; lockdep_assert_held(&nn->client_lock); return find_client_in_id_table(tbl, clid, sessions); } static struct nfs4_client * find_unconfirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn) { struct list_head *tbl = nn->unconf_id_hashtbl; lockdep_assert_held(&nn->client_lock); return find_client_in_id_table(tbl, clid, sessions); } static bool clp_used_exchangeid(struct nfs4_client *clp) { return clp->cl_exchange_flags != 0; } static struct nfs4_client * find_confirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn) { lockdep_assert_held(&nn->client_lock); return find_clp_in_name_tree(name, &nn->conf_name_tree); } static struct nfs4_client * find_unconfirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn) { lockdep_assert_held(&nn->client_lock); return find_clp_in_name_tree(name, &nn->unconf_name_tree); } static void gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp) { struct nfs4_cb_conn *conn = &clp->cl_cb_conn; struct sockaddr *sa = svc_addr(rqstp); u32 scopeid = rpc_get_scope_id(sa); unsigned short expected_family; /* Currently, we only support tcp and tcp6 for the callback channel */ if (se->se_callback_netid_len == 3 && !memcmp(se->se_callback_netid_val, "tcp", 3)) expected_family = AF_INET; else if (se->se_callback_netid_len == 4 && !memcmp(se->se_callback_netid_val, "tcp6", 4)) expected_family = AF_INET6; else goto out_err; conn->cb_addrlen = rpc_uaddr2sockaddr(clp->net, se->se_callback_addr_val, se->se_callback_addr_len, (struct sockaddr *)&conn->cb_addr, sizeof(conn->cb_addr)); if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family) goto out_err; if (conn->cb_addr.ss_family == AF_INET6) ((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid; conn->cb_prog = se->se_callback_prog; conn->cb_ident = se->se_callback_ident; memcpy(&conn->cb_saddr, &rqstp->rq_daddr, rqstp->rq_daddrlen); return; out_err: conn->cb_addr.ss_family = AF_UNSPEC; conn->cb_addrlen = 0; dprintk(KERN_INFO "NFSD: this client (clientid %08x/%08x) " "will not receive delegations\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); return; } /* * Cache a reply. nfsd4_check_resp_size() has bounded the cache size. */ static void nfsd4_store_cache_entry(struct nfsd4_compoundres *resp) { struct xdr_buf *buf = resp->xdr.buf; struct nfsd4_slot *slot = resp->cstate.slot; unsigned int base; dprintk("--> %s slot %p\n", __func__, slot); slot->sl_opcnt = resp->opcnt; slot->sl_status = resp->cstate.status; slot->sl_flags |= NFSD4_SLOT_INITIALIZED; if (nfsd4_not_cached(resp)) { slot->sl_datalen = 0; return; } base = resp->cstate.data_offset; slot->sl_datalen = buf->len - base; if (read_bytes_from_xdr_buf(buf, base, slot->sl_data, slot->sl_datalen)) WARN("%s: sessions DRC could not cache compound\n", __func__); return; } /* * Encode the replay sequence operation from the slot values. * If cachethis is FALSE encode the uncached rep error on the next * operation which sets resp->p and increments resp->opcnt for * nfs4svc_encode_compoundres. * */ static __be32 nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args, struct nfsd4_compoundres *resp) { struct nfsd4_op *op; struct nfsd4_slot *slot = resp->cstate.slot; /* Encode the replayed sequence operation */ op = &args->ops[resp->opcnt - 1]; nfsd4_encode_operation(resp, op); /* Return nfserr_retry_uncached_rep in next operation. */ if (args->opcnt > 1 && !(slot->sl_flags & NFSD4_SLOT_CACHETHIS)) { op = &args->ops[resp->opcnt++]; op->status = nfserr_retry_uncached_rep; nfsd4_encode_operation(resp, op); } return op->status; } /* * The sequence operation is not cached because we can use the slot and * session values. */ static __be32 nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp, struct nfsd4_sequence *seq) { struct nfsd4_slot *slot = resp->cstate.slot; struct xdr_stream *xdr = &resp->xdr; __be32 *p; __be32 status; dprintk("--> %s slot %p\n", __func__, slot); status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp); if (status) return status; p = xdr_reserve_space(xdr, slot->sl_datalen); if (!p) { WARN_ON_ONCE(1); return nfserr_serverfault; } xdr_encode_opaque_fixed(p, slot->sl_data, slot->sl_datalen); xdr_commit_encode(xdr); resp->opcnt = slot->sl_opcnt; return slot->sl_status; } /* * Set the exchange_id flags returned by the server. */ static void nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid) { /* pNFS is not supported */ new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS; /* Referrals are supported, Migration is not. */ new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER; /* set the wire flags to return to client. */ clid->flags = new->cl_exchange_flags; } static bool client_has_state(struct nfs4_client *clp) { /* * Note clp->cl_openowners check isn't quite right: there's no * need to count owners without stateid's. * * Also note we should probably be using this in 4.0 case too. */ return !list_empty(&clp->cl_openowners) || !list_empty(&clp->cl_delegations) || !list_empty(&clp->cl_sessions); } __be32 nfsd4_exchange_id(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_exchange_id *exid) { struct nfs4_client *conf, *new; struct nfs4_client *unconf = NULL; __be32 status; char addr_str[INET6_ADDRSTRLEN]; nfs4_verifier verf = exid->verifier; struct sockaddr *sa = svc_addr(rqstp); bool update = exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); rpc_ntop(sa, addr_str, sizeof(addr_str)); dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p " "ip_addr=%s flags %x, spa_how %d\n", __func__, rqstp, exid, exid->clname.len, exid->clname.data, addr_str, exid->flags, exid->spa_how); if (exid->flags & ~EXCHGID4_FLAG_MASK_A) return nfserr_inval; switch (exid->spa_how) { case SP4_MACH_CRED: if (!svc_rqst_integrity_protected(rqstp)) return nfserr_inval; case SP4_NONE: break; default: /* checked by xdr code */ WARN_ON_ONCE(1); case SP4_SSV: return nfserr_encr_alg_unsupp; } new = create_client(exid->clname, rqstp, &verf); if (new == NULL) return nfserr_jukebox; /* Cases below refer to rfc 5661 section 18.35.4: */ nfs4_lock_state(); spin_lock(&nn->client_lock); conf = find_confirmed_client_by_name(&exid->clname, nn); if (conf) { bool creds_match = same_creds(&conf->cl_cred, &rqstp->rq_cred); bool verfs_match = same_verf(&verf, &conf->cl_verifier); if (update) { if (!clp_used_exchangeid(conf)) { /* buggy client */ status = nfserr_inval; goto out; } if (!mach_creds_match(conf, rqstp)) { status = nfserr_wrong_cred; goto out; } if (!creds_match) { /* case 9 */ status = nfserr_perm; goto out; } if (!verfs_match) { /* case 8 */ status = nfserr_not_same; goto out; } /* case 6 */ exid->flags |= EXCHGID4_FLAG_CONFIRMED_R; goto out_copy; } if (!creds_match) { /* case 3 */ if (client_has_state(conf)) { status = nfserr_clid_inuse; goto out; } goto out_new; } if (verfs_match) { /* case 2 */ conf->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R; goto out_copy; } /* case 5, client reboot */ conf = NULL; goto out_new; } if (update) { /* case 7 */ status = nfserr_noent; goto out; } unconf = find_unconfirmed_client_by_name(&exid->clname, nn); if (unconf) /* case 4, possible retry or client restart */ unhash_client_locked(unconf); /* case 1 (normal case) */ out_new: if (conf) { status = mark_client_expired_locked(conf); if (status) goto out; } new->cl_minorversion = cstate->minorversion; new->cl_mach_cred = (exid->spa_how == SP4_MACH_CRED); gen_clid(new, nn); add_to_unconfirmed(new); swap(new, conf); out_copy: exid->clientid.cl_boot = conf->cl_clientid.cl_boot; exid->clientid.cl_id = conf->cl_clientid.cl_id; exid->seqid = conf->cl_cs_slot.sl_seqid + 1; nfsd4_set_ex_flags(conf, exid); dprintk("nfsd4_exchange_id seqid %d flags %x\n", conf->cl_cs_slot.sl_seqid, conf->cl_exchange_flags); status = nfs_ok; out: spin_unlock(&nn->client_lock); nfs4_unlock_state(); if (new) expire_client(new); if (unconf) expire_client(unconf); return status; } static __be32 check_slot_seqid(u32 seqid, u32 slot_seqid, int slot_inuse) { dprintk("%s enter. seqid %d slot_seqid %d\n", __func__, seqid, slot_seqid); /* The slot is in use, and no response has been sent. */ if (slot_inuse) { if (seqid == slot_seqid) return nfserr_jukebox; else return nfserr_seq_misordered; } /* Note unsigned 32-bit arithmetic handles wraparound: */ if (likely(seqid == slot_seqid + 1)) return nfs_ok; if (seqid == slot_seqid) return nfserr_replay_cache; return nfserr_seq_misordered; } /* * Cache the create session result into the create session single DRC * slot cache by saving the xdr structure. sl_seqid has been set. * Do this for solo or embedded create session operations. */ static void nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses, struct nfsd4_clid_slot *slot, __be32 nfserr) { slot->sl_status = nfserr; memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses)); } static __be32 nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses, struct nfsd4_clid_slot *slot) { memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses)); return slot->sl_status; } #define NFSD_MIN_REQ_HDR_SEQ_SZ ((\ 2 * 2 + /* credential,verifier: AUTH_NULL, length 0 */ \ 1 + /* MIN tag is length with zero, only length */ \ 3 + /* version, opcount, opcode */ \ XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \ /* seqid, slotID, slotID, cache */ \ 4 ) * sizeof(__be32)) #define NFSD_MIN_RESP_HDR_SEQ_SZ ((\ 2 + /* verifier: AUTH_NULL, length 0 */\ 1 + /* status */ \ 1 + /* MIN tag is length with zero, only length */ \ 3 + /* opcount, opcode, opstatus*/ \ XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \ /* seqid, slotID, slotID, slotID, status */ \ 5 ) * sizeof(__be32)) static __be32 check_forechannel_attrs(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn) { u32 maxrpc = nn->nfsd_serv->sv_max_mesg; if (ca->maxreq_sz < NFSD_MIN_REQ_HDR_SEQ_SZ) return nfserr_toosmall; if (ca->maxresp_sz < NFSD_MIN_RESP_HDR_SEQ_SZ) return nfserr_toosmall; ca->headerpadsz = 0; ca->maxreq_sz = min_t(u32, ca->maxreq_sz, maxrpc); ca->maxresp_sz = min_t(u32, ca->maxresp_sz, maxrpc); ca->maxops = min_t(u32, ca->maxops, NFSD_MAX_OPS_PER_COMPOUND); ca->maxresp_cached = min_t(u32, ca->maxresp_cached, NFSD_SLOT_CACHE_SIZE + NFSD_MIN_HDR_SEQ_SZ); ca->maxreqs = min_t(u32, ca->maxreqs, NFSD_MAX_SLOTS_PER_SESSION); /* * Note decreasing slot size below client's request may make it * difficult for client to function correctly, whereas * decreasing the number of slots will (just?) affect * performance. When short on memory we therefore prefer to * decrease number of slots instead of their size. Clients that * request larger slots than they need will get poor results: */ ca->maxreqs = nfsd4_get_drc_mem(ca); if (!ca->maxreqs) return nfserr_jukebox; return nfs_ok; } #define NFSD_CB_MAX_REQ_SZ ((NFS4_enc_cb_recall_sz + \ RPC_MAX_HEADER_WITH_AUTH) * sizeof(__be32)) #define NFSD_CB_MAX_RESP_SZ ((NFS4_dec_cb_recall_sz + \ RPC_MAX_REPHEADER_WITH_AUTH) * sizeof(__be32)) static __be32 check_backchannel_attrs(struct nfsd4_channel_attrs *ca) { ca->headerpadsz = 0; /* * These RPC_MAX_HEADER macros are overkill, especially since we * don't even do gss on the backchannel yet. But this is still * less than 1k. Tighten up this estimate in the unlikely event * it turns out to be a problem for some client: */ if (ca->maxreq_sz < NFSD_CB_MAX_REQ_SZ) return nfserr_toosmall; if (ca->maxresp_sz < NFSD_CB_MAX_RESP_SZ) return nfserr_toosmall; ca->maxresp_cached = 0; if (ca->maxops < 2) return nfserr_toosmall; return nfs_ok; } static __be32 nfsd4_check_cb_sec(struct nfsd4_cb_sec *cbs) { switch (cbs->flavor) { case RPC_AUTH_NULL: case RPC_AUTH_UNIX: return nfs_ok; default: /* * GSS case: the spec doesn't allow us to return this * error. But it also doesn't allow us not to support * GSS. * I'd rather this fail hard than return some error the * client might think it can already handle: */ return nfserr_encr_alg_unsupp; } } __be32 nfsd4_create_session(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_create_session *cr_ses) { struct sockaddr *sa = svc_addr(rqstp); struct nfs4_client *conf, *unconf; struct nfs4_client *old = NULL; struct nfsd4_session *new; struct nfsd4_conn *conn; struct nfsd4_clid_slot *cs_slot = NULL; __be32 status = 0; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if (cr_ses->flags & ~SESSION4_FLAG_MASK_A) return nfserr_inval; status = nfsd4_check_cb_sec(&cr_ses->cb_sec); if (status) return status; status = check_forechannel_attrs(&cr_ses->fore_channel, nn); if (status) return status; status = check_backchannel_attrs(&cr_ses->back_channel); if (status) goto out_release_drc_mem; status = nfserr_jukebox; new = alloc_session(&cr_ses->fore_channel, &cr_ses->back_channel); if (!new) goto out_release_drc_mem; conn = alloc_conn_from_crses(rqstp, cr_ses); if (!conn) goto out_free_session; nfs4_lock_state(); spin_lock(&nn->client_lock); unconf = find_unconfirmed_client(&cr_ses->clientid, true, nn); conf = find_confirmed_client(&cr_ses->clientid, true, nn); WARN_ON_ONCE(conf && unconf); if (conf) { status = nfserr_wrong_cred; if (!mach_creds_match(conf, rqstp)) goto out_free_conn; cs_slot = &conf->cl_cs_slot; status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0); if (status == nfserr_replay_cache) { status = nfsd4_replay_create_session(cr_ses, cs_slot); goto out_free_conn; } else if (cr_ses->seqid != cs_slot->sl_seqid + 1) { status = nfserr_seq_misordered; goto out_free_conn; } } else if (unconf) { if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) || !rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) { status = nfserr_clid_inuse; goto out_free_conn; } status = nfserr_wrong_cred; if (!mach_creds_match(unconf, rqstp)) goto out_free_conn; cs_slot = &unconf->cl_cs_slot; status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0); if (status) { /* an unconfirmed replay returns misordered */ status = nfserr_seq_misordered; goto out_free_conn; } old = find_confirmed_client_by_name(&unconf->cl_name, nn); if (old) { status = mark_client_expired_locked(old); if (status) { old = NULL; goto out_free_conn; } } move_to_confirmed(unconf); conf = unconf; } else { status = nfserr_stale_clientid; goto out_free_conn; } status = nfs_ok; /* * We do not support RDMA or persistent sessions */ cr_ses->flags &= ~SESSION4_PERSIST; cr_ses->flags &= ~SESSION4_RDMA; init_session(rqstp, new, conf, cr_ses); nfsd4_get_session_locked(new); memcpy(cr_ses->sessionid.data, new->se_sessionid.data, NFS4_MAX_SESSIONID_LEN); cs_slot->sl_seqid++; cr_ses->seqid = cs_slot->sl_seqid; /* cache solo and embedded create sessions under the client_lock */ nfsd4_cache_create_session(cr_ses, cs_slot, status); spin_unlock(&nn->client_lock); /* init connection and backchannel */ nfsd4_init_conn(rqstp, conn, new); nfsd4_put_session(new); nfs4_unlock_state(); if (old) expire_client(old); return status; out_free_conn: spin_unlock(&nn->client_lock); nfs4_unlock_state(); free_conn(conn); if (old) expire_client(old); out_free_session: __free_session(new); out_release_drc_mem: nfsd4_put_drc_mem(&cr_ses->fore_channel); return status; } static __be32 nfsd4_map_bcts_dir(u32 *dir) { switch (*dir) { case NFS4_CDFC4_FORE: case NFS4_CDFC4_BACK: return nfs_ok; case NFS4_CDFC4_FORE_OR_BOTH: case NFS4_CDFC4_BACK_OR_BOTH: *dir = NFS4_CDFC4_BOTH; return nfs_ok; }; return nfserr_inval; } __be32 nfsd4_backchannel_ctl(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_backchannel_ctl *bc) { struct nfsd4_session *session = cstate->session; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); __be32 status; status = nfsd4_check_cb_sec(&bc->bc_cb_sec); if (status) return status; spin_lock(&nn->client_lock); session->se_cb_prog = bc->bc_cb_program; session->se_cb_sec = bc->bc_cb_sec; spin_unlock(&nn->client_lock); nfsd4_probe_callback(session->se_client); return nfs_ok; } __be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_bind_conn_to_session *bcts) { __be32 status; struct nfsd4_conn *conn; struct nfsd4_session *session; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); if (!nfsd4_last_compound_op(rqstp)) return nfserr_not_only_op; nfs4_lock_state(); spin_lock(&nn->client_lock); session = find_in_sessionid_hashtbl(&bcts->sessionid, net, &status); spin_unlock(&nn->client_lock); if (!session) goto out_no_session; status = nfserr_wrong_cred; if (!mach_creds_match(session->se_client, rqstp)) goto out; status = nfsd4_map_bcts_dir(&bcts->dir); if (status) goto out; conn = alloc_conn(rqstp, bcts->dir); status = nfserr_jukebox; if (!conn) goto out; nfsd4_init_conn(rqstp, conn, session); status = nfs_ok; out: nfsd4_put_session(session); out_no_session: nfs4_unlock_state(); return status; } static bool nfsd4_compound_in_session(struct nfsd4_session *session, struct nfs4_sessionid *sid) { if (!session) return 0; return !memcmp(sid, &session->se_sessionid, sizeof(*sid)); } __be32 nfsd4_destroy_session(struct svc_rqst *r, struct nfsd4_compound_state *cstate, struct nfsd4_destroy_session *sessionid) { struct nfsd4_session *ses; __be32 status; int ref_held_by_me = 0; struct net *net = SVC_NET(r); struct nfsd_net *nn = net_generic(net, nfsd_net_id); nfs4_lock_state(); status = nfserr_not_only_op; if (nfsd4_compound_in_session(cstate->session, &sessionid->sessionid)) { if (!nfsd4_last_compound_op(r)) goto out; ref_held_by_me++; } dump_sessionid(__func__, &sessionid->sessionid); spin_lock(&nn->client_lock); ses = find_in_sessionid_hashtbl(&sessionid->sessionid, net, &status); if (!ses) goto out_client_lock; status = nfserr_wrong_cred; if (!mach_creds_match(ses->se_client, r)) goto out_put_session; status = mark_session_dead_locked(ses, 1 + ref_held_by_me); if (status) goto out_put_session; unhash_session(ses); spin_unlock(&nn->client_lock); nfsd4_probe_callback_sync(ses->se_client); spin_lock(&nn->client_lock); status = nfs_ok; out_put_session: nfsd4_put_session_locked(ses); out_client_lock: spin_unlock(&nn->client_lock); out: nfs4_unlock_state(); return status; } static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s) { struct nfsd4_conn *c; list_for_each_entry(c, &s->se_conns, cn_persession) { if (c->cn_xprt == xpt) { return c; } } return NULL; } static __be32 nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd4_conn *c; __be32 status = nfs_ok; int ret; spin_lock(&clp->cl_lock); c = __nfsd4_find_conn(new->cn_xprt, ses); if (c) goto out_free; status = nfserr_conn_not_bound_to_session; if (clp->cl_mach_cred) goto out_free; __nfsd4_hash_conn(new, ses); spin_unlock(&clp->cl_lock); ret = nfsd4_register_conn(new); if (ret) /* oops; xprt is already down: */ nfsd4_conn_lost(&new->cn_xpt_user); return nfs_ok; out_free: spin_unlock(&clp->cl_lock); free_conn(new); return status; } static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session) { struct nfsd4_compoundargs *args = rqstp->rq_argp; return args->opcnt > session->se_fchannel.maxops; } static bool nfsd4_request_too_big(struct svc_rqst *rqstp, struct nfsd4_session *session) { struct xdr_buf *xb = &rqstp->rq_arg; return xb->len > session->se_fchannel.maxreq_sz; } __be32 nfsd4_sequence(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_sequence *seq) { struct nfsd4_compoundres *resp = rqstp->rq_resp; struct xdr_stream *xdr = &resp->xdr; struct nfsd4_session *session; struct nfs4_client *clp; struct nfsd4_slot *slot; struct nfsd4_conn *conn; __be32 status; int buflen; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); if (resp->opcnt != 1) return nfserr_sequence_pos; /* * Will be either used or freed by nfsd4_sequence_check_conn * below. */ conn = alloc_conn(rqstp, NFS4_CDFC4_FORE); if (!conn) return nfserr_jukebox; spin_lock(&nn->client_lock); session = find_in_sessionid_hashtbl(&seq->sessionid, net, &status); if (!session) goto out_no_session; clp = session->se_client; status = nfserr_too_many_ops; if (nfsd4_session_too_many_ops(rqstp, session)) goto out_put_session; status = nfserr_req_too_big; if (nfsd4_request_too_big(rqstp, session)) goto out_put_session; status = nfserr_badslot; if (seq->slotid >= session->se_fchannel.maxreqs) goto out_put_session; slot = session->se_slots[seq->slotid]; dprintk("%s: slotid %d\n", __func__, seq->slotid); /* We do not negotiate the number of slots yet, so set the * maxslots to the session maxreqs which is used to encode * sr_highest_slotid and the sr_target_slot id to maxslots */ seq->maxslots = session->se_fchannel.maxreqs; status = check_slot_seqid(seq->seqid, slot->sl_seqid, slot->sl_flags & NFSD4_SLOT_INUSE); if (status == nfserr_replay_cache) { status = nfserr_seq_misordered; if (!(slot->sl_flags & NFSD4_SLOT_INITIALIZED)) goto out_put_session; cstate->slot = slot; cstate->session = session; cstate->clp = clp; /* Return the cached reply status and set cstate->status * for nfsd4_proc_compound processing */ status = nfsd4_replay_cache_entry(resp, seq); cstate->status = nfserr_replay_cache; goto out; } if (status) goto out_put_session; status = nfsd4_sequence_check_conn(conn, session); conn = NULL; if (status) goto out_put_session; buflen = (seq->cachethis) ? session->se_fchannel.maxresp_cached : session->se_fchannel.maxresp_sz; status = (seq->cachethis) ? nfserr_rep_too_big_to_cache : nfserr_rep_too_big; if (xdr_restrict_buflen(xdr, buflen - rqstp->rq_auth_slack)) goto out_put_session; svc_reserve(rqstp, buflen); status = nfs_ok; /* Success! bump slot seqid */ slot->sl_seqid = seq->seqid; slot->sl_flags |= NFSD4_SLOT_INUSE; if (seq->cachethis) slot->sl_flags |= NFSD4_SLOT_CACHETHIS; else slot->sl_flags &= ~NFSD4_SLOT_CACHETHIS; cstate->slot = slot; cstate->session = session; cstate->clp = clp; out: switch (clp->cl_cb_state) { case NFSD4_CB_DOWN: seq->status_flags = SEQ4_STATUS_CB_PATH_DOWN; break; case NFSD4_CB_FAULT: seq->status_flags = SEQ4_STATUS_BACKCHANNEL_FAULT; break; default: seq->status_flags = 0; } if (!list_empty(&clp->cl_revoked)) seq->status_flags |= SEQ4_STATUS_RECALLABLE_STATE_REVOKED; out_no_session: if (conn) free_conn(conn); spin_unlock(&nn->client_lock); return status; out_put_session: nfsd4_put_session_locked(session); goto out_no_session; } void nfsd4_sequence_done(struct nfsd4_compoundres *resp) { struct nfsd4_compound_state *cs = &resp->cstate; if (nfsd4_has_session(cs)) { if (cs->status != nfserr_replay_cache) { nfsd4_store_cache_entry(resp); cs->slot->sl_flags &= ~NFSD4_SLOT_INUSE; } /* Drop session reference that was taken in nfsd4_sequence() */ nfsd4_put_session(cs->session); } else if (cs->clp) put_client_renew(cs->clp); } __be32 nfsd4_destroy_clientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_destroy_clientid *dc) { struct nfs4_client *conf, *unconf; struct nfs4_client *clp = NULL; __be32 status = 0; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); nfs4_lock_state(); spin_lock(&nn->client_lock); unconf = find_unconfirmed_client(&dc->clientid, true, nn); conf = find_confirmed_client(&dc->clientid, true, nn); WARN_ON_ONCE(conf && unconf); if (conf) { if (client_has_state(conf)) { status = nfserr_clientid_busy; goto out; } status = mark_client_expired_locked(conf); if (status) goto out; clp = conf; } else if (unconf) clp = unconf; else { status = nfserr_stale_clientid; goto out; } if (!mach_creds_match(clp, rqstp)) { clp = NULL; status = nfserr_wrong_cred; goto out; } unhash_client_locked(clp); out: spin_unlock(&nn->client_lock); nfs4_unlock_state(); if (clp) expire_client(clp); return status; } __be32 nfsd4_reclaim_complete(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_reclaim_complete *rc) { __be32 status = 0; if (rc->rca_one_fs) { if (!cstate->current_fh.fh_dentry) return nfserr_nofilehandle; /* * We don't take advantage of the rca_one_fs case. * That's OK, it's optional, we can safely ignore it. */ return nfs_ok; } nfs4_lock_state(); status = nfserr_complete_already; if (test_and_set_bit(NFSD4_CLIENT_RECLAIM_COMPLETE, &cstate->session->se_client->cl_flags)) goto out; status = nfserr_stale_clientid; if (is_client_expired(cstate->session->se_client)) /* * The following error isn't really legal. * But we only get here if the client just explicitly * destroyed the client. Surely it no longer cares what * error it gets back on an operation for the dead * client. */ goto out; status = nfs_ok; nfsd4_client_record_create(cstate->session->se_client); out: nfs4_unlock_state(); return status; } __be32 nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_setclientid *setclid) { struct xdr_netobj clname = setclid->se_name; nfs4_verifier clverifier = setclid->se_verf; struct nfs4_client *conf, *new; struct nfs4_client *unconf = NULL; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); new = create_client(clname, rqstp, &clverifier); if (new == NULL) return nfserr_jukebox; /* Cases below refer to rfc 3530 section 14.2.33: */ nfs4_lock_state(); spin_lock(&nn->client_lock); conf = find_confirmed_client_by_name(&clname, nn); if (conf) { /* case 0: */ status = nfserr_clid_inuse; if (clp_used_exchangeid(conf)) goto out; if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) { char addr_str[INET6_ADDRSTRLEN]; rpc_ntop((struct sockaddr *) &conf->cl_addr, addr_str, sizeof(addr_str)); dprintk("NFSD: setclientid: string in use by client " "at %s\n", addr_str); goto out; } } unconf = find_unconfirmed_client_by_name(&clname, nn); if (unconf) unhash_client_locked(unconf); if (conf && same_verf(&conf->cl_verifier, &clverifier)) /* case 1: probable callback update */ copy_clid(new, conf); else /* case 4 (new client) or cases 2, 3 (client reboot): */ gen_clid(new, nn); new->cl_minorversion = 0; gen_callback(new, setclid, rqstp); add_to_unconfirmed(new); setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot; setclid->se_clientid.cl_id = new->cl_clientid.cl_id; memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data)); new = NULL; status = nfs_ok; out: spin_unlock(&nn->client_lock); nfs4_unlock_state(); if (new) free_client(new); if (unconf) expire_client(unconf); return status; } __be32 nfsd4_setclientid_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_setclientid_confirm *setclientid_confirm) { struct nfs4_client *conf, *unconf; struct nfs4_client *old = NULL; nfs4_verifier confirm = setclientid_confirm->sc_confirm; clientid_t * clid = &setclientid_confirm->sc_clientid; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if (STALE_CLIENTID(clid, nn)) return nfserr_stale_clientid; nfs4_lock_state(); spin_lock(&nn->client_lock); conf = find_confirmed_client(clid, false, nn); unconf = find_unconfirmed_client(clid, false, nn); /* * We try hard to give out unique clientid's, so if we get an * attempt to confirm the same clientid with a different cred, * there's a bug somewhere. Let's charitably assume it's our * bug. */ status = nfserr_serverfault; if (unconf && !same_creds(&unconf->cl_cred, &rqstp->rq_cred)) goto out; if (conf && !same_creds(&conf->cl_cred, &rqstp->rq_cred)) goto out; /* cases below refer to rfc 3530 section 14.2.34: */ if (!unconf || !same_verf(&confirm, &unconf->cl_confirm)) { if (conf && !unconf) /* case 2: probable retransmit */ status = nfs_ok; else /* case 4: client hasn't noticed we rebooted yet? */ status = nfserr_stale_clientid; goto out; } status = nfs_ok; if (conf) { /* case 1: callback update */ old = unconf; unhash_client_locked(old); nfsd4_change_callback(conf, &unconf->cl_cb_conn); } else { /* case 3: normal case; new or rebooted client */ old = find_confirmed_client_by_name(&unconf->cl_name, nn); if (old) { status = mark_client_expired_locked(old); if (status) { old = NULL; goto out; } } move_to_confirmed(unconf); conf = unconf; } get_client_locked(conf); spin_unlock(&nn->client_lock); nfsd4_probe_callback(conf); spin_lock(&nn->client_lock); put_client_renew_locked(conf); out: spin_unlock(&nn->client_lock); if (old) expire_client(old); nfs4_unlock_state(); return status; } static struct nfs4_file *nfsd4_alloc_file(void) { return kmem_cache_alloc(file_slab, GFP_KERNEL); } /* OPEN Share state helper functions */ static void nfsd4_init_file(struct nfs4_file *fp, struct knfsd_fh *fh) { unsigned int hashval = file_hashval(fh); lockdep_assert_held(&state_lock); atomic_set(&fp->fi_ref, 1); spin_lock_init(&fp->fi_lock); INIT_LIST_HEAD(&fp->fi_stateids); INIT_LIST_HEAD(&fp->fi_delegations); fh_copy_shallow(&fp->fi_fhandle, fh); fp->fi_had_conflict = false; fp->fi_lease = NULL; fp->fi_share_deny = 0; memset(fp->fi_fds, 0, sizeof(fp->fi_fds)); memset(fp->fi_access, 0, sizeof(fp->fi_access)); hlist_add_head(&fp->fi_hash, &file_hashtbl[hashval]); } void nfsd4_free_slabs(void) { kmem_cache_destroy(openowner_slab); kmem_cache_destroy(lockowner_slab); kmem_cache_destroy(file_slab); kmem_cache_destroy(stateid_slab); kmem_cache_destroy(deleg_slab); } int nfsd4_init_slabs(void) { openowner_slab = kmem_cache_create("nfsd4_openowners", sizeof(struct nfs4_openowner), 0, 0, NULL); if (openowner_slab == NULL) goto out; lockowner_slab = kmem_cache_create("nfsd4_lockowners", sizeof(struct nfs4_lockowner), 0, 0, NULL); if (lockowner_slab == NULL) goto out_free_openowner_slab; file_slab = kmem_cache_create("nfsd4_files", sizeof(struct nfs4_file), 0, 0, NULL); if (file_slab == NULL) goto out_free_lockowner_slab; stateid_slab = kmem_cache_create("nfsd4_stateids", sizeof(struct nfs4_ol_stateid), 0, 0, NULL); if (stateid_slab == NULL) goto out_free_file_slab; deleg_slab = kmem_cache_create("nfsd4_delegations", sizeof(struct nfs4_delegation), 0, 0, NULL); if (deleg_slab == NULL) goto out_free_stateid_slab; return 0; out_free_stateid_slab: kmem_cache_destroy(stateid_slab); out_free_file_slab: kmem_cache_destroy(file_slab); out_free_lockowner_slab: kmem_cache_destroy(lockowner_slab); out_free_openowner_slab: kmem_cache_destroy(openowner_slab); out: dprintk("nfsd4: out of memory while initializing nfsv4\n"); return -ENOMEM; } static void init_nfs4_replay(struct nfs4_replay *rp) { rp->rp_status = nfserr_serverfault; rp->rp_buflen = 0; rp->rp_buf = rp->rp_ibuf; mutex_init(&rp->rp_mutex); } static void nfsd4_cstate_assign_replay(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so) { if (!nfsd4_has_session(cstate)) { mutex_lock(&so->so_replay.rp_mutex); cstate->replay_owner = so; atomic_inc(&so->so_count); } } void nfsd4_cstate_clear_replay(struct nfsd4_compound_state *cstate) { struct nfs4_stateowner *so = cstate->replay_owner; if (so != NULL) { cstate->replay_owner = NULL; mutex_unlock(&so->so_replay.rp_mutex); nfs4_put_stateowner(so); } } static inline void *alloc_stateowner(struct kmem_cache *slab, struct xdr_netobj *owner, struct nfs4_client *clp) { struct nfs4_stateowner *sop; sop = kmem_cache_alloc(slab, GFP_KERNEL); if (!sop) return NULL; sop->so_owner.data = kmemdup(owner->data, owner->len, GFP_KERNEL); if (!sop->so_owner.data) { kmem_cache_free(slab, sop); return NULL; } sop->so_owner.len = owner->len; INIT_LIST_HEAD(&sop->so_stateids); sop->so_client = clp; init_nfs4_replay(&sop->so_replay); atomic_set(&sop->so_count, 1); return sop; } static void hash_openowner(struct nfs4_openowner *oo, struct nfs4_client *clp, unsigned int strhashval) { lockdep_assert_held(&clp->cl_lock); list_add(&oo->oo_owner.so_strhash, &clp->cl_ownerstr_hashtbl[strhashval]); list_add(&oo->oo_perclient, &clp->cl_openowners); } static void nfs4_unhash_openowner(struct nfs4_stateowner *so) { unhash_openowner_locked(openowner(so)); } static void nfs4_free_openowner(struct nfs4_stateowner *so) { struct nfs4_openowner *oo = openowner(so); kmem_cache_free(openowner_slab, oo); } static const struct nfs4_stateowner_operations openowner_ops = { .so_unhash = nfs4_unhash_openowner, .so_free = nfs4_free_openowner, }; static struct nfs4_openowner * alloc_init_open_stateowner(unsigned int strhashval, struct nfsd4_open *open, struct nfsd4_compound_state *cstate) { struct nfs4_client *clp = cstate->clp; struct nfs4_openowner *oo, *ret; oo = alloc_stateowner(openowner_slab, &open->op_owner, clp); if (!oo) return NULL; oo->oo_owner.so_ops = &openowner_ops; oo->oo_owner.so_is_open_owner = 1; oo->oo_owner.so_seqid = open->op_seqid; oo->oo_flags = 0; if (nfsd4_has_session(cstate)) oo->oo_flags |= NFS4_OO_CONFIRMED; oo->oo_time = 0; oo->oo_last_closed_stid = NULL; INIT_LIST_HEAD(&oo->oo_close_lru); spin_lock(&clp->cl_lock); ret = find_openstateowner_str_locked(strhashval, open, clp); if (ret == NULL) { hash_openowner(oo, clp, strhashval); ret = oo; } else nfs4_free_openowner(&oo->oo_owner); spin_unlock(&clp->cl_lock); return oo; } static void init_open_stateid(struct nfs4_ol_stateid *stp, struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_openowner *oo = open->op_openowner; atomic_inc(&stp->st_stid.sc_count); stp->st_stid.sc_type = NFS4_OPEN_STID; INIT_LIST_HEAD(&stp->st_locks); stp->st_stateowner = &oo->oo_owner; atomic_inc(&stp->st_stateowner->so_count); get_nfs4_file(fp); stp->st_stid.sc_file = fp; stp->st_access_bmap = 0; stp->st_deny_bmap = 0; stp->st_openstp = NULL; spin_lock(&oo->oo_owner.so_client->cl_lock); list_add(&stp->st_perstateowner, &oo->oo_owner.so_stateids); spin_lock(&fp->fi_lock); list_add(&stp->st_perfile, &fp->fi_stateids); spin_unlock(&fp->fi_lock); spin_unlock(&oo->oo_owner.so_client->cl_lock); } /* * In the 4.0 case we need to keep the owners around a little while to handle * CLOSE replay. We still do need to release any file access that is held by * them before returning however. */ static void move_to_close_lru(struct nfs4_ol_stateid *s, struct net *net) { struct nfs4_ol_stateid *last; struct nfs4_openowner *oo = openowner(s->st_stateowner); struct nfsd_net *nn = net_generic(s->st_stid.sc_client->net, nfsd_net_id); dprintk("NFSD: move_to_close_lru nfs4_openowner %p\n", oo); /* * We know that we hold one reference via nfsd4_close, and another * "persistent" reference for the client. If the refcount is higher * than 2, then there are still calls in progress that are using this * stateid. We can't put the sc_file reference until they are finished. * Wait for the refcount to drop to 2. Since it has been unhashed, * there should be no danger of the refcount going back up again at * this point. */ wait_event(close_wq, atomic_read(&s->st_stid.sc_count) == 2); release_all_access(s); if (s->st_stid.sc_file) { put_nfs4_file(s->st_stid.sc_file); s->st_stid.sc_file = NULL; } spin_lock(&nn->client_lock); last = oo->oo_last_closed_stid; oo->oo_last_closed_stid = s; list_move_tail(&oo->oo_close_lru, &nn->close_lru); oo->oo_time = get_seconds(); spin_unlock(&nn->client_lock); if (last) nfs4_put_stid(&last->st_stid); } /* search file_hashtbl[] for file */ static struct nfs4_file * find_file_locked(struct knfsd_fh *fh) { unsigned int hashval = file_hashval(fh); struct nfs4_file *fp; lockdep_assert_held(&state_lock); hlist_for_each_entry(fp, &file_hashtbl[hashval], fi_hash) { if (nfsd_fh_match(&fp->fi_fhandle, fh)) { get_nfs4_file(fp); return fp; } } return NULL; } static struct nfs4_file * find_file(struct knfsd_fh *fh) { struct nfs4_file *fp; spin_lock(&state_lock); fp = find_file_locked(fh); spin_unlock(&state_lock); return fp; } static struct nfs4_file * find_or_add_file(struct nfs4_file *new, struct knfsd_fh *fh) { struct nfs4_file *fp; spin_lock(&state_lock); fp = find_file_locked(fh); if (fp == NULL) { nfsd4_init_file(new, fh); fp = new; } spin_unlock(&state_lock); return fp; } /* * Called to check deny when READ with all zero stateid or * WRITE with all zero or all one stateid */ static __be32 nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type) { struct nfs4_file *fp; __be32 ret = nfs_ok; fp = find_file(¤t_fh->fh_handle); if (!fp) return ret; /* Check for conflicting share reservations */ spin_lock(&fp->fi_lock); if (fp->fi_share_deny & deny_type) ret = nfserr_locked; spin_unlock(&fp->fi_lock); put_nfs4_file(fp); return ret; } void nfsd4_prepare_cb_recall(struct nfs4_delegation *dp) { struct nfsd_net *nn = net_generic(dp->dl_stid.sc_client->net, nfsd_net_id); block_delegations(&dp->dl_stid.sc_file->fi_fhandle); /* * We can't do this in nfsd_break_deleg_cb because it is * already holding inode->i_lock. * * If the dl_time != 0, then we know that it has already been * queued for a lease break. Don't queue it again. */ spin_lock(&state_lock); if (dp->dl_time == 0) { dp->dl_time = get_seconds(); list_add_tail(&dp->dl_recall_lru, &nn->del_recall_lru); } spin_unlock(&state_lock); } static void nfsd_break_one_deleg(struct nfs4_delegation *dp) { /* * We're assuming the state code never drops its reference * without first removing the lease. Since we're in this lease * callback (and since the lease code is serialized by the kernel * lock) we know the server hasn't removed the lease yet, we know * it's safe to take a reference. */ atomic_inc(&dp->dl_stid.sc_count); nfsd4_cb_recall(dp); } /* Called from break_lease() with i_lock held. */ static void nfsd_break_deleg_cb(struct file_lock *fl) { struct nfs4_file *fp = (struct nfs4_file *)fl->fl_owner; struct nfs4_delegation *dp; if (!fp) { WARN(1, "(%p)->fl_owner NULL\n", fl); return; } if (fp->fi_had_conflict) { WARN(1, "duplicate break on %p\n", fp); return; } /* * We don't want the locks code to timeout the lease for us; * we'll remove it ourself if a delegation isn't returned * in time: */ fl->fl_break_time = 0; spin_lock(&fp->fi_lock); fp->fi_had_conflict = true; /* * If there are no delegations on the list, then we can't count on this * lease ever being cleaned up. Set the fl_break_time to jiffies so that * time_out_leases will do it ASAP. The fact that fi_had_conflict is now * true should keep any new delegations from being hashed. */ if (list_empty(&fp->fi_delegations)) fl->fl_break_time = jiffies; else list_for_each_entry(dp, &fp->fi_delegations, dl_perfile) nfsd_break_one_deleg(dp); spin_unlock(&fp->fi_lock); } static int nfsd_change_deleg_cb(struct file_lock **onlist, int arg) { if (arg & F_UNLCK) return lease_modify(onlist, arg); else return -EAGAIN; } static const struct lock_manager_operations nfsd_lease_mng_ops = { .lm_break = nfsd_break_deleg_cb, .lm_change = nfsd_change_deleg_cb, }; static __be32 nfsd4_check_seqid(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so, u32 seqid) { if (nfsd4_has_session(cstate)) return nfs_ok; if (seqid == so->so_seqid - 1) return nfserr_replay_me; if (seqid == so->so_seqid) return nfs_ok; return nfserr_bad_seqid; } static __be32 lookup_clientid(clientid_t *clid, struct nfsd4_compound_state *cstate, struct nfsd_net *nn) { struct nfs4_client *found; if (cstate->clp) { found = cstate->clp; if (!same_clid(&found->cl_clientid, clid)) return nfserr_stale_clientid; return nfs_ok; } if (STALE_CLIENTID(clid, nn)) return nfserr_stale_clientid; /* * For v4.1+ we get the client in the SEQUENCE op. If we don't have one * cached already then we know this is for is for v4.0 and "sessions" * will be false. */ WARN_ON_ONCE(cstate->session); spin_lock(&nn->client_lock); found = find_confirmed_client(clid, false, nn); if (!found) { spin_unlock(&nn->client_lock); return nfserr_expired; } atomic_inc(&found->cl_refcount); spin_unlock(&nn->client_lock); /* Cache the nfs4_client in cstate! */ cstate->clp = found; return nfs_ok; } __be32 nfsd4_process_open1(struct nfsd4_compound_state *cstate, struct nfsd4_open *open, struct nfsd_net *nn) { clientid_t *clientid = &open->op_clientid; struct nfs4_client *clp = NULL; unsigned int strhashval; struct nfs4_openowner *oo = NULL; __be32 status; if (STALE_CLIENTID(&open->op_clientid, nn)) return nfserr_stale_clientid; /* * In case we need it later, after we've already created the * file and don't want to risk a further failure: */ open->op_file = nfsd4_alloc_file(); if (open->op_file == NULL) return nfserr_jukebox; status = lookup_clientid(clientid, cstate, nn); if (status) return status; clp = cstate->clp; strhashval = ownerstr_hashval(&open->op_owner); oo = find_openstateowner_str(strhashval, open, clp); open->op_openowner = oo; if (!oo) { goto new_owner; } if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) { /* Replace unconfirmed owners without checking for replay. */ release_openowner(oo); open->op_openowner = NULL; goto new_owner; } status = nfsd4_check_seqid(cstate, &oo->oo_owner, open->op_seqid); if (status) return status; goto alloc_stateid; new_owner: oo = alloc_init_open_stateowner(strhashval, open, cstate); if (oo == NULL) return nfserr_jukebox; open->op_openowner = oo; alloc_stateid: open->op_stp = nfs4_alloc_open_stateid(clp); if (!open->op_stp) return nfserr_jukebox; return nfs_ok; } static inline __be32 nfs4_check_delegmode(struct nfs4_delegation *dp, int flags) { if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ)) return nfserr_openmode; else return nfs_ok; } static int share_access_to_flags(u32 share_access) { return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE; } static struct nfs4_delegation *find_deleg_stateid(struct nfs4_client *cl, stateid_t *s) { struct nfs4_stid *ret; ret = find_stateid_by_type(cl, s, NFS4_DELEG_STID); if (!ret) return NULL; return delegstateid(ret); } static bool nfsd4_is_deleg_cur(struct nfsd4_open *open) { return open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR || open->op_claim_type == NFS4_OPEN_CLAIM_DELEG_CUR_FH; } static __be32 nfs4_check_deleg(struct nfs4_client *cl, struct nfsd4_open *open, struct nfs4_delegation **dp) { int flags; __be32 status = nfserr_bad_stateid; struct nfs4_delegation *deleg; deleg = find_deleg_stateid(cl, &open->op_delegate_stateid); if (deleg == NULL) goto out; flags = share_access_to_flags(open->op_share_access); status = nfs4_check_delegmode(deleg, flags); if (status) { nfs4_put_stid(&deleg->dl_stid); goto out; } *dp = deleg; out: if (!nfsd4_is_deleg_cur(open)) return nfs_ok; if (status) return status; open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; return nfs_ok; } static struct nfs4_ol_stateid * nfsd4_find_existing_open(struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_ol_stateid *local, *ret = NULL; struct nfs4_openowner *oo = open->op_openowner; spin_lock(&fp->fi_lock); list_for_each_entry(local, &fp->fi_stateids, st_perfile) { /* ignore lock owners */ if (local->st_stateowner->so_is_open_owner == 0) continue; if (local->st_stateowner == &oo->oo_owner) { ret = local; atomic_inc(&ret->st_stid.sc_count); break; } } spin_unlock(&fp->fi_lock); return ret; } static inline int nfs4_access_to_access(u32 nfs4_access) { int flags = 0; if (nfs4_access & NFS4_SHARE_ACCESS_READ) flags |= NFSD_MAY_READ; if (nfs4_access & NFS4_SHARE_ACCESS_WRITE) flags |= NFSD_MAY_WRITE; return flags; } static inline __be32 nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh, struct nfsd4_open *open) { struct iattr iattr = { .ia_valid = ATTR_SIZE, .ia_size = 0, }; if (!open->op_truncate) return 0; if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE)) return nfserr_inval; return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0); } static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open) { struct file *filp = NULL; __be32 status; int oflag = nfs4_access_to_omode(open->op_share_access); int access = nfs4_access_to_access(open->op_share_access); unsigned char old_access_bmap, old_deny_bmap; spin_lock(&fp->fi_lock); /* * Are we trying to set a deny mode that would conflict with * current access? */ status = nfs4_file_check_deny(fp, open->op_share_deny); if (status != nfs_ok) { spin_unlock(&fp->fi_lock); goto out; } /* set access to the file */ status = nfs4_file_get_access(fp, open->op_share_access); if (status != nfs_ok) { spin_unlock(&fp->fi_lock); goto out; } /* Set access bits in stateid */ old_access_bmap = stp->st_access_bmap; set_access(open->op_share_access, stp); /* Set new deny mask */ old_deny_bmap = stp->st_deny_bmap; set_deny(open->op_share_deny, stp); fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH); if (!fp->fi_fds[oflag]) { spin_unlock(&fp->fi_lock); status = nfsd_open(rqstp, cur_fh, S_IFREG, access, &filp); if (status) goto out_put_access; spin_lock(&fp->fi_lock); if (!fp->fi_fds[oflag]) { fp->fi_fds[oflag] = filp; filp = NULL; } } spin_unlock(&fp->fi_lock); if (filp) fput(filp); status = nfsd4_truncate(rqstp, cur_fh, open); if (status) goto out_put_access; out: return status; out_put_access: stp->st_access_bmap = old_access_bmap; nfs4_file_put_access(fp, open->op_share_access); reset_union_bmap_deny(bmap_to_share_mode(old_deny_bmap), stp); goto out; } static __be32 nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open) { __be32 status; unsigned char old_deny_bmap; if (!test_access(open->op_share_access, stp)) return nfs4_get_vfs_file(rqstp, fp, cur_fh, stp, open); /* test and set deny mode */ spin_lock(&fp->fi_lock); status = nfs4_file_check_deny(fp, open->op_share_deny); if (status == nfs_ok) { old_deny_bmap = stp->st_deny_bmap; set_deny(open->op_share_deny, stp); fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH); } spin_unlock(&fp->fi_lock); if (status != nfs_ok) return status; status = nfsd4_truncate(rqstp, cur_fh, open); if (status != nfs_ok) reset_union_bmap_deny(old_deny_bmap, stp); return status; } static void nfs4_set_claim_prev(struct nfsd4_open *open, bool has_session) { open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; } /* Should we give out recallable state?: */ static bool nfsd4_cb_channel_good(struct nfs4_client *clp) { if (clp->cl_cb_state == NFSD4_CB_UP) return true; /* * In the sessions case, since we don't have to establish a * separate connection for callbacks, we assume it's OK * until we hear otherwise: */ return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN; } static struct file_lock *nfs4_alloc_init_lease(struct nfs4_file *fp, int flag) { struct file_lock *fl; fl = locks_alloc_lock(); if (!fl) return NULL; locks_init_lock(fl); fl->fl_lmops = &nfsd_lease_mng_ops; fl->fl_flags = FL_DELEG; fl->fl_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK; fl->fl_end = OFFSET_MAX; fl->fl_owner = (fl_owner_t)fp; fl->fl_pid = current->tgid; return fl; } static int nfs4_setlease(struct nfs4_delegation *dp) { struct nfs4_file *fp = dp->dl_stid.sc_file; struct file_lock *fl; struct file *filp; int status = 0; fl = nfs4_alloc_init_lease(fp, NFS4_OPEN_DELEGATE_READ); if (!fl) return -ENOMEM; filp = find_readable_file(fp); if (!filp) { /* We should always have a readable file here */ WARN_ON_ONCE(1); return -EBADF; } fl->fl_file = filp; status = vfs_setlease(filp, fl->fl_type, &fl); if (status) { locks_free_lock(fl); goto out_fput; } spin_lock(&state_lock); spin_lock(&fp->fi_lock); /* Did the lease get broken before we took the lock? */ status = -EAGAIN; if (fp->fi_had_conflict) goto out_unlock; /* Race breaker */ if (fp->fi_lease) { status = 0; atomic_inc(&fp->fi_delegees); hash_delegation_locked(dp, fp); goto out_unlock; } fp->fi_lease = fl; fp->fi_deleg_file = filp; atomic_set(&fp->fi_delegees, 1); hash_delegation_locked(dp, fp); spin_unlock(&fp->fi_lock); spin_unlock(&state_lock); return 0; out_unlock: spin_unlock(&fp->fi_lock); spin_unlock(&state_lock); out_fput: fput(filp); return status; } static struct nfs4_delegation * nfs4_set_delegation(struct nfs4_client *clp, struct svc_fh *fh, struct nfs4_file *fp) { int status; struct nfs4_delegation *dp; if (fp->fi_had_conflict) return ERR_PTR(-EAGAIN); dp = alloc_init_deleg(clp, fh); if (!dp) return ERR_PTR(-ENOMEM); get_nfs4_file(fp); spin_lock(&state_lock); spin_lock(&fp->fi_lock); dp->dl_stid.sc_file = fp; if (!fp->fi_lease) { spin_unlock(&fp->fi_lock); spin_unlock(&state_lock); status = nfs4_setlease(dp); goto out; } atomic_inc(&fp->fi_delegees); if (fp->fi_had_conflict) { status = -EAGAIN; goto out_unlock; } hash_delegation_locked(dp, fp); status = 0; out_unlock: spin_unlock(&fp->fi_lock); spin_unlock(&state_lock); out: if (status) { nfs4_put_stid(&dp->dl_stid); return ERR_PTR(status); } return dp; } static void nfsd4_open_deleg_none_ext(struct nfsd4_open *open, int status) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; if (status == -EAGAIN) open->op_why_no_deleg = WND4_CONTENTION; else { open->op_why_no_deleg = WND4_RESOURCE; switch (open->op_deleg_want) { case NFS4_SHARE_WANT_READ_DELEG: case NFS4_SHARE_WANT_WRITE_DELEG: case NFS4_SHARE_WANT_ANY_DELEG: break; case NFS4_SHARE_WANT_CANCEL: open->op_why_no_deleg = WND4_CANCELLED; break; case NFS4_SHARE_WANT_NO_DELEG: WARN_ON_ONCE(1); } } } /* * Attempt to hand out a delegation. * * Note we don't support write delegations, and won't until the vfs has * proper support for them. */ static void nfs4_open_delegation(struct svc_fh *fh, struct nfsd4_open *open, struct nfs4_ol_stateid *stp) { struct nfs4_delegation *dp; struct nfs4_openowner *oo = openowner(stp->st_stateowner); struct nfs4_client *clp = stp->st_stid.sc_client; int cb_up; int status = 0; cb_up = nfsd4_cb_channel_good(oo->oo_owner.so_client); open->op_recall = 0; switch (open->op_claim_type) { case NFS4_OPEN_CLAIM_PREVIOUS: if (!cb_up) open->op_recall = 1; if (open->op_delegate_type != NFS4_OPEN_DELEGATE_READ) goto out_no_deleg; break; case NFS4_OPEN_CLAIM_NULL: case NFS4_OPEN_CLAIM_FH: /* * Let's not give out any delegations till everyone's * had the chance to reclaim theirs.... */ if (locks_in_grace(clp->net)) goto out_no_deleg; if (!cb_up || !(oo->oo_flags & NFS4_OO_CONFIRMED)) goto out_no_deleg; /* * Also, if the file was opened for write or * create, there's a good chance the client's * about to write to it, resulting in an * immediate recall (since we don't support * write delegations): */ if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE) goto out_no_deleg; if (open->op_create == NFS4_OPEN_CREATE) goto out_no_deleg; break; default: goto out_no_deleg; } dp = nfs4_set_delegation(clp, fh, stp->st_stid.sc_file); if (IS_ERR(dp)) goto out_no_deleg; memcpy(&open->op_delegate_stateid, &dp->dl_stid.sc_stateid, sizeof(dp->dl_stid.sc_stateid)); dprintk("NFSD: delegation stateid=" STATEID_FMT "\n", STATEID_VAL(&dp->dl_stid.sc_stateid)); open->op_delegate_type = NFS4_OPEN_DELEGATE_READ; nfs4_put_stid(&dp->dl_stid); return; out_no_deleg: open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE; if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS && open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) { dprintk("NFSD: WARNING: refusing delegation reclaim\n"); open->op_recall = 1; } /* 4.1 client asking for a delegation? */ if (open->op_deleg_want) nfsd4_open_deleg_none_ext(open, status); return; } static void nfsd4_deleg_xgrade_none_ext(struct nfsd4_open *open, struct nfs4_delegation *dp) { if (open->op_deleg_want == NFS4_SHARE_WANT_READ_DELEG && dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; open->op_why_no_deleg = WND4_NOT_SUPP_DOWNGRADE; } else if (open->op_deleg_want == NFS4_SHARE_WANT_WRITE_DELEG && dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; open->op_why_no_deleg = WND4_NOT_SUPP_UPGRADE; } /* Otherwise the client must be confused wanting a delegation * it already has, therefore we don't return * NFS4_OPEN_DELEGATE_NONE_EXT and reason. */ } /* * called with nfs4_lock_state() held. */ __be32 nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open) { struct nfsd4_compoundres *resp = rqstp->rq_resp; struct nfs4_client *cl = open->op_openowner->oo_owner.so_client; struct nfs4_file *fp = NULL; struct nfs4_ol_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; __be32 status; /* * Lookup file; if found, lookup stateid and check open request, * and check for delegations in the process of being recalled. * If not found, create the nfs4_file struct */ fp = find_or_add_file(open->op_file, ¤t_fh->fh_handle); if (fp != open->op_file) { status = nfs4_check_deleg(cl, open, &dp); if (status) goto out; stp = nfsd4_find_existing_open(fp, open); } else { open->op_file = NULL; status = nfserr_bad_stateid; if (nfsd4_is_deleg_cur(open)) goto out; status = nfserr_jukebox; } /* * OPEN the file, or upgrade an existing OPEN. * If truncate fails, the OPEN fails. */ if (stp) { /* Stateid was found, this is an OPEN upgrade */ status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open); if (status) goto out; } else { stp = open->op_stp; open->op_stp = NULL; init_open_stateid(stp, fp, open); status = nfs4_get_vfs_file(rqstp, fp, current_fh, stp, open); if (status) { release_open_stateid(stp); goto out; } } update_stateid(&stp->st_stid.sc_stateid); memcpy(&open->op_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); if (nfsd4_has_session(&resp->cstate)) { if (open->op_deleg_want & NFS4_SHARE_WANT_NO_DELEG) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; open->op_why_no_deleg = WND4_NOT_WANTED; goto nodeleg; } } /* * Attempt to hand out a delegation. No error return, because the * OPEN succeeds even if we fail. */ nfs4_open_delegation(current_fh, open, stp); nodeleg: status = nfs_ok; dprintk("%s: stateid=" STATEID_FMT "\n", __func__, STATEID_VAL(&stp->st_stid.sc_stateid)); out: /* 4.1 client trying to upgrade/downgrade delegation? */ if (open->op_delegate_type == NFS4_OPEN_DELEGATE_NONE && dp && open->op_deleg_want) nfsd4_deleg_xgrade_none_ext(open, dp); if (fp) put_nfs4_file(fp); if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS) nfs4_set_claim_prev(open, nfsd4_has_session(&resp->cstate)); /* * To finish the open response, we just need to set the rflags. */ open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX; if (!(open->op_openowner->oo_flags & NFS4_OO_CONFIRMED) && !nfsd4_has_session(&resp->cstate)) open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM; if (dp) nfs4_put_stid(&dp->dl_stid); if (stp) nfs4_put_stid(&stp->st_stid); return status; } void nfsd4_cleanup_open_state(struct nfsd4_compound_state *cstate, struct nfsd4_open *open, __be32 status) { if (open->op_openowner) { struct nfs4_stateowner *so = &open->op_openowner->oo_owner; nfsd4_cstate_assign_replay(cstate, so); nfs4_put_stateowner(so); } if (open->op_file) nfsd4_free_file(open->op_file); if (open->op_stp) nfs4_put_stid(&open->op_stp->st_stid); } __be32 nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, clientid_t *clid) { struct nfs4_client *clp; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); nfs4_lock_state(); dprintk("process_renew(%08x/%08x): starting\n", clid->cl_boot, clid->cl_id); status = lookup_clientid(clid, cstate, nn); if (status) goto out; clp = cstate->clp; status = nfserr_cb_path_down; if (!list_empty(&clp->cl_delegations) && clp->cl_cb_state != NFSD4_CB_UP) goto out; status = nfs_ok; out: nfs4_unlock_state(); return status; } static void nfsd4_end_grace(struct nfsd_net *nn) { /* do nothing if grace period already ended */ if (nn->grace_ended) return; dprintk("NFSD: end of grace period\n"); nn->grace_ended = true; nfsd4_record_grace_done(nn, nn->boot_time); locks_end_grace(&nn->nfsd4_manager); /* * Now that every NFSv4 client has had the chance to recover and * to see the (possibly new, possibly shorter) lease time, we * can safely set the next grace time to the current lease time: */ nn->nfsd4_grace = nn->nfsd4_lease; } static time_t nfs4_laundromat(struct nfsd_net *nn) { struct nfs4_client *clp; struct nfs4_openowner *oo; struct nfs4_delegation *dp; struct nfs4_ol_stateid *stp; struct list_head *pos, *next, reaplist; time_t cutoff = get_seconds() - nn->nfsd4_lease; time_t t, new_timeo = nn->nfsd4_lease; nfs4_lock_state(); dprintk("NFSD: laundromat service - starting\n"); nfsd4_end_grace(nn); INIT_LIST_HEAD(&reaplist); spin_lock(&nn->client_lock); list_for_each_safe(pos, next, &nn->client_lru) { clp = list_entry(pos, struct nfs4_client, cl_lru); if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) { t = clp->cl_time - cutoff; new_timeo = min(new_timeo, t); break; } if (mark_client_expired_locked(clp)) { dprintk("NFSD: client in use (clientid %08x)\n", clp->cl_clientid.cl_id); continue; } list_add(&clp->cl_lru, &reaplist); } spin_unlock(&nn->client_lock); list_for_each_safe(pos, next, &reaplist) { clp = list_entry(pos, struct nfs4_client, cl_lru); dprintk("NFSD: purging unused client (clientid %08x)\n", clp->cl_clientid.cl_id); list_del_init(&clp->cl_lru); expire_client(clp); } spin_lock(&state_lock); list_for_each_safe(pos, next, &nn->del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); if (net_generic(dp->dl_stid.sc_client->net, nfsd_net_id) != nn) continue; if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) { t = dp->dl_time - cutoff; new_timeo = min(new_timeo, t); break; } unhash_delegation_locked(dp); list_add(&dp->dl_recall_lru, &reaplist); } spin_unlock(&state_lock); while (!list_empty(&reaplist)) { dp = list_first_entry(&reaplist, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); revoke_delegation(dp); } spin_lock(&nn->client_lock); while (!list_empty(&nn->close_lru)) { oo = list_first_entry(&nn->close_lru, struct nfs4_openowner, oo_close_lru); if (time_after((unsigned long)oo->oo_time, (unsigned long)cutoff)) { t = oo->oo_time - cutoff; new_timeo = min(new_timeo, t); break; } list_del_init(&oo->oo_close_lru); stp = oo->oo_last_closed_stid; oo->oo_last_closed_stid = NULL; spin_unlock(&nn->client_lock); nfs4_put_stid(&stp->st_stid); spin_lock(&nn->client_lock); } spin_unlock(&nn->client_lock); new_timeo = max_t(time_t, new_timeo, NFSD_LAUNDROMAT_MINTIMEOUT); nfs4_unlock_state(); return new_timeo; } static struct workqueue_struct *laundry_wq; static void laundromat_main(struct work_struct *); static void laundromat_main(struct work_struct *laundry) { time_t t; struct delayed_work *dwork = container_of(laundry, struct delayed_work, work); struct nfsd_net *nn = container_of(dwork, struct nfsd_net, laundromat_work); t = nfs4_laundromat(nn); dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t); queue_delayed_work(laundry_wq, &nn->laundromat_work, t*HZ); } static inline __be32 nfs4_check_fh(struct svc_fh *fhp, struct nfs4_ol_stateid *stp) { if (!nfsd_fh_match(&fhp->fh_handle, &stp->st_stid.sc_file->fi_fhandle)) return nfserr_bad_stateid; return nfs_ok; } static inline int access_permit_read(struct nfs4_ol_stateid *stp) { return test_access(NFS4_SHARE_ACCESS_READ, stp) || test_access(NFS4_SHARE_ACCESS_BOTH, stp) || test_access(NFS4_SHARE_ACCESS_WRITE, stp); } static inline int access_permit_write(struct nfs4_ol_stateid *stp) { return test_access(NFS4_SHARE_ACCESS_WRITE, stp) || test_access(NFS4_SHARE_ACCESS_BOTH, stp); } static __be32 nfs4_check_openmode(struct nfs4_ol_stateid *stp, int flags) { __be32 status = nfserr_openmode; /* For lock stateid's, we test the parent open, not the lock: */ if (stp->st_openstp) stp = stp->st_openstp; if ((flags & WR_STATE) && !access_permit_write(stp)) goto out; if ((flags & RD_STATE) && !access_permit_read(stp)) goto out; status = nfs_ok; out: return status; } static inline __be32 check_special_stateids(struct net *net, svc_fh *current_fh, stateid_t *stateid, int flags) { if (ONE_STATEID(stateid) && (flags & RD_STATE)) return nfs_ok; else if (locks_in_grace(net)) { /* Answer in remaining cases depends on existence of * conflicting state; so we must wait out the grace period. */ return nfserr_grace; } else if (flags & WR_STATE) return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_WRITE); else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */ return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_READ); } /* * Allow READ/WRITE during grace period on recovered state only for files * that are not able to provide mandatory locking. */ static inline int grace_disallows_io(struct net *net, struct inode *inode) { return locks_in_grace(net) && mandatory_lock(inode); } /* Returns true iff a is later than b: */ static bool stateid_generation_after(stateid_t *a, stateid_t *b) { return (s32)(a->si_generation - b->si_generation) > 0; } static __be32 check_stateid_generation(stateid_t *in, stateid_t *ref, bool has_session) { /* * When sessions are used the stateid generation number is ignored * when it is zero. */ if (has_session && in->si_generation == 0) return nfs_ok; if (in->si_generation == ref->si_generation) return nfs_ok; /* If the client sends us a stateid from the future, it's buggy: */ if (stateid_generation_after(in, ref)) return nfserr_bad_stateid; /* * However, we could see a stateid from the past, even from a * non-buggy client. For example, if the client sends a lock * while some IO is outstanding, the lock may bump si_generation * while the IO is still in flight. The client could avoid that * situation by waiting for responses on all the IO requests, * but better performance may result in retrying IO that * receives an old_stateid error if requests are rarely * reordered in flight: */ return nfserr_old_stateid; } static __be32 nfsd4_validate_stateid(struct nfs4_client *cl, stateid_t *stateid) { struct nfs4_stid *s; struct nfs4_ol_stateid *ols; __be32 status = nfserr_bad_stateid; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) return status; /* Client debugging aid. */ if (!same_clid(&stateid->si_opaque.so_clid, &cl->cl_clientid)) { char addr_str[INET6_ADDRSTRLEN]; rpc_ntop((struct sockaddr *)&cl->cl_addr, addr_str, sizeof(addr_str)); pr_warn_ratelimited("NFSD: client %s testing state ID " "with incorrect client ID\n", addr_str); return status; } spin_lock(&cl->cl_lock); s = find_stateid_locked(cl, stateid); if (!s) goto out_unlock; status = check_stateid_generation(stateid, &s->sc_stateid, 1); if (status) goto out_unlock; switch (s->sc_type) { case NFS4_DELEG_STID: status = nfs_ok; break; case NFS4_REVOKED_DELEG_STID: status = nfserr_deleg_revoked; break; case NFS4_OPEN_STID: case NFS4_LOCK_STID: ols = openlockstateid(s); if (ols->st_stateowner->so_is_open_owner && !(openowner(ols->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED)) status = nfserr_bad_stateid; else status = nfs_ok; break; default: printk("unknown stateid type %x\n", s->sc_type); /* Fallthrough */ case NFS4_CLOSED_STID: case NFS4_CLOSED_DELEG_STID: status = nfserr_bad_stateid; } out_unlock: spin_unlock(&cl->cl_lock); return status; } static __be32 nfsd4_lookup_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid, unsigned char typemask, struct nfs4_stid **s, struct nfsd_net *nn) { __be32 status; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) return nfserr_bad_stateid; status = lookup_clientid(&stateid->si_opaque.so_clid, cstate, nn); if (status == nfserr_stale_clientid) { if (cstate->session) return nfserr_bad_stateid; return nfserr_stale_stateid; } if (status) return status; *s = find_stateid_by_type(cstate->clp, stateid, typemask); if (!*s) return nfserr_bad_stateid; return nfs_ok; } /* * Checks for stateid operations */ __be32 nfs4_preprocess_stateid_op(struct net *net, struct nfsd4_compound_state *cstate, stateid_t *stateid, int flags, struct file **filpp) { struct nfs4_stid *s; struct nfs4_ol_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; struct svc_fh *current_fh = &cstate->current_fh; struct inode *ino = current_fh->fh_dentry->d_inode; struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct file *file = NULL; __be32 status; if (filpp) *filpp = NULL; if (grace_disallows_io(net, ino)) return nfserr_grace; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) return check_special_stateids(net, current_fh, stateid, flags); status = nfsd4_lookup_stateid(cstate, stateid, NFS4_DELEG_STID|NFS4_OPEN_STID|NFS4_LOCK_STID, &s, nn); if (status) return status; status = check_stateid_generation(stateid, &s->sc_stateid, nfsd4_has_session(cstate)); if (status) goto out; switch (s->sc_type) { case NFS4_DELEG_STID: dp = delegstateid(s); status = nfs4_check_delegmode(dp, flags); if (status) goto out; if (filpp) { file = dp->dl_stid.sc_file->fi_deleg_file; if (!file) { WARN_ON_ONCE(1); status = nfserr_serverfault; goto out; } get_file(file); } break; case NFS4_OPEN_STID: case NFS4_LOCK_STID: stp = openlockstateid(s); status = nfs4_check_fh(current_fh, stp); if (status) goto out; if (stp->st_stateowner->so_is_open_owner && !(openowner(stp->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED)) goto out; status = nfs4_check_openmode(stp, flags); if (status) goto out; if (filpp) { struct nfs4_file *fp = stp->st_stid.sc_file; if (flags & RD_STATE) file = find_readable_file(fp); else file = find_writeable_file(fp); } break; default: status = nfserr_bad_stateid; goto out; } status = nfs_ok; if (file) *filpp = file; out: nfs4_put_stid(s); return status; } /* * Test if the stateid is valid */ __be32 nfsd4_test_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_test_stateid *test_stateid) { struct nfsd4_test_stateid_id *stateid; struct nfs4_client *cl = cstate->session->se_client; list_for_each_entry(stateid, &test_stateid->ts_stateid_list, ts_id_list) stateid->ts_id_status = nfsd4_validate_stateid(cl, &stateid->ts_id_stateid); return nfs_ok; } __be32 nfsd4_free_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_free_stateid *free_stateid) { stateid_t *stateid = &free_stateid->fr_stateid; struct nfs4_stid *s; struct nfs4_delegation *dp; struct nfs4_ol_stateid *stp; struct nfs4_client *cl = cstate->session->se_client; __be32 ret = nfserr_bad_stateid; spin_lock(&cl->cl_lock); s = find_stateid_locked(cl, stateid); if (!s) goto out_unlock; switch (s->sc_type) { case NFS4_DELEG_STID: ret = nfserr_locks_held; break; case NFS4_OPEN_STID: ret = check_stateid_generation(stateid, &s->sc_stateid, 1); if (ret) break; ret = nfserr_locks_held; break; case NFS4_LOCK_STID: ret = check_stateid_generation(stateid, &s->sc_stateid, 1); if (ret) break; stp = openlockstateid(s); ret = nfserr_locks_held; if (check_for_locks(stp->st_stid.sc_file, lockowner(stp->st_stateowner))) break; unhash_lock_stateid(stp); spin_unlock(&cl->cl_lock); nfs4_put_stid(s); ret = nfs_ok; goto out; case NFS4_REVOKED_DELEG_STID: dp = delegstateid(s); list_del_init(&dp->dl_recall_lru); spin_unlock(&cl->cl_lock); nfs4_put_stid(s); ret = nfs_ok; goto out; /* Default falls through and returns nfserr_bad_stateid */ } out_unlock: spin_unlock(&cl->cl_lock); out: return ret; } static inline int setlkflg (int type) { return (type == NFS4_READW_LT || type == NFS4_READ_LT) ? RD_STATE : WR_STATE; } static __be32 nfs4_seqid_op_checks(struct nfsd4_compound_state *cstate, stateid_t *stateid, u32 seqid, struct nfs4_ol_stateid *stp) { struct svc_fh *current_fh = &cstate->current_fh; struct nfs4_stateowner *sop = stp->st_stateowner; __be32 status; status = nfsd4_check_seqid(cstate, sop, seqid); if (status) return status; if (stp->st_stid.sc_type == NFS4_CLOSED_STID || stp->st_stid.sc_type == NFS4_REVOKED_DELEG_STID) /* * "Closed" stateid's exist *only* to return * nfserr_replay_me from the previous step, and * revoked delegations are kept only for free_stateid. */ return nfserr_bad_stateid; status = check_stateid_generation(stateid, &stp->st_stid.sc_stateid, nfsd4_has_session(cstate)); if (status) return status; return nfs4_check_fh(current_fh, stp); } /* * Checks for sequence id mutating operations. */ static __be32 nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid, stateid_t *stateid, char typemask, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn) { __be32 status; struct nfs4_stid *s; struct nfs4_ol_stateid *stp = NULL; dprintk("NFSD: %s: seqid=%d stateid = " STATEID_FMT "\n", __func__, seqid, STATEID_VAL(stateid)); *stpp = NULL; status = nfsd4_lookup_stateid(cstate, stateid, typemask, &s, nn); if (status) return status; stp = openlockstateid(s); nfsd4_cstate_assign_replay(cstate, stp->st_stateowner); status = nfs4_seqid_op_checks(cstate, stateid, seqid, stp); if (!status) *stpp = stp; else nfs4_put_stid(&stp->st_stid); return status; } static __be32 nfs4_preprocess_confirmed_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid, stateid_t *stateid, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn) { __be32 status; struct nfs4_openowner *oo; struct nfs4_ol_stateid *stp; status = nfs4_preprocess_seqid_op(cstate, seqid, stateid, NFS4_OPEN_STID, &stp, nn); if (status) return status; oo = openowner(stp->st_stateowner); if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) { nfs4_put_stid(&stp->st_stid); return nfserr_bad_stateid; } *stpp = stp; return nfs_ok; } __be32 nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_open_confirm *oc) { __be32 status; struct nfs4_openowner *oo; struct nfs4_ol_stateid *stp; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); dprintk("NFSD: nfsd4_open_confirm on file %pd\n", cstate->current_fh.fh_dentry); status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0); if (status) return status; nfs4_lock_state(); status = nfs4_preprocess_seqid_op(cstate, oc->oc_seqid, &oc->oc_req_stateid, NFS4_OPEN_STID, &stp, nn); if (status) goto out; oo = openowner(stp->st_stateowner); status = nfserr_bad_stateid; if (oo->oo_flags & NFS4_OO_CONFIRMED) goto put_stateid; oo->oo_flags |= NFS4_OO_CONFIRMED; update_stateid(&stp->st_stid.sc_stateid); memcpy(&oc->oc_resp_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); dprintk("NFSD: %s: success, seqid=%d stateid=" STATEID_FMT "\n", __func__, oc->oc_seqid, STATEID_VAL(&stp->st_stid.sc_stateid)); nfsd4_client_record_create(oo->oo_owner.so_client); status = nfs_ok; put_stateid: nfs4_put_stid(&stp->st_stid); out: nfsd4_bump_seqid(cstate, status); nfs4_unlock_state(); return status; } static inline void nfs4_stateid_downgrade_bit(struct nfs4_ol_stateid *stp, u32 access) { if (!test_access(access, stp)) return; nfs4_file_put_access(stp->st_stid.sc_file, access); clear_access(access, stp); } static inline void nfs4_stateid_downgrade(struct nfs4_ol_stateid *stp, u32 to_access) { switch (to_access) { case NFS4_SHARE_ACCESS_READ: nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_WRITE); nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH); break; case NFS4_SHARE_ACCESS_WRITE: nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_READ); nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH); break; case NFS4_SHARE_ACCESS_BOTH: break; default: WARN_ON_ONCE(1); } } __be32 nfsd4_open_downgrade(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_open_downgrade *od) { __be32 status; struct nfs4_ol_stateid *stp; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); dprintk("NFSD: nfsd4_open_downgrade on file %pd\n", cstate->current_fh.fh_dentry); /* We don't yet support WANT bits: */ if (od->od_deleg_want) dprintk("NFSD: %s: od_deleg_want=0x%x ignored\n", __func__, od->od_deleg_want); nfs4_lock_state(); status = nfs4_preprocess_confirmed_seqid_op(cstate, od->od_seqid, &od->od_stateid, &stp, nn); if (status) goto out; status = nfserr_inval; if (!test_access(od->od_share_access, stp)) { dprintk("NFSD: access not a subset of current bitmap: 0x%hhx, input access=%08x\n", stp->st_access_bmap, od->od_share_access); goto put_stateid; } if (!test_deny(od->od_share_deny, stp)) { dprintk("NFSD: deny not a subset of current bitmap: 0x%hhx, input deny=%08x\n", stp->st_deny_bmap, od->od_share_deny); goto put_stateid; } nfs4_stateid_downgrade(stp, od->od_share_access); reset_union_bmap_deny(od->od_share_deny, stp); update_stateid(&stp->st_stid.sc_stateid); memcpy(&od->od_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); status = nfs_ok; put_stateid: nfs4_put_stid(&stp->st_stid); out: nfsd4_bump_seqid(cstate, status); nfs4_unlock_state(); return status; } static void nfsd4_close_open_stateid(struct nfs4_ol_stateid *s) { struct nfs4_client *clp = s->st_stid.sc_client; LIST_HEAD(reaplist); s->st_stid.sc_type = NFS4_CLOSED_STID; spin_lock(&clp->cl_lock); unhash_open_stateid(s, &reaplist); if (clp->cl_minorversion) { put_ol_stateid_locked(s, &reaplist); spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); } else { spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); move_to_close_lru(s, clp->net); } } /* * nfs4_unlock_state() called after encode */ __be32 nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_close *close) { __be32 status; struct nfs4_ol_stateid *stp; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); dprintk("NFSD: nfsd4_close on file %pd\n", cstate->current_fh.fh_dentry); nfs4_lock_state(); status = nfs4_preprocess_seqid_op(cstate, close->cl_seqid, &close->cl_stateid, NFS4_OPEN_STID|NFS4_CLOSED_STID, &stp, nn); nfsd4_bump_seqid(cstate, status); if (status) goto out; update_stateid(&stp->st_stid.sc_stateid); memcpy(&close->cl_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); nfsd4_close_open_stateid(stp); /* put reference from nfs4_preprocess_seqid_op */ nfs4_put_stid(&stp->st_stid); out: nfs4_unlock_state(); return status; } __be32 nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_delegreturn *dr) { struct nfs4_delegation *dp; stateid_t *stateid = &dr->dr_stateid; struct nfs4_stid *s; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) return status; nfs4_lock_state(); status = nfsd4_lookup_stateid(cstate, stateid, NFS4_DELEG_STID, &s, nn); if (status) goto out; dp = delegstateid(s); status = check_stateid_generation(stateid, &dp->dl_stid.sc_stateid, nfsd4_has_session(cstate)); if (status) goto put_stateid; destroy_delegation(dp); put_stateid: nfs4_put_stid(&dp->dl_stid); out: nfs4_unlock_state(); return status; } #define LOFF_OVERFLOW(start, len) ((u64)(len) > ~(u64)(start)) static inline u64 end_offset(u64 start, u64 len) { u64 end; end = start + len; return end >= start ? end: NFS4_MAX_UINT64; } /* last octet in a range */ static inline u64 last_byte_offset(u64 start, u64 len) { u64 end; WARN_ON_ONCE(!len); end = start + len; return end > start ? end - 1: NFS4_MAX_UINT64; } /* * TODO: Linux file offsets are _signed_ 64-bit quantities, which means that * we can't properly handle lock requests that go beyond the (2^63 - 1)-th * byte, because of sign extension problems. Since NFSv4 calls for 64-bit * locking, this prevents us from being completely protocol-compliant. The * real solution to this problem is to start using unsigned file offsets in * the VFS, but this is a very deep change! */ static inline void nfs4_transform_lock_offset(struct file_lock *lock) { if (lock->fl_start < 0) lock->fl_start = OFFSET_MAX; if (lock->fl_end < 0) lock->fl_end = OFFSET_MAX; } /* Hack!: For now, we're defining this just so we can use a pointer to it * as a unique cookie to identify our (NFSv4's) posix locks. */ static const struct lock_manager_operations nfsd_posix_mng_ops = { }; static inline void nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny) { struct nfs4_lockowner *lo; if (fl->fl_lmops == &nfsd_posix_mng_ops) { lo = (struct nfs4_lockowner *) fl->fl_owner; deny->ld_owner.data = kmemdup(lo->lo_owner.so_owner.data, lo->lo_owner.so_owner.len, GFP_KERNEL); if (!deny->ld_owner.data) /* We just don't care that much */ goto nevermind; deny->ld_owner.len = lo->lo_owner.so_owner.len; deny->ld_clientid = lo->lo_owner.so_client->cl_clientid; } else { nevermind: deny->ld_owner.len = 0; deny->ld_owner.data = NULL; deny->ld_clientid.cl_boot = 0; deny->ld_clientid.cl_id = 0; } deny->ld_start = fl->fl_start; deny->ld_length = NFS4_MAX_UINT64; if (fl->fl_end != NFS4_MAX_UINT64) deny->ld_length = fl->fl_end - fl->fl_start + 1; deny->ld_type = NFS4_READ_LT; if (fl->fl_type != F_RDLCK) deny->ld_type = NFS4_WRITE_LT; } static struct nfs4_lockowner * find_lockowner_str_locked(clientid_t *clid, struct xdr_netobj *owner, struct nfs4_client *clp) { unsigned int strhashval = ownerstr_hashval(owner); struct nfs4_stateowner *so; lockdep_assert_held(&clp->cl_lock); list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[strhashval], so_strhash) { if (so->so_is_open_owner) continue; if (!same_owner_str(so, owner)) continue; atomic_inc(&so->so_count); return lockowner(so); } return NULL; } static struct nfs4_lockowner * find_lockowner_str(clientid_t *clid, struct xdr_netobj *owner, struct nfs4_client *clp) { struct nfs4_lockowner *lo; spin_lock(&clp->cl_lock); lo = find_lockowner_str_locked(clid, owner, clp); spin_unlock(&clp->cl_lock); return lo; } static void nfs4_unhash_lockowner(struct nfs4_stateowner *sop) { unhash_lockowner_locked(lockowner(sop)); } static void nfs4_free_lockowner(struct nfs4_stateowner *sop) { struct nfs4_lockowner *lo = lockowner(sop); kmem_cache_free(lockowner_slab, lo); } static const struct nfs4_stateowner_operations lockowner_ops = { .so_unhash = nfs4_unhash_lockowner, .so_free = nfs4_free_lockowner, }; /* * Alloc a lock owner structure. * Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has * occurred. * * strhashval = ownerstr_hashval */ static struct nfs4_lockowner * alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfs4_ol_stateid *open_stp, struct nfsd4_lock *lock) { struct nfs4_lockowner *lo, *ret; lo = alloc_stateowner(lockowner_slab, &lock->lk_new_owner, clp); if (!lo) return NULL; INIT_LIST_HEAD(&lo->lo_owner.so_stateids); lo->lo_owner.so_is_open_owner = 0; lo->lo_owner.so_seqid = lock->lk_new_lock_seqid; lo->lo_owner.so_ops = &lockowner_ops; spin_lock(&clp->cl_lock); ret = find_lockowner_str_locked(&clp->cl_clientid, &lock->lk_new_owner, clp); if (ret == NULL) { list_add(&lo->lo_owner.so_strhash, &clp->cl_ownerstr_hashtbl[strhashval]); ret = lo; } else nfs4_free_lockowner(&lo->lo_owner); spin_unlock(&clp->cl_lock); return lo; } static void init_lock_stateid(struct nfs4_ol_stateid *stp, struct nfs4_lockowner *lo, struct nfs4_file *fp, struct inode *inode, struct nfs4_ol_stateid *open_stp) { struct nfs4_client *clp = lo->lo_owner.so_client; lockdep_assert_held(&clp->cl_lock); atomic_inc(&stp->st_stid.sc_count); stp->st_stid.sc_type = NFS4_LOCK_STID; stp->st_stateowner = &lo->lo_owner; atomic_inc(&lo->lo_owner.so_count); get_nfs4_file(fp); stp->st_stid.sc_file = fp; stp->st_stid.sc_free = nfs4_free_lock_stateid; stp->st_access_bmap = 0; stp->st_deny_bmap = open_stp->st_deny_bmap; stp->st_openstp = open_stp; list_add(&stp->st_locks, &open_stp->st_locks); list_add(&stp->st_perstateowner, &lo->lo_owner.so_stateids); spin_lock(&fp->fi_lock); list_add(&stp->st_perfile, &fp->fi_stateids); spin_unlock(&fp->fi_lock); } static struct nfs4_ol_stateid * find_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fp) { struct nfs4_ol_stateid *lst; struct nfs4_client *clp = lo->lo_owner.so_client; lockdep_assert_held(&clp->cl_lock); list_for_each_entry(lst, &lo->lo_owner.so_stateids, st_perstateowner) { if (lst->st_stid.sc_file == fp) { atomic_inc(&lst->st_stid.sc_count); return lst; } } return NULL; } static struct nfs4_ol_stateid * find_or_create_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fi, struct inode *inode, struct nfs4_ol_stateid *ost, bool *new) { struct nfs4_stid *ns = NULL; struct nfs4_ol_stateid *lst; struct nfs4_openowner *oo = openowner(ost->st_stateowner); struct nfs4_client *clp = oo->oo_owner.so_client; spin_lock(&clp->cl_lock); lst = find_lock_stateid(lo, fi); if (lst == NULL) { spin_unlock(&clp->cl_lock); ns = nfs4_alloc_stid(clp, stateid_slab); if (ns == NULL) return NULL; spin_lock(&clp->cl_lock); lst = find_lock_stateid(lo, fi); if (likely(!lst)) { lst = openlockstateid(ns); init_lock_stateid(lst, lo, fi, inode, ost); ns = NULL; *new = true; } } spin_unlock(&clp->cl_lock); if (ns) nfs4_put_stid(ns); return lst; } static int check_lock_length(u64 offset, u64 length) { return ((length == 0) || ((length != NFS4_MAX_UINT64) && LOFF_OVERFLOW(offset, length))); } static void get_lock_access(struct nfs4_ol_stateid *lock_stp, u32 access) { struct nfs4_file *fp = lock_stp->st_stid.sc_file; lockdep_assert_held(&fp->fi_lock); if (test_access(access, lock_stp)) return; __nfs4_file_get_access(fp, access); set_access(access, lock_stp); } static __be32 lookup_or_create_lock_state(struct nfsd4_compound_state *cstate, struct nfs4_ol_stateid *ost, struct nfsd4_lock *lock, struct nfs4_ol_stateid **lst, bool *new) { __be32 status; struct nfs4_file *fi = ost->st_stid.sc_file; struct nfs4_openowner *oo = openowner(ost->st_stateowner); struct nfs4_client *cl = oo->oo_owner.so_client; struct inode *inode = cstate->current_fh.fh_dentry->d_inode; struct nfs4_lockowner *lo; unsigned int strhashval; lo = find_lockowner_str(&cl->cl_clientid, &lock->v.new.owner, cl); if (!lo) { strhashval = ownerstr_hashval(&lock->v.new.owner); lo = alloc_init_lock_stateowner(strhashval, cl, ost, lock); if (lo == NULL) return nfserr_jukebox; } else { /* with an existing lockowner, seqids must be the same */ status = nfserr_bad_seqid; if (!cstate->minorversion && lock->lk_new_lock_seqid != lo->lo_owner.so_seqid) goto out; } *lst = find_or_create_lock_stateid(lo, fi, inode, ost, new); if (*lst == NULL) { status = nfserr_jukebox; goto out; } status = nfs_ok; out: nfs4_put_stateowner(&lo->lo_owner); return status; } /* * LOCK operation */ __be32 nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_lock *lock) { struct nfs4_openowner *open_sop = NULL; struct nfs4_lockowner *lock_sop = NULL; struct nfs4_ol_stateid *lock_stp = NULL; struct nfs4_ol_stateid *open_stp = NULL; struct nfs4_file *fp; struct file *filp = NULL; struct file_lock *file_lock = NULL; struct file_lock *conflock = NULL; __be32 status = 0; int lkflg; int err; bool new = false; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n", (long long) lock->lk_offset, (long long) lock->lk_length); if (check_lock_length(lock->lk_offset, lock->lk_length)) return nfserr_inval; if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, NFSD_MAY_LOCK))) { dprintk("NFSD: nfsd4_lock: permission denied!\n"); return status; } nfs4_lock_state(); if (lock->lk_is_new) { if (nfsd4_has_session(cstate)) /* See rfc 5661 18.10.3: given clientid is ignored: */ memcpy(&lock->v.new.clientid, &cstate->session->se_client->cl_clientid, sizeof(clientid_t)); status = nfserr_stale_clientid; if (STALE_CLIENTID(&lock->lk_new_clientid, nn)) goto out; /* validate and update open stateid and open seqid */ status = nfs4_preprocess_confirmed_seqid_op(cstate, lock->lk_new_open_seqid, &lock->lk_new_open_stateid, &open_stp, nn); if (status) goto out; open_sop = openowner(open_stp->st_stateowner); status = nfserr_bad_stateid; if (!same_clid(&open_sop->oo_owner.so_client->cl_clientid, &lock->v.new.clientid)) goto out; status = lookup_or_create_lock_state(cstate, open_stp, lock, &lock_stp, &new); } else { status = nfs4_preprocess_seqid_op(cstate, lock->lk_old_lock_seqid, &lock->lk_old_lock_stateid, NFS4_LOCK_STID, &lock_stp, nn); } if (status) goto out; lock_sop = lockowner(lock_stp->st_stateowner); lkflg = setlkflg(lock->lk_type); status = nfs4_check_openmode(lock_stp, lkflg); if (status) goto out; status = nfserr_grace; if (locks_in_grace(net) && !lock->lk_reclaim) goto out; status = nfserr_no_grace; if (!locks_in_grace(net) && lock->lk_reclaim) goto out; file_lock = locks_alloc_lock(); if (!file_lock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto out; } fp = lock_stp->st_stid.sc_file; locks_init_lock(file_lock); switch (lock->lk_type) { case NFS4_READ_LT: case NFS4_READW_LT: spin_lock(&fp->fi_lock); filp = find_readable_file_locked(fp); if (filp) get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ); spin_unlock(&fp->fi_lock); file_lock->fl_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: spin_lock(&fp->fi_lock); filp = find_writeable_file_locked(fp); if (filp) get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE); spin_unlock(&fp->fi_lock); file_lock->fl_type = F_WRLCK; break; default: status = nfserr_inval; goto out; } if (!filp) { status = nfserr_openmode; goto out; } file_lock->fl_owner = (fl_owner_t)lock_sop; file_lock->fl_pid = current->tgid; file_lock->fl_file = filp; file_lock->fl_flags = FL_POSIX; file_lock->fl_lmops = &nfsd_posix_mng_ops; file_lock->fl_start = lock->lk_offset; file_lock->fl_end = last_byte_offset(lock->lk_offset, lock->lk_length); nfs4_transform_lock_offset(file_lock); conflock = locks_alloc_lock(); if (!conflock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto out; } err = vfs_lock_file(filp, F_SETLK, file_lock, conflock); switch (-err) { case 0: /* success! */ update_stateid(&lock_stp->st_stid.sc_stateid); memcpy(&lock->lk_resp_stateid, &lock_stp->st_stid.sc_stateid, sizeof(stateid_t)); status = 0; break; case (EAGAIN): /* conflock holds conflicting lock */ status = nfserr_denied; dprintk("NFSD: nfsd4_lock: conflicting lock found!\n"); nfs4_set_lock_denied(conflock, &lock->lk_denied); break; case (EDEADLK): status = nfserr_deadlock; break; default: dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err); status = nfserrno(err); break; } out: if (filp) fput(filp); if (lock_stp) { /* Bump seqid manually if the 4.0 replay owner is openowner */ if (cstate->replay_owner && cstate->replay_owner != &lock_sop->lo_owner && seqid_mutating_err(ntohl(status))) lock_sop->lo_owner.so_seqid++; /* * If this is a new, never-before-used stateid, and we are * returning an error, then just go ahead and release it. */ if (status && new) release_lock_stateid(lock_stp); nfs4_put_stid(&lock_stp->st_stid); } if (open_stp) nfs4_put_stid(&open_stp->st_stid); nfsd4_bump_seqid(cstate, status); nfs4_unlock_state(); if (file_lock) locks_free_lock(file_lock); if (conflock) locks_free_lock(conflock); return status; } /* * The NFSv4 spec allows a client to do a LOCKT without holding an OPEN, * so we do a temporary open here just to get an open file to pass to * vfs_test_lock. (Arguably perhaps test_lock should be done with an * inode operation.) */ static __be32 nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock) { struct file *file; __be32 err = nfsd_open(rqstp, fhp, S_IFREG, NFSD_MAY_READ, &file); if (!err) { err = nfserrno(vfs_test_lock(file, lock)); nfsd_close(file); } return err; } /* * LOCKT operation */ __be32 nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_lockt *lockt) { struct file_lock *file_lock = NULL; struct nfs4_lockowner *lo = NULL; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if (locks_in_grace(SVC_NET(rqstp))) return nfserr_grace; if (check_lock_length(lockt->lt_offset, lockt->lt_length)) return nfserr_inval; nfs4_lock_state(); if (!nfsd4_has_session(cstate)) { status = lookup_clientid(&lockt->lt_clientid, cstate, nn); if (status) goto out; } if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) goto out; file_lock = locks_alloc_lock(); if (!file_lock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto out; } locks_init_lock(file_lock); switch (lockt->lt_type) { case NFS4_READ_LT: case NFS4_READW_LT: file_lock->fl_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: file_lock->fl_type = F_WRLCK; break; default: dprintk("NFSD: nfs4_lockt: bad lock type!\n"); status = nfserr_inval; goto out; } lo = find_lockowner_str(&lockt->lt_clientid, &lockt->lt_owner, cstate->clp); if (lo) file_lock->fl_owner = (fl_owner_t)lo; file_lock->fl_pid = current->tgid; file_lock->fl_flags = FL_POSIX; file_lock->fl_start = lockt->lt_offset; file_lock->fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length); nfs4_transform_lock_offset(file_lock); status = nfsd_test_lock(rqstp, &cstate->current_fh, file_lock); if (status) goto out; if (file_lock->fl_type != F_UNLCK) { status = nfserr_denied; nfs4_set_lock_denied(file_lock, &lockt->lt_denied); } out: if (lo) nfs4_put_stateowner(&lo->lo_owner); nfs4_unlock_state(); if (file_lock) locks_free_lock(file_lock); return status; } __be32 nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_locku *locku) { struct nfs4_ol_stateid *stp; struct file *filp = NULL; struct file_lock *file_lock = NULL; __be32 status; int err; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n", (long long) locku->lu_offset, (long long) locku->lu_length); if (check_lock_length(locku->lu_offset, locku->lu_length)) return nfserr_inval; nfs4_lock_state(); status = nfs4_preprocess_seqid_op(cstate, locku->lu_seqid, &locku->lu_stateid, NFS4_LOCK_STID, &stp, nn); if (status) goto out; filp = find_any_file(stp->st_stid.sc_file); if (!filp) { status = nfserr_lock_range; goto put_stateid; } file_lock = locks_alloc_lock(); if (!file_lock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto fput; } locks_init_lock(file_lock); file_lock->fl_type = F_UNLCK; file_lock->fl_owner = (fl_owner_t)lockowner(stp->st_stateowner); file_lock->fl_pid = current->tgid; file_lock->fl_file = filp; file_lock->fl_flags = FL_POSIX; file_lock->fl_lmops = &nfsd_posix_mng_ops; file_lock->fl_start = locku->lu_offset; file_lock->fl_end = last_byte_offset(locku->lu_offset, locku->lu_length); nfs4_transform_lock_offset(file_lock); err = vfs_lock_file(filp, F_SETLK, file_lock, NULL); if (err) { dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n"); goto out_nfserr; } update_stateid(&stp->st_stid.sc_stateid); memcpy(&locku->lu_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); fput: fput(filp); put_stateid: nfs4_put_stid(&stp->st_stid); out: nfsd4_bump_seqid(cstate, status); nfs4_unlock_state(); if (file_lock) locks_free_lock(file_lock); return status; out_nfserr: status = nfserrno(err); goto fput; } /* * returns * true: locks held by lockowner * false: no locks held by lockowner */ static bool check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner) { struct file_lock **flpp; int status = false; struct file *filp = find_any_file(fp); struct inode *inode; if (!filp) { /* Any valid lock stateid should have some sort of access */ WARN_ON_ONCE(1); return status; } inode = file_inode(filp); spin_lock(&inode->i_lock); for (flpp = &inode->i_flock; *flpp != NULL; flpp = &(*flpp)->fl_next) { if ((*flpp)->fl_owner == (fl_owner_t)lowner) { status = true; break; } } spin_unlock(&inode->i_lock); fput(filp); return status; } __be32 nfsd4_release_lockowner(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_release_lockowner *rlockowner) { clientid_t *clid = &rlockowner->rl_clientid; struct nfs4_stateowner *sop; struct nfs4_lockowner *lo = NULL; struct nfs4_ol_stateid *stp; struct xdr_netobj *owner = &rlockowner->rl_owner; unsigned int hashval = ownerstr_hashval(owner); __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); struct nfs4_client *clp; dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n", clid->cl_boot, clid->cl_id); status = lookup_clientid(clid, cstate, nn); if (status) return status; clp = cstate->clp; /* Find the matching lock stateowner */ spin_lock(&clp->cl_lock); list_for_each_entry(sop, &clp->cl_ownerstr_hashtbl[hashval], so_strhash) { if (sop->so_is_open_owner || !same_owner_str(sop, owner)) continue; /* see if there are still any locks associated with it */ lo = lockowner(sop); list_for_each_entry(stp, &sop->so_stateids, st_perstateowner) { if (check_for_locks(stp->st_stid.sc_file, lo)) { status = nfserr_locks_held; spin_unlock(&clp->cl_lock); return status; } } atomic_inc(&sop->so_count); break; } spin_unlock(&clp->cl_lock); if (lo) release_lockowner(lo); return status; } static inline struct nfs4_client_reclaim * alloc_reclaim(void) { return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL); } bool nfs4_has_reclaimed_state(const char *name, struct nfsd_net *nn) { struct nfs4_client_reclaim *crp; crp = nfsd4_find_reclaim_client(name, nn); return (crp && crp->cr_clp); } /* * failure => all reset bets are off, nfserr_no_grace... */ struct nfs4_client_reclaim * nfs4_client_to_reclaim(const char *name, struct nfsd_net *nn) { unsigned int strhashval; struct nfs4_client_reclaim *crp; dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", HEXDIR_LEN, name); crp = alloc_reclaim(); if (crp) { strhashval = clientstr_hashval(name); INIT_LIST_HEAD(&crp->cr_strhash); list_add(&crp->cr_strhash, &nn->reclaim_str_hashtbl[strhashval]); memcpy(crp->cr_recdir, name, HEXDIR_LEN); crp->cr_clp = NULL; nn->reclaim_str_hashtbl_size++; } return crp; } void nfs4_remove_reclaim_record(struct nfs4_client_reclaim *crp, struct nfsd_net *nn) { list_del(&crp->cr_strhash); kfree(crp); nn->reclaim_str_hashtbl_size--; } void nfs4_release_reclaim(struct nfsd_net *nn) { struct nfs4_client_reclaim *crp = NULL; int i; for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&nn->reclaim_str_hashtbl[i])) { crp = list_entry(nn->reclaim_str_hashtbl[i].next, struct nfs4_client_reclaim, cr_strhash); nfs4_remove_reclaim_record(crp, nn); } } WARN_ON_ONCE(nn->reclaim_str_hashtbl_size); } /* * called from OPEN, CLAIM_PREVIOUS with a new clientid. */ struct nfs4_client_reclaim * nfsd4_find_reclaim_client(const char *recdir, struct nfsd_net *nn) { unsigned int strhashval; struct nfs4_client_reclaim *crp = NULL; dprintk("NFSD: nfs4_find_reclaim_client for recdir %s\n", recdir); strhashval = clientstr_hashval(recdir); list_for_each_entry(crp, &nn->reclaim_str_hashtbl[strhashval], cr_strhash) { if (same_name(crp->cr_recdir, recdir)) { return crp; } } return NULL; } /* * Called from OPEN. Look for clientid in reclaim list. */ __be32 nfs4_check_open_reclaim(clientid_t *clid, struct nfsd4_compound_state *cstate, struct nfsd_net *nn) { __be32 status; /* find clientid in conf_id_hashtbl */ status = lookup_clientid(clid, cstate, nn); if (status) return nfserr_reclaim_bad; if (nfsd4_client_record_check(cstate->clp)) return nfserr_reclaim_bad; return nfs_ok; } #ifdef CONFIG_NFSD_FAULT_INJECTION static inline void put_client(struct nfs4_client *clp) { atomic_dec(&clp->cl_refcount); } static struct nfs4_client * nfsd_find_client(struct sockaddr_storage *addr, size_t addr_size) { struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); if (!nfsd_netns_ready(nn)) return NULL; list_for_each_entry(clp, &nn->client_lru, cl_lru) { if (memcmp(&clp->cl_addr, addr, addr_size) == 0) return clp; } return NULL; } u64 nfsd_inject_print_clients(void) { struct nfs4_client *clp; u64 count = 0; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); char buf[INET6_ADDRSTRLEN]; if (!nfsd_netns_ready(nn)) return 0; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) { rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf)); pr_info("NFS Client: %s\n", buf); ++count; } spin_unlock(&nn->client_lock); return count; } u64 nfsd_inject_forget_client(struct sockaddr_storage *addr, size_t addr_size) { u64 count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); clp = nfsd_find_client(addr, addr_size); if (clp) { if (mark_client_expired_locked(clp) == nfs_ok) ++count; else clp = NULL; } spin_unlock(&nn->client_lock); if (clp) expire_client(clp); return count; } u64 nfsd_inject_forget_clients(u64 max) { u64 count = 0; struct nfs4_client *clp, *next; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) { if (mark_client_expired_locked(clp) == nfs_ok) { list_add(&clp->cl_lru, &reaplist); if (max != 0 && ++count >= max) break; } } spin_unlock(&nn->client_lock); list_for_each_entry_safe(clp, next, &reaplist, cl_lru) expire_client(clp); return count; } static void nfsd_print_count(struct nfs4_client *clp, unsigned int count, const char *type) { char buf[INET6_ADDRSTRLEN]; rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf)); printk(KERN_INFO "NFS Client: %s has %u %s\n", buf, count, type); } static void nfsd_inject_add_lock_to_list(struct nfs4_ol_stateid *lst, struct list_head *collect) { struct nfs4_client *clp = lst->st_stid.sc_client; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); if (!collect) return; lockdep_assert_held(&nn->client_lock); atomic_inc(&clp->cl_refcount); list_add(&lst->st_locks, collect); } static u64 nfsd_foreach_client_lock(struct nfs4_client *clp, u64 max, struct list_head *collect, void (*func)(struct nfs4_ol_stateid *)) { struct nfs4_openowner *oop; struct nfs4_ol_stateid *stp, *st_next; struct nfs4_ol_stateid *lst, *lst_next; u64 count = 0; spin_lock(&clp->cl_lock); list_for_each_entry(oop, &clp->cl_openowners, oo_perclient) { list_for_each_entry_safe(stp, st_next, &oop->oo_owner.so_stateids, st_perstateowner) { list_for_each_entry_safe(lst, lst_next, &stp->st_locks, st_locks) { if (func) { func(lst); nfsd_inject_add_lock_to_list(lst, collect); } ++count; /* * Despite the fact that these functions deal * with 64-bit integers for "count", we must * ensure that it doesn't blow up the * clp->cl_refcount. Throw a warning if we * start to approach INT_MAX here. */ WARN_ON_ONCE(count == (INT_MAX / 2)); if (count == max) goto out; } } } out: spin_unlock(&clp->cl_lock); return count; } static u64 nfsd_collect_client_locks(struct nfs4_client *clp, struct list_head *collect, u64 max) { return nfsd_foreach_client_lock(clp, max, collect, unhash_lock_stateid); } static u64 nfsd_print_client_locks(struct nfs4_client *clp) { u64 count = nfsd_foreach_client_lock(clp, 0, NULL, NULL); nfsd_print_count(clp, count, "locked files"); return count; } u64 nfsd_inject_print_locks(void) { struct nfs4_client *clp; u64 count = 0; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); if (!nfsd_netns_ready(nn)) return 0; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) count += nfsd_print_client_locks(clp); spin_unlock(&nn->client_lock); return count; } static void nfsd_reap_locks(struct list_head *reaplist) { struct nfs4_client *clp; struct nfs4_ol_stateid *stp, *next; list_for_each_entry_safe(stp, next, reaplist, st_locks) { list_del_init(&stp->st_locks); clp = stp->st_stid.sc_client; nfs4_put_stid(&stp->st_stid); put_client(clp); } } u64 nfsd_inject_forget_client_locks(struct sockaddr_storage *addr, size_t addr_size) { unsigned int count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); clp = nfsd_find_client(addr, addr_size); if (clp) count = nfsd_collect_client_locks(clp, &reaplist, 0); spin_unlock(&nn->client_lock); nfsd_reap_locks(&reaplist); return count; } u64 nfsd_inject_forget_locks(u64 max) { u64 count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) { count += nfsd_collect_client_locks(clp, &reaplist, max - count); if (max != 0 && count >= max) break; } spin_unlock(&nn->client_lock); nfsd_reap_locks(&reaplist); return count; } static u64 nfsd_foreach_client_openowner(struct nfs4_client *clp, u64 max, struct list_head *collect, void (*func)(struct nfs4_openowner *)) { struct nfs4_openowner *oop, *next; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); u64 count = 0; lockdep_assert_held(&nn->client_lock); spin_lock(&clp->cl_lock); list_for_each_entry_safe(oop, next, &clp->cl_openowners, oo_perclient) { if (func) { func(oop); if (collect) { atomic_inc(&clp->cl_refcount); list_add(&oop->oo_perclient, collect); } } ++count; /* * Despite the fact that these functions deal with * 64-bit integers for "count", we must ensure that * it doesn't blow up the clp->cl_refcount. Throw a * warning if we start to approach INT_MAX here. */ WARN_ON_ONCE(count == (INT_MAX / 2)); if (count == max) break; } spin_unlock(&clp->cl_lock); return count; } static u64 nfsd_print_client_openowners(struct nfs4_client *clp) { u64 count = nfsd_foreach_client_openowner(clp, 0, NULL, NULL); nfsd_print_count(clp, count, "openowners"); return count; } static u64 nfsd_collect_client_openowners(struct nfs4_client *clp, struct list_head *collect, u64 max) { return nfsd_foreach_client_openowner(clp, max, collect, unhash_openowner_locked); } u64 nfsd_inject_print_openowners(void) { struct nfs4_client *clp; u64 count = 0; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); if (!nfsd_netns_ready(nn)) return 0; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) count += nfsd_print_client_openowners(clp); spin_unlock(&nn->client_lock); return count; } static void nfsd_reap_openowners(struct list_head *reaplist) { struct nfs4_client *clp; struct nfs4_openowner *oop, *next; list_for_each_entry_safe(oop, next, reaplist, oo_perclient) { list_del_init(&oop->oo_perclient); clp = oop->oo_owner.so_client; release_openowner(oop); put_client(clp); } } u64 nfsd_inject_forget_client_openowners(struct sockaddr_storage *addr, size_t addr_size) { unsigned int count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); clp = nfsd_find_client(addr, addr_size); if (clp) count = nfsd_collect_client_openowners(clp, &reaplist, 0); spin_unlock(&nn->client_lock); nfsd_reap_openowners(&reaplist); return count; } u64 nfsd_inject_forget_openowners(u64 max) { u64 count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) { count += nfsd_collect_client_openowners(clp, &reaplist, max - count); if (max != 0 && count >= max) break; } spin_unlock(&nn->client_lock); nfsd_reap_openowners(&reaplist); return count; } static u64 nfsd_find_all_delegations(struct nfs4_client *clp, u64 max, struct list_head *victims) { struct nfs4_delegation *dp, *next; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); u64 count = 0; lockdep_assert_held(&nn->client_lock); spin_lock(&state_lock); list_for_each_entry_safe(dp, next, &clp->cl_delegations, dl_perclnt) { if (victims) { /* * It's not safe to mess with delegations that have a * non-zero dl_time. They might have already been broken * and could be processed by the laundromat outside of * the state_lock. Just leave them be. */ if (dp->dl_time != 0) continue; atomic_inc(&clp->cl_refcount); unhash_delegation_locked(dp); list_add(&dp->dl_recall_lru, victims); } ++count; /* * Despite the fact that these functions deal with * 64-bit integers for "count", we must ensure that * it doesn't blow up the clp->cl_refcount. Throw a * warning if we start to approach INT_MAX here. */ WARN_ON_ONCE(count == (INT_MAX / 2)); if (count == max) break; } spin_unlock(&state_lock); return count; } static u64 nfsd_print_client_delegations(struct nfs4_client *clp) { u64 count = nfsd_find_all_delegations(clp, 0, NULL); nfsd_print_count(clp, count, "delegations"); return count; } u64 nfsd_inject_print_delegations(void) { struct nfs4_client *clp; u64 count = 0; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); if (!nfsd_netns_ready(nn)) return 0; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) count += nfsd_print_client_delegations(clp); spin_unlock(&nn->client_lock); return count; } static void nfsd_forget_delegations(struct list_head *reaplist) { struct nfs4_client *clp; struct nfs4_delegation *dp, *next; list_for_each_entry_safe(dp, next, reaplist, dl_recall_lru) { list_del_init(&dp->dl_recall_lru); clp = dp->dl_stid.sc_client; revoke_delegation(dp); put_client(clp); } } u64 nfsd_inject_forget_client_delegations(struct sockaddr_storage *addr, size_t addr_size) { u64 count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); clp = nfsd_find_client(addr, addr_size); if (clp) count = nfsd_find_all_delegations(clp, 0, &reaplist); spin_unlock(&nn->client_lock); nfsd_forget_delegations(&reaplist); return count; } u64 nfsd_inject_forget_delegations(u64 max) { u64 count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); list_for_each_entry(clp, &nn->client_lru, cl_lru) { count += nfsd_find_all_delegations(clp, max - count, &reaplist); if (max != 0 && count >= max) break; } spin_unlock(&nn->client_lock); nfsd_forget_delegations(&reaplist); return count; } static void nfsd_recall_delegations(struct list_head *reaplist) { struct nfs4_client *clp; struct nfs4_delegation *dp, *next; list_for_each_entry_safe(dp, next, reaplist, dl_recall_lru) { list_del_init(&dp->dl_recall_lru); clp = dp->dl_stid.sc_client; /* * We skipped all entries that had a zero dl_time before, * so we can now reset the dl_time back to 0. If a delegation * break comes in now, then it won't make any difference since * we're recalling it either way. */ spin_lock(&state_lock); dp->dl_time = 0; spin_unlock(&state_lock); nfsd_break_one_deleg(dp); put_client(clp); } } u64 nfsd_inject_recall_client_delegations(struct sockaddr_storage *addr, size_t addr_size) { u64 count = 0; struct nfs4_client *clp; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); clp = nfsd_find_client(addr, addr_size); if (clp) count = nfsd_find_all_delegations(clp, 0, &reaplist); spin_unlock(&nn->client_lock); nfsd_recall_delegations(&reaplist); return count; } u64 nfsd_inject_recall_delegations(u64 max) { u64 count = 0; struct nfs4_client *clp, *next; struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); LIST_HEAD(reaplist); if (!nfsd_netns_ready(nn)) return count; spin_lock(&nn->client_lock); list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) { count += nfsd_find_all_delegations(clp, max - count, &reaplist); if (max != 0 && ++count >= max) break; } spin_unlock(&nn->client_lock); nfsd_recall_delegations(&reaplist); return count; } #endif /* CONFIG_NFSD_FAULT_INJECTION */ /* * Since the lifetime of a delegation isn't limited to that of an open, a * client may quite reasonably hang on to a delegation as long as it has * the inode cached. This becomes an obvious problem the first time a * client's inode cache approaches the size of the server's total memory. * * For now we avoid this problem by imposing a hard limit on the number * of delegations, which varies according to the server's memory size. */ static void set_max_delegations(void) { /* * Allow at most 4 delegations per megabyte of RAM. Quick * estimates suggest that in the worst case (where every delegation * is for a different inode), a delegation could take about 1.5K, * giving a worst case usage of about 6% of memory. */ max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT); } static int nfs4_state_create_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); int i; nn->conf_id_hashtbl = kmalloc(sizeof(struct list_head) * CLIENT_HASH_SIZE, GFP_KERNEL); if (!nn->conf_id_hashtbl) goto err; nn->unconf_id_hashtbl = kmalloc(sizeof(struct list_head) * CLIENT_HASH_SIZE, GFP_KERNEL); if (!nn->unconf_id_hashtbl) goto err_unconf_id; nn->sessionid_hashtbl = kmalloc(sizeof(struct list_head) * SESSION_HASH_SIZE, GFP_KERNEL); if (!nn->sessionid_hashtbl) goto err_sessionid; for (i = 0; i < CLIENT_HASH_SIZE; i++) { INIT_LIST_HEAD(&nn->conf_id_hashtbl[i]); INIT_LIST_HEAD(&nn->unconf_id_hashtbl[i]); } for (i = 0; i < SESSION_HASH_SIZE; i++) INIT_LIST_HEAD(&nn->sessionid_hashtbl[i]); nn->conf_name_tree = RB_ROOT; nn->unconf_name_tree = RB_ROOT; INIT_LIST_HEAD(&nn->client_lru); INIT_LIST_HEAD(&nn->close_lru); INIT_LIST_HEAD(&nn->del_recall_lru); spin_lock_init(&nn->client_lock); INIT_DELAYED_WORK(&nn->laundromat_work, laundromat_main); get_net(net); return 0; err_sessionid: kfree(nn->unconf_id_hashtbl); err_unconf_id: kfree(nn->conf_id_hashtbl); err: return -ENOMEM; } static void nfs4_state_destroy_net(struct net *net) { int i; struct nfs4_client *clp = NULL; struct nfsd_net *nn = net_generic(net, nfsd_net_id); for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&nn->conf_id_hashtbl[i])) { clp = list_entry(nn->conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash); destroy_client(clp); } } for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&nn->unconf_id_hashtbl[i])) { clp = list_entry(nn->unconf_id_hashtbl[i].next, struct nfs4_client, cl_idhash); destroy_client(clp); } } kfree(nn->sessionid_hashtbl); kfree(nn->unconf_id_hashtbl); kfree(nn->conf_id_hashtbl); put_net(net); } int nfs4_state_start_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); int ret; ret = nfs4_state_create_net(net); if (ret) return ret; nfsd4_client_tracking_init(net); nn->boot_time = get_seconds(); locks_start_grace(net, &nn->nfsd4_manager); nn->grace_ended = false; printk(KERN_INFO "NFSD: starting %ld-second grace period (net %p)\n", nn->nfsd4_grace, net); queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_grace * HZ); return 0; } /* initialization to perform when the nfsd service is started: */ int nfs4_state_start(void) { int ret; ret = set_callback_cred(); if (ret) return -ENOMEM; laundry_wq = create_singlethread_workqueue("nfsd4"); if (laundry_wq == NULL) { ret = -ENOMEM; goto out_recovery; } ret = nfsd4_create_callback_queue(); if (ret) goto out_free_laundry; set_max_delegations(); return 0; out_free_laundry: destroy_workqueue(laundry_wq); out_recovery: return ret; } void nfs4_state_shutdown_net(struct net *net) { struct nfs4_delegation *dp = NULL; struct list_head *pos, *next, reaplist; struct nfsd_net *nn = net_generic(net, nfsd_net_id); cancel_delayed_work_sync(&nn->laundromat_work); locks_end_grace(&nn->nfsd4_manager); nfs4_lock_state(); INIT_LIST_HEAD(&reaplist); spin_lock(&state_lock); list_for_each_safe(pos, next, &nn->del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); unhash_delegation_locked(dp); list_add(&dp->dl_recall_lru, &reaplist); } spin_unlock(&state_lock); list_for_each_safe(pos, next, &reaplist) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); nfs4_put_stid(&dp->dl_stid); } nfsd4_client_tracking_exit(net); nfs4_state_destroy_net(net); nfs4_unlock_state(); } void nfs4_state_shutdown(void) { destroy_workqueue(laundry_wq); nfsd4_destroy_callback_queue(); } static void get_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid) { if (HAS_STATE_ID(cstate, CURRENT_STATE_ID_FLAG) && CURRENT_STATEID(stateid)) memcpy(stateid, &cstate->current_stateid, sizeof(stateid_t)); } static void put_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid) { if (cstate->minorversion) { memcpy(&cstate->current_stateid, stateid, sizeof(stateid_t)); SET_STATE_ID(cstate, CURRENT_STATE_ID_FLAG); } } void clear_current_stateid(struct nfsd4_compound_state *cstate) { CLEAR_STATE_ID(cstate, CURRENT_STATE_ID_FLAG); } /* * functions to set current state id */ void nfsd4_set_opendowngradestateid(struct nfsd4_compound_state *cstate, struct nfsd4_open_downgrade *odp) { put_stateid(cstate, &odp->od_stateid); } void nfsd4_set_openstateid(struct nfsd4_compound_state *cstate, struct nfsd4_open *open) { put_stateid(cstate, &open->op_stateid); } void nfsd4_set_closestateid(struct nfsd4_compound_state *cstate, struct nfsd4_close *close) { put_stateid(cstate, &close->cl_stateid); } void nfsd4_set_lockstateid(struct nfsd4_compound_state *cstate, struct nfsd4_lock *lock) { put_stateid(cstate, &lock->lk_resp_stateid); } /* * functions to consume current state id */ void nfsd4_get_opendowngradestateid(struct nfsd4_compound_state *cstate, struct nfsd4_open_downgrade *odp) { get_stateid(cstate, &odp->od_stateid); } void nfsd4_get_delegreturnstateid(struct nfsd4_compound_state *cstate, struct nfsd4_delegreturn *drp) { get_stateid(cstate, &drp->dr_stateid); } void nfsd4_get_freestateid(struct nfsd4_compound_state *cstate, struct nfsd4_free_stateid *fsp) { get_stateid(cstate, &fsp->fr_stateid); } void nfsd4_get_setattrstateid(struct nfsd4_compound_state *cstate, struct nfsd4_setattr *setattr) { get_stateid(cstate, &setattr->sa_stateid); } void nfsd4_get_closestateid(struct nfsd4_compound_state *cstate, struct nfsd4_close *close) { get_stateid(cstate, &close->cl_stateid); } void nfsd4_get_lockustateid(struct nfsd4_compound_state *cstate, struct nfsd4_locku *locku) { get_stateid(cstate, &locku->lu_stateid); } void nfsd4_get_readstateid(struct nfsd4_compound_state *cstate, struct nfsd4_read *read) { get_stateid(cstate, &read->rd_stateid); } void nfsd4_get_writestateid(struct nfsd4_compound_state *cstate, struct nfsd4_write *write) { get_stateid(cstate, &write->wr_stateid); }