/****************************************************************************** * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by reference. * Drivers based on or derived from this code fall under the GPL and must * retain the authorship, copyright and license notice. This file is not * a complete program and may only be used when the entire operating * system is licensed under the GPL. * See the file COPYING in this distribution for more information. * * vxge-main.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O * Virtualized Server Adapter. * Copyright(c) 2002-2009 Neterion Inc. * * The module loadable parameters that are supported by the driver and a brief * explanation of all the variables: * vlan_tag_strip: * Strip VLAN Tag enable/disable. Instructs the device to remove * the VLAN tag from all received tagged frames that are not * replicated at the internal L2 switch. * 0 - Do not strip the VLAN tag. * 1 - Strip the VLAN tag. * * addr_learn_en: * Enable learning the mac address of the guest OS interface in * a virtualization environment. * 0 - DISABLE * 1 - ENABLE * * max_config_port: * Maximum number of port to be supported. * MIN -1 and MAX - 2 * * max_config_vpath: * This configures the maximum no of VPATH configures for each * device function. * MIN - 1 and MAX - 17 * * max_config_dev: * This configures maximum no of Device function to be enabled. * MIN - 1 and MAX - 17 * ******************************************************************************/ #include #include #include #include #include #include #include "vxge-main.h" #include "vxge-reg.h" MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Neterion's X3100 Series 10GbE PCIe I/O" "Virtualized Server Adapter"); static DEFINE_PCI_DEVICE_TABLE(vxge_id_table) = { {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_WIN, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_UNI, PCI_ANY_ID, PCI_ANY_ID}, {0} }; MODULE_DEVICE_TABLE(pci, vxge_id_table); VXGE_MODULE_PARAM_INT(vlan_tag_strip, VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE); VXGE_MODULE_PARAM_INT(addr_learn_en, VXGE_HW_MAC_ADDR_LEARN_DEFAULT); VXGE_MODULE_PARAM_INT(max_config_port, VXGE_MAX_CONFIG_PORT); VXGE_MODULE_PARAM_INT(max_config_vpath, VXGE_USE_DEFAULT); VXGE_MODULE_PARAM_INT(max_mac_vpath, VXGE_MAX_MAC_ADDR_COUNT); VXGE_MODULE_PARAM_INT(max_config_dev, VXGE_MAX_CONFIG_DEV); static u16 vpath_selector[VXGE_HW_MAX_VIRTUAL_PATHS] = {0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31}; static unsigned int bw_percentage[VXGE_HW_MAX_VIRTUAL_PATHS] = {[0 ...(VXGE_HW_MAX_VIRTUAL_PATHS - 1)] = 0xFF}; module_param_array(bw_percentage, uint, NULL, 0); static struct vxge_drv_config *driver_config; static inline int is_vxge_card_up(struct vxgedev *vdev) { return test_bit(__VXGE_STATE_CARD_UP, &vdev->state); } static inline void VXGE_COMPLETE_VPATH_TX(struct vxge_fifo *fifo) { unsigned long flags = 0; struct sk_buff **skb_ptr = NULL; struct sk_buff **temp; #define NR_SKB_COMPLETED 128 struct sk_buff *completed[NR_SKB_COMPLETED]; int more; do { more = 0; skb_ptr = completed; if (spin_trylock_irqsave(&fifo->tx_lock, flags)) { vxge_hw_vpath_poll_tx(fifo->handle, &skb_ptr, NR_SKB_COMPLETED, &more); spin_unlock_irqrestore(&fifo->tx_lock, flags); } /* free SKBs */ for (temp = completed; temp != skb_ptr; temp++) dev_kfree_skb_irq(*temp); } while (more) ; } static inline void VXGE_COMPLETE_ALL_TX(struct vxgedev *vdev) { int i; /* Complete all transmits */ for (i = 0; i < vdev->no_of_vpath; i++) VXGE_COMPLETE_VPATH_TX(&vdev->vpaths[i].fifo); } static inline void VXGE_COMPLETE_ALL_RX(struct vxgedev *vdev) { int i; struct vxge_ring *ring; /* Complete all receives*/ for (i = 0; i < vdev->no_of_vpath; i++) { ring = &vdev->vpaths[i].ring; vxge_hw_vpath_poll_rx(ring->handle); } } /* * MultiQ manipulation helper functions */ void vxge_stop_all_tx_queue(struct vxgedev *vdev) { int i; struct net_device *dev = vdev->ndev; if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) { for (i = 0; i < vdev->no_of_vpath; i++) vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_STOP; } netif_tx_stop_all_queues(dev); } void vxge_stop_tx_queue(struct vxge_fifo *fifo) { struct net_device *dev = fifo->ndev; struct netdev_queue *txq = NULL; if (fifo->tx_steering_type == TX_MULTIQ_STEERING) txq = netdev_get_tx_queue(dev, fifo->driver_id); else { txq = netdev_get_tx_queue(dev, 0); fifo->queue_state = VPATH_QUEUE_STOP; } netif_tx_stop_queue(txq); } void vxge_start_all_tx_queue(struct vxgedev *vdev) { int i; struct net_device *dev = vdev->ndev; if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) { for (i = 0; i < vdev->no_of_vpath; i++) vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_START; } netif_tx_start_all_queues(dev); } static void vxge_wake_all_tx_queue(struct vxgedev *vdev) { int i; struct net_device *dev = vdev->ndev; if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) { for (i = 0; i < vdev->no_of_vpath; i++) vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_START; } netif_tx_wake_all_queues(dev); } void vxge_wake_tx_queue(struct vxge_fifo *fifo, struct sk_buff *skb) { struct net_device *dev = fifo->ndev; int vpath_no = fifo->driver_id; struct netdev_queue *txq = NULL; if (fifo->tx_steering_type == TX_MULTIQ_STEERING) { txq = netdev_get_tx_queue(dev, vpath_no); if (netif_tx_queue_stopped(txq)) netif_tx_wake_queue(txq); } else { txq = netdev_get_tx_queue(dev, 0); if (fifo->queue_state == VPATH_QUEUE_STOP) if (netif_tx_queue_stopped(txq)) { fifo->queue_state = VPATH_QUEUE_START; netif_tx_wake_queue(txq); } } } /* * vxge_callback_link_up * * This function is called during interrupt context to notify link up state * change. */ void vxge_callback_link_up(struct __vxge_hw_device *hldev) { struct net_device *dev = hldev->ndev; struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", vdev->ndev->name, __func__, __LINE__); printk(KERN_NOTICE "%s: Link Up\n", vdev->ndev->name); vdev->stats.link_up++; netif_carrier_on(vdev->ndev); vxge_wake_all_tx_queue(vdev); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__); } /* * vxge_callback_link_down * * This function is called during interrupt context to notify link down state * change. */ void vxge_callback_link_down(struct __vxge_hw_device *hldev) { struct net_device *dev = hldev->ndev; struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", vdev->ndev->name, __func__, __LINE__); printk(KERN_NOTICE "%s: Link Down\n", vdev->ndev->name); vdev->stats.link_down++; netif_carrier_off(vdev->ndev); vxge_stop_all_tx_queue(vdev); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__); } /* * vxge_rx_alloc * * Allocate SKB. */ static struct sk_buff* vxge_rx_alloc(void *dtrh, struct vxge_ring *ring, const int skb_size) { struct net_device *dev; struct sk_buff *skb; struct vxge_rx_priv *rx_priv; dev = ring->ndev; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", ring->ndev->name, __func__, __LINE__); rx_priv = vxge_hw_ring_rxd_private_get(dtrh); /* try to allocate skb first. this one may fail */ skb = netdev_alloc_skb(dev, skb_size + VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN); if (skb == NULL) { vxge_debug_mem(VXGE_ERR, "%s: out of memory to allocate SKB", dev->name); ring->stats.skb_alloc_fail++; return NULL; } vxge_debug_mem(VXGE_TRACE, "%s: %s:%d Skb : 0x%p", ring->ndev->name, __func__, __LINE__, skb); skb_reserve(skb, VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN); rx_priv->skb = skb; rx_priv->skb_data = NULL; rx_priv->data_size = skb_size; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__); return skb; } /* * vxge_rx_map */ static int vxge_rx_map(void *dtrh, struct vxge_ring *ring) { struct vxge_rx_priv *rx_priv; dma_addr_t dma_addr; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", ring->ndev->name, __func__, __LINE__); rx_priv = vxge_hw_ring_rxd_private_get(dtrh); rx_priv->skb_data = rx_priv->skb->data; dma_addr = pci_map_single(ring->pdev, rx_priv->skb_data, rx_priv->data_size, PCI_DMA_FROMDEVICE); if (unlikely(pci_dma_mapping_error(ring->pdev, dma_addr))) { ring->stats.pci_map_fail++; return -EIO; } vxge_debug_mem(VXGE_TRACE, "%s: %s:%d 1 buffer mode dma_addr = 0x%llx", ring->ndev->name, __func__, __LINE__, (unsigned long long)dma_addr); vxge_hw_ring_rxd_1b_set(dtrh, dma_addr, rx_priv->data_size); rx_priv->data_dma = dma_addr; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__); return 0; } /* * vxge_rx_initial_replenish * Allocation of RxD as an initial replenish procedure. */ static enum vxge_hw_status vxge_rx_initial_replenish(void *dtrh, void *userdata) { struct vxge_ring *ring = (struct vxge_ring *)userdata; struct vxge_rx_priv *rx_priv; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", ring->ndev->name, __func__, __LINE__); if (vxge_rx_alloc(dtrh, ring, VXGE_LL_MAX_FRAME_SIZE(ring->ndev)) == NULL) return VXGE_HW_FAIL; if (vxge_rx_map(dtrh, ring)) { rx_priv = vxge_hw_ring_rxd_private_get(dtrh); dev_kfree_skb(rx_priv->skb); return VXGE_HW_FAIL; } vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__); return VXGE_HW_OK; } static inline void vxge_rx_complete(struct vxge_ring *ring, struct sk_buff *skb, u16 vlan, int pkt_length, struct vxge_hw_ring_rxd_info *ext_info) { vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", ring->ndev->name, __func__, __LINE__); skb_record_rx_queue(skb, ring->driver_id); skb->protocol = eth_type_trans(skb, ring->ndev); ring->stats.rx_frms++; ring->stats.rx_bytes += pkt_length; if (skb->pkt_type == PACKET_MULTICAST) ring->stats.rx_mcast++; vxge_debug_rx(VXGE_TRACE, "%s: %s:%d skb protocol = %d", ring->ndev->name, __func__, __LINE__, skb->protocol); if (ring->gro_enable) { if (ring->vlgrp && ext_info->vlan && (ring->vlan_tag_strip == VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE)) vlan_gro_receive(ring->napi_p, ring->vlgrp, ext_info->vlan, skb); else napi_gro_receive(ring->napi_p, skb); } else { if (ring->vlgrp && vlan && (ring->vlan_tag_strip == VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE)) vlan_hwaccel_receive_skb(skb, ring->vlgrp, vlan); else netif_receive_skb(skb); } vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__); } static inline void vxge_re_pre_post(void *dtr, struct vxge_ring *ring, struct vxge_rx_priv *rx_priv) { pci_dma_sync_single_for_device(ring->pdev, rx_priv->data_dma, rx_priv->data_size, PCI_DMA_FROMDEVICE); vxge_hw_ring_rxd_1b_set(dtr, rx_priv->data_dma, rx_priv->data_size); vxge_hw_ring_rxd_pre_post(ring->handle, dtr); } static inline void vxge_post(int *dtr_cnt, void **first_dtr, void *post_dtr, struct __vxge_hw_ring *ringh) { int dtr_count = *dtr_cnt; if ((*dtr_cnt % VXGE_HW_RXSYNC_FREQ_CNT) == 0) { if (*first_dtr) vxge_hw_ring_rxd_post_post_wmb(ringh, *first_dtr); *first_dtr = post_dtr; } else vxge_hw_ring_rxd_post_post(ringh, post_dtr); dtr_count++; *dtr_cnt = dtr_count; } /* * vxge_rx_1b_compl * * If the interrupt is because of a received frame or if the receive ring * contains fresh as yet un-processed frames, this function is called. */ enum vxge_hw_status vxge_rx_1b_compl(struct __vxge_hw_ring *ringh, void *dtr, u8 t_code, void *userdata) { struct vxge_ring *ring = (struct vxge_ring *)userdata; struct net_device *dev = ring->ndev; unsigned int dma_sizes; void *first_dtr = NULL; int dtr_cnt = 0; int data_size; dma_addr_t data_dma; int pkt_length; struct sk_buff *skb; struct vxge_rx_priv *rx_priv; struct vxge_hw_ring_rxd_info ext_info; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", ring->ndev->name, __func__, __LINE__); ring->pkts_processed = 0; vxge_hw_ring_replenish(ringh); do { prefetch((char *)dtr + L1_CACHE_BYTES); rx_priv = vxge_hw_ring_rxd_private_get(dtr); skb = rx_priv->skb; data_size = rx_priv->data_size; data_dma = rx_priv->data_dma; prefetch(rx_priv->skb_data); vxge_debug_rx(VXGE_TRACE, "%s: %s:%d skb = 0x%p", ring->ndev->name, __func__, __LINE__, skb); vxge_hw_ring_rxd_1b_get(ringh, dtr, &dma_sizes); pkt_length = dma_sizes; pkt_length -= ETH_FCS_LEN; vxge_debug_rx(VXGE_TRACE, "%s: %s:%d Packet Length = %d", ring->ndev->name, __func__, __LINE__, pkt_length); vxge_hw_ring_rxd_1b_info_get(ringh, dtr, &ext_info); /* check skb validity */ vxge_assert(skb); prefetch((char *)skb + L1_CACHE_BYTES); if (unlikely(t_code)) { if (vxge_hw_ring_handle_tcode(ringh, dtr, t_code) != VXGE_HW_OK) { ring->stats.rx_errors++; vxge_debug_rx(VXGE_TRACE, "%s: %s :%d Rx T_code is %d", ring->ndev->name, __func__, __LINE__, t_code); /* If the t_code is not supported and if the * t_code is other than 0x5 (unparseable packet * such as unknown UPV6 header), Drop it !!! */ vxge_re_pre_post(dtr, ring, rx_priv); vxge_post(&dtr_cnt, &first_dtr, dtr, ringh); ring->stats.rx_dropped++; continue; } } if (pkt_length > VXGE_LL_RX_COPY_THRESHOLD) { if (vxge_rx_alloc(dtr, ring, data_size) != NULL) { if (!vxge_rx_map(dtr, ring)) { skb_put(skb, pkt_length); pci_unmap_single(ring->pdev, data_dma, data_size, PCI_DMA_FROMDEVICE); vxge_hw_ring_rxd_pre_post(ringh, dtr); vxge_post(&dtr_cnt, &first_dtr, dtr, ringh); } else { dev_kfree_skb(rx_priv->skb); rx_priv->skb = skb; rx_priv->data_size = data_size; vxge_re_pre_post(dtr, ring, rx_priv); vxge_post(&dtr_cnt, &first_dtr, dtr, ringh); ring->stats.rx_dropped++; break; } } else { vxge_re_pre_post(dtr, ring, rx_priv); vxge_post(&dtr_cnt, &first_dtr, dtr, ringh); ring->stats.rx_dropped++; break; } } else { struct sk_buff *skb_up; skb_up = netdev_alloc_skb(dev, pkt_length + VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN); if (skb_up != NULL) { skb_reserve(skb_up, VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN); pci_dma_sync_single_for_cpu(ring->pdev, data_dma, data_size, PCI_DMA_FROMDEVICE); vxge_debug_mem(VXGE_TRACE, "%s: %s:%d skb_up = %p", ring->ndev->name, __func__, __LINE__, skb); memcpy(skb_up->data, skb->data, pkt_length); vxge_re_pre_post(dtr, ring, rx_priv); vxge_post(&dtr_cnt, &first_dtr, dtr, ringh); /* will netif_rx small SKB instead */ skb = skb_up; skb_put(skb, pkt_length); } else { vxge_re_pre_post(dtr, ring, rx_priv); vxge_post(&dtr_cnt, &first_dtr, dtr, ringh); vxge_debug_rx(VXGE_ERR, "%s: vxge_rx_1b_compl: out of " "memory", dev->name); ring->stats.skb_alloc_fail++; break; } } if ((ext_info.proto & VXGE_HW_FRAME_PROTO_TCP_OR_UDP) && !(ext_info.proto & VXGE_HW_FRAME_PROTO_IP_FRAG) && ring->rx_csum && /* Offload Rx side CSUM */ ext_info.l3_cksum == VXGE_HW_L3_CKSUM_OK && ext_info.l4_cksum == VXGE_HW_L4_CKSUM_OK) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; vxge_rx_complete(ring, skb, ext_info.vlan, pkt_length, &ext_info); ring->budget--; ring->pkts_processed++; if (!ring->budget) break; } while (vxge_hw_ring_rxd_next_completed(ringh, &dtr, &t_code) == VXGE_HW_OK); if (first_dtr) vxge_hw_ring_rxd_post_post_wmb(ringh, first_dtr); vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); return VXGE_HW_OK; } /* * vxge_xmit_compl * * If an interrupt was raised to indicate DMA complete of the Tx packet, * this function is called. It identifies the last TxD whose buffer was * freed and frees all skbs whose data have already DMA'ed into the NICs * internal memory. */ enum vxge_hw_status vxge_xmit_compl(struct __vxge_hw_fifo *fifo_hw, void *dtr, enum vxge_hw_fifo_tcode t_code, void *userdata, struct sk_buff ***skb_ptr, int nr_skb, int *more) { struct vxge_fifo *fifo = (struct vxge_fifo *)userdata; struct sk_buff *skb, **done_skb = *skb_ptr; int pkt_cnt = 0; vxge_debug_entryexit(VXGE_TRACE, "%s:%d Entered....", __func__, __LINE__); do { int frg_cnt; skb_frag_t *frag; int i = 0, j; struct vxge_tx_priv *txd_priv = vxge_hw_fifo_txdl_private_get(dtr); skb = txd_priv->skb; frg_cnt = skb_shinfo(skb)->nr_frags; frag = &skb_shinfo(skb)->frags[0]; vxge_debug_tx(VXGE_TRACE, "%s: %s:%d fifo_hw = %p dtr = %p " "tcode = 0x%x", fifo->ndev->name, __func__, __LINE__, fifo_hw, dtr, t_code); /* check skb validity */ vxge_assert(skb); vxge_debug_tx(VXGE_TRACE, "%s: %s:%d skb = %p itxd_priv = %p frg_cnt = %d", fifo->ndev->name, __func__, __LINE__, skb, txd_priv, frg_cnt); if (unlikely(t_code)) { fifo->stats.tx_errors++; vxge_debug_tx(VXGE_ERR, "%s: tx: dtr %p completed due to " "error t_code %01x", fifo->ndev->name, dtr, t_code); vxge_hw_fifo_handle_tcode(fifo_hw, dtr, t_code); } /* for unfragmented skb */ pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++], skb_headlen(skb), PCI_DMA_TODEVICE); for (j = 0; j < frg_cnt; j++) { pci_unmap_page(fifo->pdev, txd_priv->dma_buffers[i++], frag->size, PCI_DMA_TODEVICE); frag += 1; } vxge_hw_fifo_txdl_free(fifo_hw, dtr); /* Updating the statistics block */ fifo->stats.tx_frms++; fifo->stats.tx_bytes += skb->len; *done_skb++ = skb; if (--nr_skb <= 0) { *more = 1; break; } pkt_cnt++; if (pkt_cnt > fifo->indicate_max_pkts) break; } while (vxge_hw_fifo_txdl_next_completed(fifo_hw, &dtr, &t_code) == VXGE_HW_OK); *skb_ptr = done_skb; vxge_wake_tx_queue(fifo, skb); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", fifo->ndev->name, __func__, __LINE__); return VXGE_HW_OK; } /* select a vpath to transmit the packet */ static u32 vxge_get_vpath_no(struct vxgedev *vdev, struct sk_buff *skb, int *do_lock) { u16 queue_len, counter = 0; if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *ip; struct tcphdr *th; ip = ip_hdr(skb); if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) { th = (struct tcphdr *)(((unsigned char *)ip) + ip->ihl*4); queue_len = vdev->no_of_vpath; counter = (ntohs(th->source) + ntohs(th->dest)) & vdev->vpath_selector[queue_len - 1]; if (counter >= queue_len) counter = queue_len - 1; if (ip->protocol == IPPROTO_UDP) { #ifdef NETIF_F_LLTX *do_lock = 0; #endif } } } return counter; } static enum vxge_hw_status vxge_search_mac_addr_in_list( struct vxge_vpath *vpath, u64 del_mac) { struct list_head *entry, *next; list_for_each_safe(entry, next, &vpath->mac_addr_list) { if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac) return TRUE; } return FALSE; } static int vxge_learn_mac(struct vxgedev *vdev, u8 *mac_header) { struct macInfo mac_info; u8 *mac_address = NULL; u64 mac_addr = 0, vpath_vector = 0; int vpath_idx = 0; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_vpath *vpath = NULL; struct __vxge_hw_device *hldev; hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev); mac_address = (u8 *)&mac_addr; memcpy(mac_address, mac_header, ETH_ALEN); /* Is this mac address already in the list? */ for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { vpath = &vdev->vpaths[vpath_idx]; if (vxge_search_mac_addr_in_list(vpath, mac_addr)) return vpath_idx; } memset(&mac_info, 0, sizeof(struct macInfo)); memcpy(mac_info.macaddr, mac_header, ETH_ALEN); /* Any vpath has room to add mac address to its da table? */ for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { vpath = &vdev->vpaths[vpath_idx]; if (vpath->mac_addr_cnt < vpath->max_mac_addr_cnt) { /* Add this mac address to this vpath */ mac_info.vpath_no = vpath_idx; mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE; status = vxge_add_mac_addr(vdev, &mac_info); if (status != VXGE_HW_OK) return -EPERM; return vpath_idx; } } mac_info.state = VXGE_LL_MAC_ADDR_IN_LIST; vpath_idx = 0; mac_info.vpath_no = vpath_idx; /* Is the first vpath already selected as catch-basin ? */ vpath = &vdev->vpaths[vpath_idx]; if (vpath->mac_addr_cnt > vpath->max_mac_addr_cnt) { /* Add this mac address to this vpath */ if (FALSE == vxge_mac_list_add(vpath, &mac_info)) return -EPERM; return vpath_idx; } /* Select first vpath as catch-basin */ vpath_vector = vxge_mBIT(vpath->device_id); status = vxge_hw_mgmt_reg_write(vpath->vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof( struct vxge_hw_mrpcim_reg, rts_mgr_cbasin_cfg), vpath_vector); if (status != VXGE_HW_OK) { vxge_debug_tx(VXGE_ERR, "%s: Unable to set the vpath-%d in catch-basin mode", VXGE_DRIVER_NAME, vpath->device_id); return -EPERM; } if (FALSE == vxge_mac_list_add(vpath, &mac_info)) return -EPERM; return vpath_idx; } /** * vxge_xmit * @skb : the socket buffer containing the Tx data. * @dev : device pointer. * * This function is the Tx entry point of the driver. Neterion NIC supports * certain protocol assist features on Tx side, namely CSO, S/G, LSO. * NOTE: when device cant queue the pkt, just the trans_start variable will * not be upadted. */ static netdev_tx_t vxge_xmit(struct sk_buff *skb, struct net_device *dev) { struct vxge_fifo *fifo = NULL; void *dtr_priv; void *dtr = NULL; struct vxgedev *vdev = NULL; enum vxge_hw_status status; int frg_cnt, first_frg_len; skb_frag_t *frag; int i = 0, j = 0, avail; u64 dma_pointer; struct vxge_tx_priv *txdl_priv = NULL; struct __vxge_hw_fifo *fifo_hw; int offload_type; unsigned long flags = 0; int vpath_no = 0; int do_spin_tx_lock = 1; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", dev->name, __func__, __LINE__); /* A buffer with no data will be dropped */ if (unlikely(skb->len <= 0)) { vxge_debug_tx(VXGE_ERR, "%s: Buffer has no data..", dev->name); dev_kfree_skb(skb); return NETDEV_TX_OK; } vdev = (struct vxgedev *)netdev_priv(dev); if (unlikely(!is_vxge_card_up(vdev))) { vxge_debug_tx(VXGE_ERR, "%s: vdev not initialized", dev->name); dev_kfree_skb(skb); return NETDEV_TX_OK; } if (vdev->config.addr_learn_en) { vpath_no = vxge_learn_mac(vdev, skb->data + ETH_ALEN); if (vpath_no == -EPERM) { vxge_debug_tx(VXGE_ERR, "%s: Failed to store the mac address", dev->name); dev_kfree_skb(skb); return NETDEV_TX_OK; } } if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING) vpath_no = skb_get_queue_mapping(skb); else if (vdev->config.tx_steering_type == TX_PORT_STEERING) vpath_no = vxge_get_vpath_no(vdev, skb, &do_spin_tx_lock); vxge_debug_tx(VXGE_TRACE, "%s: vpath_no= %d", dev->name, vpath_no); if (vpath_no >= vdev->no_of_vpath) vpath_no = 0; fifo = &vdev->vpaths[vpath_no].fifo; fifo_hw = fifo->handle; if (do_spin_tx_lock) spin_lock_irqsave(&fifo->tx_lock, flags); else { if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) return NETDEV_TX_LOCKED; } if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING) { if (netif_subqueue_stopped(dev, skb)) { spin_unlock_irqrestore(&fifo->tx_lock, flags); return NETDEV_TX_BUSY; } } else if (unlikely(fifo->queue_state == VPATH_QUEUE_STOP)) { if (netif_queue_stopped(dev)) { spin_unlock_irqrestore(&fifo->tx_lock, flags); return NETDEV_TX_BUSY; } } avail = vxge_hw_fifo_free_txdl_count_get(fifo_hw); if (avail == 0) { vxge_debug_tx(VXGE_ERR, "%s: No free TXDs available", dev->name); fifo->stats.txd_not_free++; vxge_stop_tx_queue(fifo); goto _exit2; } /* Last TXD? Stop tx queue to avoid dropping packets. TX * completion will resume the queue. */ if (avail == 1) vxge_stop_tx_queue(fifo); status = vxge_hw_fifo_txdl_reserve(fifo_hw, &dtr, &dtr_priv); if (unlikely(status != VXGE_HW_OK)) { vxge_debug_tx(VXGE_ERR, "%s: Out of descriptors .", dev->name); fifo->stats.txd_out_of_desc++; vxge_stop_tx_queue(fifo); goto _exit2; } vxge_debug_tx(VXGE_TRACE, "%s: %s:%d fifo_hw = %p dtr = %p dtr_priv = %p", dev->name, __func__, __LINE__, fifo_hw, dtr, dtr_priv); if (vdev->vlgrp && vlan_tx_tag_present(skb)) { u16 vlan_tag = vlan_tx_tag_get(skb); vxge_hw_fifo_txdl_vlan_set(dtr, vlan_tag); } first_frg_len = skb_headlen(skb); dma_pointer = pci_map_single(fifo->pdev, skb->data, first_frg_len, PCI_DMA_TODEVICE); if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer))) { vxge_hw_fifo_txdl_free(fifo_hw, dtr); vxge_stop_tx_queue(fifo); fifo->stats.pci_map_fail++; goto _exit2; } txdl_priv = vxge_hw_fifo_txdl_private_get(dtr); txdl_priv->skb = skb; txdl_priv->dma_buffers[j] = dma_pointer; frg_cnt = skb_shinfo(skb)->nr_frags; vxge_debug_tx(VXGE_TRACE, "%s: %s:%d skb = %p txdl_priv = %p " "frag_cnt = %d dma_pointer = 0x%llx", dev->name, __func__, __LINE__, skb, txdl_priv, frg_cnt, (unsigned long long)dma_pointer); vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer, first_frg_len); frag = &skb_shinfo(skb)->frags[0]; for (i = 0; i < frg_cnt; i++) { /* ignore 0 length fragment */ if (!frag->size) continue; dma_pointer = (u64)pci_map_page(fifo->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer))) goto _exit0; vxge_debug_tx(VXGE_TRACE, "%s: %s:%d frag = %d dma_pointer = 0x%llx", dev->name, __func__, __LINE__, i, (unsigned long long)dma_pointer); txdl_priv->dma_buffers[j] = dma_pointer; vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer, frag->size); frag += 1; } offload_type = vxge_offload_type(skb); if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { int mss = vxge_tcp_mss(skb); if (mss) { vxge_debug_tx(VXGE_TRACE, "%s: %s:%d mss = %d", dev->name, __func__, __LINE__, mss); vxge_hw_fifo_txdl_mss_set(dtr, mss); } else { vxge_assert(skb->len <= dev->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE); vxge_assert(0); goto _exit1; } } if (skb->ip_summed == CHECKSUM_PARTIAL) vxge_hw_fifo_txdl_cksum_set_bits(dtr, VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN | VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN | VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN); vxge_hw_fifo_txdl_post(fifo_hw, dtr); #ifdef NETIF_F_LLTX dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */ #endif spin_unlock_irqrestore(&fifo->tx_lock, flags); VXGE_COMPLETE_VPATH_TX(fifo); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", dev->name, __func__, __LINE__); return NETDEV_TX_OK; _exit0: vxge_debug_tx(VXGE_TRACE, "%s: pci_map_page failed", dev->name); _exit1: j = 0; frag = &skb_shinfo(skb)->frags[0]; pci_unmap_single(fifo->pdev, txdl_priv->dma_buffers[j++], skb_headlen(skb), PCI_DMA_TODEVICE); for (; j < i; j++) { pci_unmap_page(fifo->pdev, txdl_priv->dma_buffers[j], frag->size, PCI_DMA_TODEVICE); frag += 1; } vxge_hw_fifo_txdl_free(fifo_hw, dtr); _exit2: dev_kfree_skb(skb); spin_unlock_irqrestore(&fifo->tx_lock, flags); VXGE_COMPLETE_VPATH_TX(fifo); return NETDEV_TX_OK; } /* * vxge_rx_term * * Function will be called by hw function to abort all outstanding receive * descriptors. */ static void vxge_rx_term(void *dtrh, enum vxge_hw_rxd_state state, void *userdata) { struct vxge_ring *ring = (struct vxge_ring *)userdata; struct vxge_rx_priv *rx_priv = vxge_hw_ring_rxd_private_get(dtrh); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", ring->ndev->name, __func__, __LINE__); if (state != VXGE_HW_RXD_STATE_POSTED) return; pci_unmap_single(ring->pdev, rx_priv->data_dma, rx_priv->data_size, PCI_DMA_FROMDEVICE); dev_kfree_skb(rx_priv->skb); rx_priv->skb_data = NULL; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__); } /* * vxge_tx_term * * Function will be called to abort all outstanding tx descriptors */ static void vxge_tx_term(void *dtrh, enum vxge_hw_txdl_state state, void *userdata) { struct vxge_fifo *fifo = (struct vxge_fifo *)userdata; skb_frag_t *frag; int i = 0, j, frg_cnt; struct vxge_tx_priv *txd_priv = vxge_hw_fifo_txdl_private_get(dtrh); struct sk_buff *skb = txd_priv->skb; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); if (state != VXGE_HW_TXDL_STATE_POSTED) return; /* check skb validity */ vxge_assert(skb); frg_cnt = skb_shinfo(skb)->nr_frags; frag = &skb_shinfo(skb)->frags[0]; /* for unfragmented skb */ pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++], skb_headlen(skb), PCI_DMA_TODEVICE); for (j = 0; j < frg_cnt; j++) { pci_unmap_page(fifo->pdev, txd_priv->dma_buffers[i++], frag->size, PCI_DMA_TODEVICE); frag += 1; } dev_kfree_skb(skb); vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); } /** * vxge_set_multicast * @dev: pointer to the device structure * * Entry point for multicast address enable/disable * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. This also gets * called to set/reset promiscuous mode. Depending on the deivce flag, we * determine, if multicast address must be enabled or if promiscuous mode * is to be disabled etc. */ static void vxge_set_multicast(struct net_device *dev) { struct dev_mc_list *mclist; struct vxgedev *vdev; int i, mcast_cnt = 0; struct __vxge_hw_device *hldev; enum vxge_hw_status status = VXGE_HW_OK; struct macInfo mac_info; int vpath_idx = 0; struct vxge_mac_addrs *mac_entry; struct list_head *list_head; struct list_head *entry, *next; u8 *mac_address = NULL; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); hldev = (struct __vxge_hw_device *)vdev->devh; if (unlikely(!is_vxge_card_up(vdev))) return; if ((dev->flags & IFF_ALLMULTI) && (!vdev->all_multi_flg)) { for (i = 0; i < vdev->no_of_vpath; i++) { vxge_assert(vdev->vpaths[i].is_open); status = vxge_hw_vpath_mcast_enable( vdev->vpaths[i].handle); vdev->all_multi_flg = 1; } } else if ((dev->flags & IFF_ALLMULTI) && (vdev->all_multi_flg)) { for (i = 0; i < vdev->no_of_vpath; i++) { vxge_assert(vdev->vpaths[i].is_open); status = vxge_hw_vpath_mcast_disable( vdev->vpaths[i].handle); vdev->all_multi_flg = 1; } } if (status != VXGE_HW_OK) vxge_debug_init(VXGE_ERR, "failed to %s multicast, status %d", dev->flags & IFF_ALLMULTI ? "enable" : "disable", status); if (!vdev->config.addr_learn_en) { if (dev->flags & IFF_PROMISC) { for (i = 0; i < vdev->no_of_vpath; i++) { vxge_assert(vdev->vpaths[i].is_open); status = vxge_hw_vpath_promisc_enable( vdev->vpaths[i].handle); } } else { for (i = 0; i < vdev->no_of_vpath; i++) { vxge_assert(vdev->vpaths[i].is_open); status = vxge_hw_vpath_promisc_disable( vdev->vpaths[i].handle); } } } memset(&mac_info, 0, sizeof(struct macInfo)); /* Update individual M_CAST address list */ if ((!vdev->all_multi_flg) && netdev_mc_count(dev)) { mcast_cnt = vdev->vpaths[0].mcast_addr_cnt; list_head = &vdev->vpaths[0].mac_addr_list; if ((netdev_mc_count(dev) + (vdev->vpaths[0].mac_addr_cnt - mcast_cnt)) > vdev->vpaths[0].max_mac_addr_cnt) goto _set_all_mcast; /* Delete previous MC's */ for (i = 0; i < mcast_cnt; i++) { if (!list_empty(list_head)) mac_entry = (struct vxge_mac_addrs *) list_first_entry(list_head, struct vxge_mac_addrs, item); list_for_each_safe(entry, next, list_head) { mac_entry = (struct vxge_mac_addrs *) entry; /* Copy the mac address to delete */ mac_address = (u8 *)&mac_entry->macaddr; memcpy(mac_info.macaddr, mac_address, ETH_ALEN); /* Is this a multicast address */ if (0x01 & mac_info.macaddr[0]) { for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { mac_info.vpath_no = vpath_idx; status = vxge_del_mac_addr( vdev, &mac_info); } } } } /* Add new ones */ netdev_for_each_mc_addr(mclist, dev) { memcpy(mac_info.macaddr, mclist->dmi_addr, ETH_ALEN); for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { mac_info.vpath_no = vpath_idx; mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE; status = vxge_add_mac_addr(vdev, &mac_info); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s:%d Setting individual" "multicast address failed", __func__, __LINE__); goto _set_all_mcast; } } } return; _set_all_mcast: mcast_cnt = vdev->vpaths[0].mcast_addr_cnt; /* Delete previous MC's */ for (i = 0; i < mcast_cnt; i++) { list_for_each_safe(entry, next, list_head) { mac_entry = (struct vxge_mac_addrs *) entry; /* Copy the mac address to delete */ mac_address = (u8 *)&mac_entry->macaddr; memcpy(mac_info.macaddr, mac_address, ETH_ALEN); /* Is this a multicast address */ if (0x01 & mac_info.macaddr[0]) break; } for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { mac_info.vpath_no = vpath_idx; status = vxge_del_mac_addr(vdev, &mac_info); } } /* Enable all multicast */ for (i = 0; i < vdev->no_of_vpath; i++) { vxge_assert(vdev->vpaths[i].is_open); status = vxge_hw_vpath_mcast_enable( vdev->vpaths[i].handle); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s:%d Enabling all multicasts failed", __func__, __LINE__); } vdev->all_multi_flg = 1; } dev->flags |= IFF_ALLMULTI; } vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); } /** * vxge_set_mac_addr * @dev: pointer to the device structure * * Update entry "0" (default MAC addr) */ static int vxge_set_mac_addr(struct net_device *dev, void *p) { struct sockaddr *addr = p; struct vxgedev *vdev; struct __vxge_hw_device *hldev; enum vxge_hw_status status = VXGE_HW_OK; struct macInfo mac_info_new, mac_info_old; int vpath_idx = 0; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); hldev = vdev->devh; if (!is_valid_ether_addr(addr->sa_data)) return -EINVAL; memset(&mac_info_new, 0, sizeof(struct macInfo)); memset(&mac_info_old, 0, sizeof(struct macInfo)); vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); /* Get the old address */ memcpy(mac_info_old.macaddr, dev->dev_addr, dev->addr_len); /* Copy the new address */ memcpy(mac_info_new.macaddr, addr->sa_data, dev->addr_len); /* First delete the old mac address from all the vpaths as we can't specify the index while adding new mac address */ for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { struct vxge_vpath *vpath = &vdev->vpaths[vpath_idx]; if (!vpath->is_open) { /* This can happen when this interface is added/removed to the bonding interface. Delete this station address from the linked list */ vxge_mac_list_del(vpath, &mac_info_old); /* Add this new address to the linked list for later restoring */ vxge_mac_list_add(vpath, &mac_info_new); continue; } /* Delete the station address */ mac_info_old.vpath_no = vpath_idx; status = vxge_del_mac_addr(vdev, &mac_info_old); } if (unlikely(!is_vxge_card_up(vdev))) { memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); return VXGE_HW_OK; } /* Set this mac address to all the vpaths */ for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) { mac_info_new.vpath_no = vpath_idx; mac_info_new.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE; status = vxge_add_mac_addr(vdev, &mac_info_new); if (status != VXGE_HW_OK) return -EINVAL; } memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); return status; } /* * vxge_vpath_intr_enable * @vdev: pointer to vdev * @vp_id: vpath for which to enable the interrupts * * Enables the interrupts for the vpath */ void vxge_vpath_intr_enable(struct vxgedev *vdev, int vp_id) { struct vxge_vpath *vpath = &vdev->vpaths[vp_id]; int msix_id, alarm_msix_id; int tim_msix_id[4] = {[0 ...3] = 0}; vxge_hw_vpath_intr_enable(vpath->handle); if (vdev->config.intr_type == INTA) vxge_hw_vpath_inta_unmask_tx_rx(vpath->handle); else { msix_id = vp_id * VXGE_HW_VPATH_MSIX_ACTIVE; alarm_msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2; tim_msix_id[0] = msix_id; tim_msix_id[1] = msix_id + 1; vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id, alarm_msix_id); vxge_hw_vpath_msix_unmask(vpath->handle, msix_id); vxge_hw_vpath_msix_unmask(vpath->handle, msix_id + 1); /* enable the alarm vector */ vxge_hw_vpath_msix_unmask(vpath->handle, alarm_msix_id); } } /* * vxge_vpath_intr_disable * @vdev: pointer to vdev * @vp_id: vpath for which to disable the interrupts * * Disables the interrupts for the vpath */ void vxge_vpath_intr_disable(struct vxgedev *vdev, int vp_id) { struct vxge_vpath *vpath = &vdev->vpaths[vp_id]; int msix_id; vxge_hw_vpath_intr_disable(vpath->handle); if (vdev->config.intr_type == INTA) vxge_hw_vpath_inta_mask_tx_rx(vpath->handle); else { msix_id = vp_id * VXGE_HW_VPATH_MSIX_ACTIVE; vxge_hw_vpath_msix_mask(vpath->handle, msix_id); vxge_hw_vpath_msix_mask(vpath->handle, msix_id + 1); /* disable the alarm vector */ msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2; vxge_hw_vpath_msix_mask(vpath->handle, msix_id); } } /* * vxge_reset_vpath * @vdev: pointer to vdev * @vp_id: vpath to reset * * Resets the vpath */ static int vxge_reset_vpath(struct vxgedev *vdev, int vp_id) { enum vxge_hw_status status = VXGE_HW_OK; int ret = 0; /* check if device is down already */ if (unlikely(!is_vxge_card_up(vdev))) return 0; /* is device reset already scheduled */ if (test_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) return 0; if (vdev->vpaths[vp_id].handle) { if (vxge_hw_vpath_reset(vdev->vpaths[vp_id].handle) == VXGE_HW_OK) { if (is_vxge_card_up(vdev) && vxge_hw_vpath_recover_from_reset( vdev->vpaths[vp_id].handle) != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_recover_from_reset" "failed for vpath:%d", vp_id); return status; } } else { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_reset failed for" "vpath:%d", vp_id); return status; } } else return VXGE_HW_FAIL; vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]); vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]); /* Enable all broadcast */ vxge_hw_vpath_bcast_enable(vdev->vpaths[vp_id].handle); /* Enable the interrupts */ vxge_vpath_intr_enable(vdev, vp_id); smp_wmb(); /* Enable the flow of traffic through the vpath */ vxge_hw_vpath_enable(vdev->vpaths[vp_id].handle); smp_wmb(); vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[vp_id].handle); vdev->vpaths[vp_id].ring.last_status = VXGE_HW_OK; /* Vpath reset done */ clear_bit(vp_id, &vdev->vp_reset); /* Start the vpath queue */ vxge_wake_tx_queue(&vdev->vpaths[vp_id].fifo, NULL); return ret; } static int do_vxge_reset(struct vxgedev *vdev, int event) { enum vxge_hw_status status; int ret = 0, vp_id, i; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET)) { /* check if device is down already */ if (unlikely(!is_vxge_card_up(vdev))) return 0; /* is reset already scheduled */ if (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) return 0; } if (event == VXGE_LL_FULL_RESET) { /* wait for all the vpath reset to complete */ for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) { while (test_bit(vp_id, &vdev->vp_reset)) msleep(50); } /* if execution mode is set to debug, don't reset the adapter */ if (unlikely(vdev->exec_mode)) { vxge_debug_init(VXGE_ERR, "%s: execution mode is debug, returning..", vdev->ndev->name); clear_bit(__VXGE_STATE_CARD_UP, &vdev->state); vxge_stop_all_tx_queue(vdev); return 0; } } if (event == VXGE_LL_FULL_RESET) { vxge_hw_device_intr_disable(vdev->devh); switch (vdev->cric_err_event) { case VXGE_HW_EVENT_UNKNOWN: vxge_stop_all_tx_queue(vdev); vxge_debug_init(VXGE_ERR, "fatal: %s: Disabling device due to" "unknown error", vdev->ndev->name); ret = -EPERM; goto out; case VXGE_HW_EVENT_RESET_START: break; case VXGE_HW_EVENT_RESET_COMPLETE: case VXGE_HW_EVENT_LINK_DOWN: case VXGE_HW_EVENT_LINK_UP: case VXGE_HW_EVENT_ALARM_CLEARED: case VXGE_HW_EVENT_ECCERR: case VXGE_HW_EVENT_MRPCIM_ECCERR: ret = -EPERM; goto out; case VXGE_HW_EVENT_FIFO_ERR: case VXGE_HW_EVENT_VPATH_ERR: break; case VXGE_HW_EVENT_CRITICAL_ERR: vxge_stop_all_tx_queue(vdev); vxge_debug_init(VXGE_ERR, "fatal: %s: Disabling device due to" "serious error", vdev->ndev->name); /* SOP or device reset required */ /* This event is not currently used */ ret = -EPERM; goto out; case VXGE_HW_EVENT_SERR: vxge_stop_all_tx_queue(vdev); vxge_debug_init(VXGE_ERR, "fatal: %s: Disabling device due to" "serious error", vdev->ndev->name); ret = -EPERM; goto out; case VXGE_HW_EVENT_SRPCIM_SERR: case VXGE_HW_EVENT_MRPCIM_SERR: ret = -EPERM; goto out; case VXGE_HW_EVENT_SLOT_FREEZE: vxge_stop_all_tx_queue(vdev); vxge_debug_init(VXGE_ERR, "fatal: %s: Disabling device due to" "slot freeze", vdev->ndev->name); ret = -EPERM; goto out; default: break; } } if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET)) vxge_stop_all_tx_queue(vdev); if (event == VXGE_LL_FULL_RESET) { status = vxge_reset_all_vpaths(vdev); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "fatal: %s: can not reset vpaths", vdev->ndev->name); ret = -EPERM; goto out; } } if (event == VXGE_LL_COMPL_RESET) { for (i = 0; i < vdev->no_of_vpath; i++) if (vdev->vpaths[i].handle) { if (vxge_hw_vpath_recover_from_reset( vdev->vpaths[i].handle) != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_recover_" "from_reset failed for vpath: " "%d", i); ret = -EPERM; goto out; } } else { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_reset failed for " "vpath:%d", i); ret = -EPERM; goto out; } } if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET)) { /* Reprogram the DA table with populated mac addresses */ for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) { vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]); vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]); } /* enable vpath interrupts */ for (i = 0; i < vdev->no_of_vpath; i++) vxge_vpath_intr_enable(vdev, i); vxge_hw_device_intr_enable(vdev->devh); smp_wmb(); /* Indicate card up */ set_bit(__VXGE_STATE_CARD_UP, &vdev->state); /* Get the traffic to flow through the vpaths */ for (i = 0; i < vdev->no_of_vpath; i++) { vxge_hw_vpath_enable(vdev->vpaths[i].handle); smp_wmb(); vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle); } vxge_wake_all_tx_queue(vdev); } out: vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); /* Indicate reset done */ if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET)) clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state); return ret; } /* * vxge_reset * @vdev: pointer to ll device * * driver may reset the chip on events of serr, eccerr, etc */ int vxge_reset(struct vxgedev *vdev) { do_vxge_reset(vdev, VXGE_LL_FULL_RESET); return 0; } /** * vxge_poll - Receive handler when Receive Polling is used. * @dev: pointer to the device structure. * @budget: Number of packets budgeted to be processed in this iteration. * * This function comes into picture only if Receive side is being handled * through polling (called NAPI in linux). It mostly does what the normal * Rx interrupt handler does in terms of descriptor and packet processing * but not in an interrupt context. Also it will process a specified number * of packets at most in one iteration. This value is passed down by the * kernel as the function argument 'budget'. */ static int vxge_poll_msix(struct napi_struct *napi, int budget) { struct vxge_ring *ring = container_of(napi, struct vxge_ring, napi); int budget_org = budget; ring->budget = budget; vxge_hw_vpath_poll_rx(ring->handle); if (ring->pkts_processed < budget_org) { napi_complete(napi); /* Re enable the Rx interrupts for the vpath */ vxge_hw_channel_msix_unmask( (struct __vxge_hw_channel *)ring->handle, ring->rx_vector_no); } return ring->pkts_processed; } static int vxge_poll_inta(struct napi_struct *napi, int budget) { struct vxgedev *vdev = container_of(napi, struct vxgedev, napi); int pkts_processed = 0; int i; int budget_org = budget; struct vxge_ring *ring; struct __vxge_hw_device *hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev); for (i = 0; i < vdev->no_of_vpath; i++) { ring = &vdev->vpaths[i].ring; ring->budget = budget; vxge_hw_vpath_poll_rx(ring->handle); pkts_processed += ring->pkts_processed; budget -= ring->pkts_processed; if (budget <= 0) break; } VXGE_COMPLETE_ALL_TX(vdev); if (pkts_processed < budget_org) { napi_complete(napi); /* Re enable the Rx interrupts for the ring */ vxge_hw_device_unmask_all(hldev); vxge_hw_device_flush_io(hldev); } return pkts_processed; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * vxge_netpoll - netpoll event handler entry point * @dev : pointer to the device structure. * Description: * This function will be called by upper layer to check for events on the * interface in situations where interrupts are disabled. It is used for * specific in-kernel networking tasks, such as remote consoles and kernel * debugging over the network (example netdump in RedHat). */ static void vxge_netpoll(struct net_device *dev) { struct __vxge_hw_device *hldev; struct vxgedev *vdev; vdev = (struct vxgedev *)netdev_priv(dev); hldev = (struct __vxge_hw_device *)pci_get_drvdata(vdev->pdev); vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); if (pci_channel_offline(vdev->pdev)) return; disable_irq(dev->irq); vxge_hw_device_clear_tx_rx(hldev); vxge_hw_device_clear_tx_rx(hldev); VXGE_COMPLETE_ALL_RX(vdev); VXGE_COMPLETE_ALL_TX(vdev); enable_irq(dev->irq); vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); return; } #endif /* RTH configuration */ static enum vxge_hw_status vxge_rth_configure(struct vxgedev *vdev) { enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_rth_hash_types hash_types; u8 itable[256] = {0}; /* indirection table */ u8 mtable[256] = {0}; /* CPU to vpath mapping */ int index; /* * Filling * - itable with bucket numbers * - mtable with bucket-to-vpath mapping */ for (index = 0; index < (1 << vdev->config.rth_bkt_sz); index++) { itable[index] = index; mtable[index] = index % vdev->no_of_vpath; } /* Fill RTH hash types */ hash_types.hash_type_tcpipv4_en = vdev->config.rth_hash_type_tcpipv4; hash_types.hash_type_ipv4_en = vdev->config.rth_hash_type_ipv4; hash_types.hash_type_tcpipv6_en = vdev->config.rth_hash_type_tcpipv6; hash_types.hash_type_ipv6_en = vdev->config.rth_hash_type_ipv6; hash_types.hash_type_tcpipv6ex_en = vdev->config.rth_hash_type_tcpipv6ex; hash_types.hash_type_ipv6ex_en = vdev->config.rth_hash_type_ipv6ex; /* set indirection table, bucket-to-vpath mapping */ status = vxge_hw_vpath_rts_rth_itable_set(vdev->vp_handles, vdev->no_of_vpath, mtable, itable, vdev->config.rth_bkt_sz); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "RTH indirection table configuration failed " "for vpath:%d", vdev->vpaths[0].device_id); return status; } /* * Because the itable_set() method uses the active_table field * for the target virtual path the RTH config should be updated * for all VPATHs. The h/w only uses the lowest numbered VPATH * when steering frames. */ for (index = 0; index < vdev->no_of_vpath; index++) { status = vxge_hw_vpath_rts_rth_set( vdev->vpaths[index].handle, vdev->config.rth_algorithm, &hash_types, vdev->config.rth_bkt_sz); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "RTH configuration failed for vpath:%d", vdev->vpaths[index].device_id); return status; } } return status; } int vxge_mac_list_add(struct vxge_vpath *vpath, struct macInfo *mac) { struct vxge_mac_addrs *new_mac_entry; u8 *mac_address = NULL; if (vpath->mac_addr_cnt >= VXGE_MAX_LEARN_MAC_ADDR_CNT) return TRUE; new_mac_entry = kzalloc(sizeof(struct vxge_mac_addrs), GFP_ATOMIC); if (!new_mac_entry) { vxge_debug_mem(VXGE_ERR, "%s: memory allocation failed", VXGE_DRIVER_NAME); return FALSE; } list_add(&new_mac_entry->item, &vpath->mac_addr_list); /* Copy the new mac address to the list */ mac_address = (u8 *)&new_mac_entry->macaddr; memcpy(mac_address, mac->macaddr, ETH_ALEN); new_mac_entry->state = mac->state; vpath->mac_addr_cnt++; /* Is this a multicast address */ if (0x01 & mac->macaddr[0]) vpath->mcast_addr_cnt++; return TRUE; } /* Add a mac address to DA table */ enum vxge_hw_status vxge_add_mac_addr(struct vxgedev *vdev, struct macInfo *mac) { enum vxge_hw_status status = VXGE_HW_OK; struct vxge_vpath *vpath; enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode; if (0x01 & mac->macaddr[0]) /* multicast address */ duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE; else duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE; vpath = &vdev->vpaths[mac->vpath_no]; status = vxge_hw_vpath_mac_addr_add(vpath->handle, mac->macaddr, mac->macmask, duplicate_mode); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "DA config add entry failed for vpath:%d", vpath->device_id); } else if (FALSE == vxge_mac_list_add(vpath, mac)) status = -EPERM; return status; } int vxge_mac_list_del(struct vxge_vpath *vpath, struct macInfo *mac) { struct list_head *entry, *next; u64 del_mac = 0; u8 *mac_address = (u8 *) (&del_mac); /* Copy the mac address to delete from the list */ memcpy(mac_address, mac->macaddr, ETH_ALEN); list_for_each_safe(entry, next, &vpath->mac_addr_list) { if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac) { list_del(entry); kfree((struct vxge_mac_addrs *)entry); vpath->mac_addr_cnt--; /* Is this a multicast address */ if (0x01 & mac->macaddr[0]) vpath->mcast_addr_cnt--; return TRUE; } } return FALSE; } /* delete a mac address from DA table */ enum vxge_hw_status vxge_del_mac_addr(struct vxgedev *vdev, struct macInfo *mac) { enum vxge_hw_status status = VXGE_HW_OK; struct vxge_vpath *vpath; vpath = &vdev->vpaths[mac->vpath_no]; status = vxge_hw_vpath_mac_addr_delete(vpath->handle, mac->macaddr, mac->macmask); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "DA config delete entry failed for vpath:%d", vpath->device_id); } else vxge_mac_list_del(vpath, mac); return status; } /* list all mac addresses from DA table */ enum vxge_hw_status static vxge_search_mac_addr_in_da_table(struct vxge_vpath *vpath, struct macInfo *mac) { enum vxge_hw_status status = VXGE_HW_OK; unsigned char macmask[ETH_ALEN]; unsigned char macaddr[ETH_ALEN]; status = vxge_hw_vpath_mac_addr_get(vpath->handle, macaddr, macmask); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "DA config list entry failed for vpath:%d", vpath->device_id); return status; } while (memcmp(mac->macaddr, macaddr, ETH_ALEN)) { status = vxge_hw_vpath_mac_addr_get_next(vpath->handle, macaddr, macmask); if (status != VXGE_HW_OK) break; } return status; } /* Store all vlan ids from the list to the vid table */ enum vxge_hw_status vxge_restore_vpath_vid_table(struct vxge_vpath *vpath) { enum vxge_hw_status status = VXGE_HW_OK; struct vxgedev *vdev = vpath->vdev; u16 vid; if (vdev->vlgrp && vpath->is_open) { for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { if (!vlan_group_get_device(vdev->vlgrp, vid)) continue; /* Add these vlan to the vid table */ status = vxge_hw_vpath_vid_add(vpath->handle, vid); } } return status; } /* Store all mac addresses from the list to the DA table */ enum vxge_hw_status vxge_restore_vpath_mac_addr(struct vxge_vpath *vpath) { enum vxge_hw_status status = VXGE_HW_OK; struct macInfo mac_info; u8 *mac_address = NULL; struct list_head *entry, *next; memset(&mac_info, 0, sizeof(struct macInfo)); if (vpath->is_open) { list_for_each_safe(entry, next, &vpath->mac_addr_list) { mac_address = (u8 *)& ((struct vxge_mac_addrs *)entry)->macaddr; memcpy(mac_info.macaddr, mac_address, ETH_ALEN); ((struct vxge_mac_addrs *)entry)->state = VXGE_LL_MAC_ADDR_IN_DA_TABLE; /* does this mac address already exist in da table? */ status = vxge_search_mac_addr_in_da_table(vpath, &mac_info); if (status != VXGE_HW_OK) { /* Add this mac address to the DA table */ status = vxge_hw_vpath_mac_addr_add( vpath->handle, mac_info.macaddr, mac_info.macmask, VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "DA add entry failed for vpath:%d", vpath->device_id); ((struct vxge_mac_addrs *)entry)->state = VXGE_LL_MAC_ADDR_IN_LIST; } } } } return status; } /* reset vpaths */ enum vxge_hw_status vxge_reset_all_vpaths(struct vxgedev *vdev) { int i; enum vxge_hw_status status = VXGE_HW_OK; for (i = 0; i < vdev->no_of_vpath; i++) if (vdev->vpaths[i].handle) { if (vxge_hw_vpath_reset(vdev->vpaths[i].handle) == VXGE_HW_OK) { if (is_vxge_card_up(vdev) && vxge_hw_vpath_recover_from_reset( vdev->vpaths[i].handle) != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_recover_" "from_reset failed for vpath: " "%d", i); return status; } } else { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_reset failed for " "vpath:%d", i); return status; } } return status; } /* close vpaths */ void vxge_close_vpaths(struct vxgedev *vdev, int index) { int i; for (i = index; i < vdev->no_of_vpath; i++) { if (vdev->vpaths[i].handle && vdev->vpaths[i].is_open) { vxge_hw_vpath_close(vdev->vpaths[i].handle); vdev->stats.vpaths_open--; } vdev->vpaths[i].is_open = 0; vdev->vpaths[i].handle = NULL; } } /* open vpaths */ int vxge_open_vpaths(struct vxgedev *vdev) { enum vxge_hw_status status; int i; u32 vp_id = 0; struct vxge_hw_vpath_attr attr; for (i = 0; i < vdev->no_of_vpath; i++) { vxge_assert(vdev->vpaths[i].is_configured); attr.vp_id = vdev->vpaths[i].device_id; attr.fifo_attr.callback = vxge_xmit_compl; attr.fifo_attr.txdl_term = vxge_tx_term; attr.fifo_attr.per_txdl_space = sizeof(struct vxge_tx_priv); attr.fifo_attr.userdata = (void *)&vdev->vpaths[i].fifo; attr.ring_attr.callback = vxge_rx_1b_compl; attr.ring_attr.rxd_init = vxge_rx_initial_replenish; attr.ring_attr.rxd_term = vxge_rx_term; attr.ring_attr.per_rxd_space = sizeof(struct vxge_rx_priv); attr.ring_attr.userdata = (void *)&vdev->vpaths[i].ring; vdev->vpaths[i].ring.ndev = vdev->ndev; vdev->vpaths[i].ring.pdev = vdev->pdev; status = vxge_hw_vpath_open(vdev->devh, &attr, &(vdev->vpaths[i].handle)); if (status == VXGE_HW_OK) { vdev->vpaths[i].fifo.handle = (struct __vxge_hw_fifo *)attr.fifo_attr.userdata; vdev->vpaths[i].ring.handle = (struct __vxge_hw_ring *)attr.ring_attr.userdata; vdev->vpaths[i].fifo.tx_steering_type = vdev->config.tx_steering_type; vdev->vpaths[i].fifo.ndev = vdev->ndev; vdev->vpaths[i].fifo.pdev = vdev->pdev; vdev->vpaths[i].fifo.indicate_max_pkts = vdev->config.fifo_indicate_max_pkts; vdev->vpaths[i].ring.rx_vector_no = 0; vdev->vpaths[i].ring.rx_csum = vdev->rx_csum; vdev->vpaths[i].is_open = 1; vdev->vp_handles[i] = vdev->vpaths[i].handle; vdev->vpaths[i].ring.gro_enable = vdev->config.gro_enable; vdev->vpaths[i].ring.vlan_tag_strip = vdev->vlan_tag_strip; vdev->stats.vpaths_open++; } else { vdev->stats.vpath_open_fail++; vxge_debug_init(VXGE_ERR, "%s: vpath: %d failed to open " "with status: %d", vdev->ndev->name, vdev->vpaths[i].device_id, status); vxge_close_vpaths(vdev, 0); return -EPERM; } vp_id = ((struct __vxge_hw_vpath_handle *)vdev->vpaths[i].handle)-> vpath->vp_id; vdev->vpaths_deployed |= vxge_mBIT(vp_id); } return VXGE_HW_OK; } /* * vxge_isr_napi * @irq: the irq of the device. * @dev_id: a void pointer to the hldev structure of the Titan device * @ptregs: pointer to the registers pushed on the stack. * * This function is the ISR handler of the device when napi is enabled. It * identifies the reason for the interrupt and calls the relevant service * routines. */ static irqreturn_t vxge_isr_napi(int irq, void *dev_id) { struct net_device *dev; struct __vxge_hw_device *hldev; u64 reason; enum vxge_hw_status status; struct vxgedev *vdev = (struct vxgedev *) dev_id;; vxge_debug_intr(VXGE_TRACE, "%s:%d", __func__, __LINE__); dev = vdev->ndev; hldev = (struct __vxge_hw_device *)pci_get_drvdata(vdev->pdev); if (pci_channel_offline(vdev->pdev)) return IRQ_NONE; if (unlikely(!is_vxge_card_up(vdev))) return IRQ_NONE; status = vxge_hw_device_begin_irq(hldev, vdev->exec_mode, &reason); if (status == VXGE_HW_OK) { vxge_hw_device_mask_all(hldev); if (reason & VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT( vdev->vpaths_deployed >> (64 - VXGE_HW_MAX_VIRTUAL_PATHS))) { vxge_hw_device_clear_tx_rx(hldev); napi_schedule(&vdev->napi); vxge_debug_intr(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); return IRQ_HANDLED; } else vxge_hw_device_unmask_all(hldev); } else if (unlikely((status == VXGE_HW_ERR_VPATH) || (status == VXGE_HW_ERR_CRITICAL) || (status == VXGE_HW_ERR_FIFO))) { vxge_hw_device_mask_all(hldev); vxge_hw_device_flush_io(hldev); return IRQ_HANDLED; } else if (unlikely(status == VXGE_HW_ERR_SLOT_FREEZE)) return IRQ_HANDLED; vxge_debug_intr(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); return IRQ_NONE; } #ifdef CONFIG_PCI_MSI static irqreturn_t vxge_tx_msix_handle(int irq, void *dev_id) { struct vxge_fifo *fifo = (struct vxge_fifo *)dev_id; VXGE_COMPLETE_VPATH_TX(fifo); return IRQ_HANDLED; } static irqreturn_t vxge_rx_msix_napi_handle(int irq, void *dev_id) { struct vxge_ring *ring = (struct vxge_ring *)dev_id; /* MSIX_IDX for Rx is 1 */ vxge_hw_channel_msix_mask((struct __vxge_hw_channel *)ring->handle, ring->rx_vector_no); napi_schedule(&ring->napi); return IRQ_HANDLED; } static irqreturn_t vxge_alarm_msix_handle(int irq, void *dev_id) { int i; enum vxge_hw_status status; struct vxge_vpath *vpath = (struct vxge_vpath *)dev_id; struct vxgedev *vdev = vpath->vdev; int alarm_msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2; for (i = 0; i < vdev->no_of_vpath; i++) { vxge_hw_vpath_msix_mask(vdev->vpaths[i].handle, alarm_msix_id); status = vxge_hw_vpath_alarm_process(vdev->vpaths[i].handle, vdev->exec_mode); if (status == VXGE_HW_OK) { vxge_hw_vpath_msix_unmask(vdev->vpaths[i].handle, alarm_msix_id); continue; } vxge_debug_intr(VXGE_ERR, "%s: vxge_hw_vpath_alarm_process failed %x ", VXGE_DRIVER_NAME, status); } return IRQ_HANDLED; } static int vxge_alloc_msix(struct vxgedev *vdev) { int j, i, ret = 0; int intr_cnt = 0; int alarm_msix_id = 0, msix_intr_vect = 0; vdev->intr_cnt = 0; /* Tx/Rx MSIX Vectors count */ vdev->intr_cnt = vdev->no_of_vpath * 2; /* Alarm MSIX Vectors count */ vdev->intr_cnt++; intr_cnt = (vdev->max_vpath_supported * 2) + 1; vdev->entries = kzalloc(intr_cnt * sizeof(struct msix_entry), GFP_KERNEL); if (!vdev->entries) { vxge_debug_init(VXGE_ERR, "%s: memory allocation failed", VXGE_DRIVER_NAME); return -ENOMEM; } vdev->vxge_entries = kzalloc(intr_cnt * sizeof(struct vxge_msix_entry), GFP_KERNEL); if (!vdev->vxge_entries) { vxge_debug_init(VXGE_ERR, "%s: memory allocation failed", VXGE_DRIVER_NAME); kfree(vdev->entries); return -ENOMEM; } /* Last vector in the list is used for alarm */ alarm_msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2; for (i = 0, j = 0; i < vdev->max_vpath_supported; i++) { msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE; /* Initialize the fifo vector */ vdev->entries[j].entry = msix_intr_vect; vdev->vxge_entries[j].entry = msix_intr_vect; vdev->vxge_entries[j].in_use = 0; j++; /* Initialize the ring vector */ vdev->entries[j].entry = msix_intr_vect + 1; vdev->vxge_entries[j].entry = msix_intr_vect + 1; vdev->vxge_entries[j].in_use = 0; j++; } /* Initialize the alarm vector */ vdev->entries[j].entry = alarm_msix_id; vdev->vxge_entries[j].entry = alarm_msix_id; vdev->vxge_entries[j].in_use = 0; ret = pci_enable_msix(vdev->pdev, vdev->entries, intr_cnt); /* if driver request exceeeds available irq's, request with a small * number. */ if (ret > 0) { vxge_debug_init(VXGE_ERR, "%s: MSI-X enable failed for %d vectors, available: %d", VXGE_DRIVER_NAME, intr_cnt, ret); vdev->max_vpath_supported = vdev->no_of_vpath; intr_cnt = (vdev->max_vpath_supported * 2) + 1; /* Reset the alarm vector setting */ vdev->entries[j].entry = 0; vdev->vxge_entries[j].entry = 0; /* Initialize the alarm vector with new setting */ vdev->entries[intr_cnt - 1].entry = alarm_msix_id; vdev->vxge_entries[intr_cnt - 1].entry = alarm_msix_id; vdev->vxge_entries[intr_cnt - 1].in_use = 0; ret = pci_enable_msix(vdev->pdev, vdev->entries, intr_cnt); if (!ret) vxge_debug_init(VXGE_ERR, "%s: MSI-X enabled for %d vectors", VXGE_DRIVER_NAME, intr_cnt); } if (ret) { vxge_debug_init(VXGE_ERR, "%s: MSI-X enable failed for %d vectors, ret: %d", VXGE_DRIVER_NAME, intr_cnt, ret); kfree(vdev->entries); kfree(vdev->vxge_entries); vdev->entries = NULL; vdev->vxge_entries = NULL; return -ENODEV; } return 0; } static int vxge_enable_msix(struct vxgedev *vdev) { int i, ret = 0; enum vxge_hw_status status; /* 0 - Tx, 1 - Rx */ int tim_msix_id[4]; int alarm_msix_id = 0, msix_intr_vect = 0; vdev->intr_cnt = 0; /* allocate msix vectors */ ret = vxge_alloc_msix(vdev); if (!ret) { /* Last vector in the list is used for alarm */ alarm_msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2; for (i = 0; i < vdev->no_of_vpath; i++) { /* If fifo or ring are not enabled the MSIX vector for that should be set to 0 Hence initializeing this array to all 0s. */ memset(tim_msix_id, 0, sizeof(tim_msix_id)); msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE; tim_msix_id[0] = msix_intr_vect; tim_msix_id[1] = msix_intr_vect + 1; vdev->vpaths[i].ring.rx_vector_no = tim_msix_id[1]; status = vxge_hw_vpath_msix_set( vdev->vpaths[i].handle, tim_msix_id, alarm_msix_id); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "vxge_hw_vpath_msix_set " "failed with status : %x", status); kfree(vdev->entries); kfree(vdev->vxge_entries); pci_disable_msix(vdev->pdev); return -ENODEV; } } } return ret; } static void vxge_rem_msix_isr(struct vxgedev *vdev) { int intr_cnt; for (intr_cnt = 0; intr_cnt < (vdev->max_vpath_supported * 2 + 1); intr_cnt++) { if (vdev->vxge_entries[intr_cnt].in_use) { synchronize_irq(vdev->entries[intr_cnt].vector); free_irq(vdev->entries[intr_cnt].vector, vdev->vxge_entries[intr_cnt].arg); vdev->vxge_entries[intr_cnt].in_use = 0; } } kfree(vdev->entries); kfree(vdev->vxge_entries); vdev->entries = NULL; vdev->vxge_entries = NULL; if (vdev->config.intr_type == MSI_X) pci_disable_msix(vdev->pdev); } #endif static void vxge_rem_isr(struct vxgedev *vdev) { struct __vxge_hw_device *hldev; hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev); #ifdef CONFIG_PCI_MSI if (vdev->config.intr_type == MSI_X) { vxge_rem_msix_isr(vdev); } else #endif if (vdev->config.intr_type == INTA) { synchronize_irq(vdev->pdev->irq); free_irq(vdev->pdev->irq, vdev); } } static int vxge_add_isr(struct vxgedev *vdev) { int ret = 0; #ifdef CONFIG_PCI_MSI int vp_idx = 0, intr_idx = 0, intr_cnt = 0, msix_idx = 0, irq_req = 0; int pci_fun = PCI_FUNC(vdev->pdev->devfn); if (vdev->config.intr_type == MSI_X) ret = vxge_enable_msix(vdev); if (ret) { vxge_debug_init(VXGE_ERR, "%s: Enabling MSI-X Failed", VXGE_DRIVER_NAME); vxge_debug_init(VXGE_ERR, "%s: Defaulting to INTA", VXGE_DRIVER_NAME); vdev->config.intr_type = INTA; } if (vdev->config.intr_type == MSI_X) { for (intr_idx = 0; intr_idx < (vdev->no_of_vpath * VXGE_HW_VPATH_MSIX_ACTIVE); intr_idx++) { msix_idx = intr_idx % VXGE_HW_VPATH_MSIX_ACTIVE; irq_req = 0; switch (msix_idx) { case 0: snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN, "%s:vxge fn: %d vpath: %d Tx MSI-X: %d", vdev->ndev->name, pci_fun, vp_idx, vdev->entries[intr_cnt].entry); ret = request_irq( vdev->entries[intr_cnt].vector, vxge_tx_msix_handle, 0, vdev->desc[intr_cnt], &vdev->vpaths[vp_idx].fifo); vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[vp_idx].fifo; irq_req = 1; break; case 1: snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN, "%s:vxge fn: %d vpath: %d Rx MSI-X: %d", vdev->ndev->name, pci_fun, vp_idx, vdev->entries[intr_cnt].entry); ret = request_irq( vdev->entries[intr_cnt].vector, vxge_rx_msix_napi_handle, 0, vdev->desc[intr_cnt], &vdev->vpaths[vp_idx].ring); vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[vp_idx].ring; irq_req = 1; break; } if (ret) { vxge_debug_init(VXGE_ERR, "%s: MSIX - %d Registration failed", vdev->ndev->name, intr_cnt); vxge_rem_msix_isr(vdev); vdev->config.intr_type = INTA; vxge_debug_init(VXGE_ERR, "%s: Defaulting to INTA" , vdev->ndev->name); goto INTA_MODE; } if (irq_req) { /* We requested for this msix interrupt */ vdev->vxge_entries[intr_cnt].in_use = 1; vxge_hw_vpath_msix_unmask( vdev->vpaths[vp_idx].handle, intr_idx); intr_cnt++; } /* Point to next vpath handler */ if (((intr_idx + 1) % VXGE_HW_VPATH_MSIX_ACTIVE == 0) && (vp_idx < (vdev->no_of_vpath - 1))) vp_idx++; } intr_cnt = vdev->max_vpath_supported * 2; snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN, "%s:vxge Alarm fn: %d MSI-X: %d", vdev->ndev->name, pci_fun, vdev->entries[intr_cnt].entry); /* For Alarm interrupts */ ret = request_irq(vdev->entries[intr_cnt].vector, vxge_alarm_msix_handle, 0, vdev->desc[intr_cnt], &vdev->vpaths[vp_idx]); if (ret) { vxge_debug_init(VXGE_ERR, "%s: MSIX - %d Registration failed", vdev->ndev->name, intr_cnt); vxge_rem_msix_isr(vdev); vdev->config.intr_type = INTA; vxge_debug_init(VXGE_ERR, "%s: Defaulting to INTA", vdev->ndev->name); goto INTA_MODE; } vxge_hw_vpath_msix_unmask(vdev->vpaths[vp_idx].handle, intr_idx - 2); vdev->vxge_entries[intr_cnt].in_use = 1; vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[vp_idx]; } INTA_MODE: #endif snprintf(vdev->desc[0], VXGE_INTR_STRLEN, "%s:vxge", vdev->ndev->name); if (vdev->config.intr_type == INTA) { vxge_hw_device_set_intr_type(vdev->devh, VXGE_HW_INTR_MODE_IRQLINE); vxge_hw_vpath_tti_ci_set(vdev->devh, vdev->vpaths[0].device_id); ret = request_irq((int) vdev->pdev->irq, vxge_isr_napi, IRQF_SHARED, vdev->desc[0], vdev); if (ret) { vxge_debug_init(VXGE_ERR, "%s %s-%d: ISR registration failed", VXGE_DRIVER_NAME, "IRQ", vdev->pdev->irq); return -ENODEV; } vxge_debug_init(VXGE_TRACE, "new %s-%d line allocated", "IRQ", vdev->pdev->irq); } return VXGE_HW_OK; } static void vxge_poll_vp_reset(unsigned long data) { struct vxgedev *vdev = (struct vxgedev *)data; int i, j = 0; for (i = 0; i < vdev->no_of_vpath; i++) { if (test_bit(i, &vdev->vp_reset)) { vxge_reset_vpath(vdev, i); j++; } } if (j && (vdev->config.intr_type != MSI_X)) { vxge_hw_device_unmask_all(vdev->devh); vxge_hw_device_flush_io(vdev->devh); } mod_timer(&vdev->vp_reset_timer, jiffies + HZ / 2); } static void vxge_poll_vp_lockup(unsigned long data) { struct vxgedev *vdev = (struct vxgedev *)data; int i; struct vxge_ring *ring; enum vxge_hw_status status = VXGE_HW_OK; for (i = 0; i < vdev->no_of_vpath; i++) { ring = &vdev->vpaths[i].ring; /* Did this vpath received any packets */ if (ring->stats.prev_rx_frms == ring->stats.rx_frms) { status = vxge_hw_vpath_check_leak(ring->handle); /* Did it received any packets last time */ if ((VXGE_HW_FAIL == status) && (VXGE_HW_FAIL == ring->last_status)) { /* schedule vpath reset */ if (!test_and_set_bit(i, &vdev->vp_reset)) { /* disable interrupts for this vpath */ vxge_vpath_intr_disable(vdev, i); /* stop the queue for this vpath */ vxge_stop_tx_queue(&vdev->vpaths[i]. fifo); continue; } } } ring->stats.prev_rx_frms = ring->stats.rx_frms; ring->last_status = status; } /* Check every 1 milli second */ mod_timer(&vdev->vp_lockup_timer, jiffies + HZ / 1000); } /** * vxge_open * @dev: pointer to the device structure. * * This function is the open entry point of the driver. It mainly calls a * function to allocate Rx buffers and inserts them into the buffer * descriptors and then enables the Rx part of the NIC. * Return value: '0' on success and an appropriate (-)ve integer as * defined in errno.h file on failure. */ int vxge_open(struct net_device *dev) { enum vxge_hw_status status; struct vxgedev *vdev; struct __vxge_hw_device *hldev; int ret = 0; int i; u64 val64, function_mode; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", dev->name, __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev); function_mode = vdev->config.device_hw_info.function_mode; /* make sure you have link off by default every time Nic is * initialized */ netif_carrier_off(dev); /* Open VPATHs */ status = vxge_open_vpaths(vdev); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s: fatal: Vpath open failed", vdev->ndev->name); ret = -EPERM; goto out0; } vdev->mtu = dev->mtu; status = vxge_add_isr(vdev); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s: fatal: ISR add failed", dev->name); ret = -EPERM; goto out1; } if (vdev->config.intr_type != MSI_X) { netif_napi_add(dev, &vdev->napi, vxge_poll_inta, vdev->config.napi_weight); napi_enable(&vdev->napi); for (i = 0; i < vdev->no_of_vpath; i++) vdev->vpaths[i].ring.napi_p = &vdev->napi; } else { for (i = 0; i < vdev->no_of_vpath; i++) { netif_napi_add(dev, &vdev->vpaths[i].ring.napi, vxge_poll_msix, vdev->config.napi_weight); napi_enable(&vdev->vpaths[i].ring.napi); vdev->vpaths[i].ring.napi_p = &vdev->vpaths[i].ring.napi; } } /* configure RTH */ if (vdev->config.rth_steering) { status = vxge_rth_configure(vdev); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s: fatal: RTH configuration failed", dev->name); ret = -EPERM; goto out2; } } for (i = 0; i < vdev->no_of_vpath; i++) { /* set initial mtu before enabling the device */ status = vxge_hw_vpath_mtu_set(vdev->vpaths[i].handle, vdev->mtu); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s: fatal: can not set new MTU", dev->name); ret = -EPERM; goto out2; } } VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_TRACE, VXGE_COMPONENT_LL, vdev); vxge_debug_init(vdev->level_trace, "%s: MTU is %d", vdev->ndev->name, vdev->mtu); VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_ERR, VXGE_COMPONENT_LL, vdev); /* Reprogram the DA table with populated mac addresses */ for (i = 0; i < vdev->no_of_vpath; i++) { vxge_restore_vpath_mac_addr(&vdev->vpaths[i]); vxge_restore_vpath_vid_table(&vdev->vpaths[i]); } /* Enable vpath to sniff all unicast/multicast traffic that not * addressed to them. We allow promiscous mode for PF only */ val64 = 0; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) val64 |= VXGE_HW_RXMAC_AUTHORIZE_ALL_ADDR_VP(i); vxge_hw_mgmt_reg_write(vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof(struct vxge_hw_mrpcim_reg, rxmac_authorize_all_addr), val64); vxge_hw_mgmt_reg_write(vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof(struct vxge_hw_mrpcim_reg, rxmac_authorize_all_vid), val64); vxge_set_multicast(dev); /* Enabling Bcast and mcast for all vpath */ for (i = 0; i < vdev->no_of_vpath; i++) { status = vxge_hw_vpath_bcast_enable(vdev->vpaths[i].handle); if (status != VXGE_HW_OK) vxge_debug_init(VXGE_ERR, "%s : Can not enable bcast for vpath " "id %d", dev->name, i); if (vdev->config.addr_learn_en) { status = vxge_hw_vpath_mcast_enable(vdev->vpaths[i].handle); if (status != VXGE_HW_OK) vxge_debug_init(VXGE_ERR, "%s : Can not enable mcast for vpath " "id %d", dev->name, i); } } vxge_hw_device_setpause_data(vdev->devh, 0, vdev->config.tx_pause_enable, vdev->config.rx_pause_enable); if (vdev->vp_reset_timer.function == NULL) vxge_os_timer(vdev->vp_reset_timer, vxge_poll_vp_reset, vdev, (HZ/2)); if (vdev->vp_lockup_timer.function == NULL) vxge_os_timer(vdev->vp_lockup_timer, vxge_poll_vp_lockup, vdev, (HZ/2)); set_bit(__VXGE_STATE_CARD_UP, &vdev->state); smp_wmb(); if (vxge_hw_device_link_state_get(vdev->devh) == VXGE_HW_LINK_UP) { netif_carrier_on(vdev->ndev); printk(KERN_NOTICE "%s: Link Up\n", vdev->ndev->name); vdev->stats.link_up++; } vxge_hw_device_intr_enable(vdev->devh); smp_wmb(); for (i = 0; i < vdev->no_of_vpath; i++) { vxge_hw_vpath_enable(vdev->vpaths[i].handle); smp_wmb(); vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle); } vxge_start_all_tx_queue(vdev); goto out0; out2: vxge_rem_isr(vdev); /* Disable napi */ if (vdev->config.intr_type != MSI_X) napi_disable(&vdev->napi); else { for (i = 0; i < vdev->no_of_vpath; i++) napi_disable(&vdev->vpaths[i].ring.napi); } out1: vxge_close_vpaths(vdev, 0); out0: vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", dev->name, __func__, __LINE__); return ret; } /* Loop throught the mac address list and delete all the entries */ void vxge_free_mac_add_list(struct vxge_vpath *vpath) { struct list_head *entry, *next; if (list_empty(&vpath->mac_addr_list)) return; list_for_each_safe(entry, next, &vpath->mac_addr_list) { list_del(entry); kfree((struct vxge_mac_addrs *)entry); } } static void vxge_napi_del_all(struct vxgedev *vdev) { int i; if (vdev->config.intr_type != MSI_X) netif_napi_del(&vdev->napi); else { for (i = 0; i < vdev->no_of_vpath; i++) netif_napi_del(&vdev->vpaths[i].ring.napi); } return; } int do_vxge_close(struct net_device *dev, int do_io) { enum vxge_hw_status status; struct vxgedev *vdev; struct __vxge_hw_device *hldev; int i; u64 val64, vpath_vector; vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d", dev->name, __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev); if (unlikely(!is_vxge_card_up(vdev))) return 0; /* If vxge_handle_crit_err task is executing, * wait till it completes. */ while (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) msleep(50); clear_bit(__VXGE_STATE_CARD_UP, &vdev->state); if (do_io) { /* Put the vpath back in normal mode */ vpath_vector = vxge_mBIT(vdev->vpaths[0].device_id); status = vxge_hw_mgmt_reg_read(vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof( struct vxge_hw_mrpcim_reg, rts_mgr_cbasin_cfg), &val64); if (status == VXGE_HW_OK) { val64 &= ~vpath_vector; status = vxge_hw_mgmt_reg_write(vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof( struct vxge_hw_mrpcim_reg, rts_mgr_cbasin_cfg), val64); } /* Remove the function 0 from promiscous mode */ vxge_hw_mgmt_reg_write(vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof(struct vxge_hw_mrpcim_reg, rxmac_authorize_all_addr), 0); vxge_hw_mgmt_reg_write(vdev->devh, vxge_hw_mgmt_reg_type_mrpcim, 0, (ulong)offsetof(struct vxge_hw_mrpcim_reg, rxmac_authorize_all_vid), 0); smp_wmb(); } del_timer_sync(&vdev->vp_lockup_timer); del_timer_sync(&vdev->vp_reset_timer); /* Disable napi */ if (vdev->config.intr_type != MSI_X) napi_disable(&vdev->napi); else { for (i = 0; i < vdev->no_of_vpath; i++) napi_disable(&vdev->vpaths[i].ring.napi); } netif_carrier_off(vdev->ndev); printk(KERN_NOTICE "%s: Link Down\n", vdev->ndev->name); vxge_stop_all_tx_queue(vdev); /* Note that at this point xmit() is stopped by upper layer */ if (do_io) vxge_hw_device_intr_disable(vdev->devh); mdelay(1000); vxge_rem_isr(vdev); vxge_napi_del_all(vdev); if (do_io) vxge_reset_all_vpaths(vdev); vxge_close_vpaths(vdev, 0); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", dev->name, __func__, __LINE__); clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state); return 0; } /** * vxge_close * @dev: device pointer. * * This is the stop entry point of the driver. It needs to undo exactly * whatever was done by the open entry point, thus it's usually referred to * as the close function.Among other things this function mainly stops the * Rx side of the NIC and frees all the Rx buffers in the Rx rings. * Return value: '0' on success and an appropriate (-)ve integer as * defined in errno.h file on failure. */ int vxge_close(struct net_device *dev) { do_vxge_close(dev, 1); return 0; } /** * vxge_change_mtu * @dev: net device pointer. * @new_mtu :the new MTU size for the device. * * A driver entry point to change MTU size for the device. Before changing * the MTU the device must be stopped. */ static int vxge_change_mtu(struct net_device *dev, int new_mtu) { struct vxgedev *vdev = netdev_priv(dev); vxge_debug_entryexit(vdev->level_trace, "%s:%d", __func__, __LINE__); if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > VXGE_HW_MAX_MTU)) { vxge_debug_init(vdev->level_err, "%s: mtu size is invalid", dev->name); return -EPERM; } /* check if device is down already */ if (unlikely(!is_vxge_card_up(vdev))) { /* just store new value, will use later on open() */ dev->mtu = new_mtu; vxge_debug_init(vdev->level_err, "%s", "device is down on MTU change"); return 0; } vxge_debug_init(vdev->level_trace, "trying to apply new MTU %d", new_mtu); if (vxge_close(dev)) return -EIO; dev->mtu = new_mtu; vdev->mtu = new_mtu; if (vxge_open(dev)) return -EIO; vxge_debug_init(vdev->level_trace, "%s: MTU changed to %d", vdev->ndev->name, new_mtu); vxge_debug_entryexit(vdev->level_trace, "%s:%d Exiting...", __func__, __LINE__); return 0; } /** * vxge_get_stats * @dev: pointer to the device structure * * Updates the device statistics structure. This function updates the device * statistics structure in the net_device structure and returns a pointer * to the same. */ static struct net_device_stats * vxge_get_stats(struct net_device *dev) { struct vxgedev *vdev; struct net_device_stats *net_stats; int k; vdev = netdev_priv(dev); net_stats = &vdev->stats.net_stats; memset(net_stats, 0, sizeof(struct net_device_stats)); for (k = 0; k < vdev->no_of_vpath; k++) { net_stats->rx_packets += vdev->vpaths[k].ring.stats.rx_frms; net_stats->rx_bytes += vdev->vpaths[k].ring.stats.rx_bytes; net_stats->rx_errors += vdev->vpaths[k].ring.stats.rx_errors; net_stats->multicast += vdev->vpaths[k].ring.stats.rx_mcast; net_stats->rx_dropped += vdev->vpaths[k].ring.stats.rx_dropped; net_stats->tx_packets += vdev->vpaths[k].fifo.stats.tx_frms; net_stats->tx_bytes += vdev->vpaths[k].fifo.stats.tx_bytes; net_stats->tx_errors += vdev->vpaths[k].fifo.stats.tx_errors; } return net_stats; } /** * vxge_ioctl * @dev: Device pointer. * @ifr: An IOCTL specific structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * @cmd: This is used to distinguish between the different commands that * can be passed to the IOCTL functions. * * Entry point for the Ioctl. */ static int vxge_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { return -EOPNOTSUPP; } /** * vxge_tx_watchdog * @dev: pointer to net device structure * * Watchdog for transmit side. * This function is triggered if the Tx Queue is stopped * for a pre-defined amount of time when the Interface is still up. */ static void vxge_tx_watchdog(struct net_device *dev) { struct vxgedev *vdev; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); vdev->cric_err_event = VXGE_HW_EVENT_RESET_START; vxge_reset(vdev); vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); } /** * vxge_vlan_rx_register * @dev: net device pointer. * @grp: vlan group * * Vlan group registration */ static void vxge_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct vxgedev *vdev; struct vxge_vpath *vpath; int vp; u64 vid; enum vxge_hw_status status; int i; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); vpath = &vdev->vpaths[0]; if ((NULL == grp) && (vpath->is_open)) { /* Get the first vlan */ status = vxge_hw_vpath_vid_get(vpath->handle, &vid); while (status == VXGE_HW_OK) { /* Delete this vlan from the vid table */ for (vp = 0; vp < vdev->no_of_vpath; vp++) { vpath = &vdev->vpaths[vp]; if (!vpath->is_open) continue; vxge_hw_vpath_vid_delete(vpath->handle, vid); } /* Get the next vlan to be deleted */ vpath = &vdev->vpaths[0]; status = vxge_hw_vpath_vid_get(vpath->handle, &vid); } } vdev->vlgrp = grp; for (i = 0; i < vdev->no_of_vpath; i++) { if (vdev->vpaths[i].is_configured) vdev->vpaths[i].ring.vlgrp = grp; } vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); } /** * vxge_vlan_rx_add_vid * @dev: net device pointer. * @vid: vid * * Add the vlan id to the devices vlan id table */ static void vxge_vlan_rx_add_vid(struct net_device *dev, unsigned short vid) { struct vxgedev *vdev; struct vxge_vpath *vpath; int vp_id; vdev = (struct vxgedev *)netdev_priv(dev); /* Add these vlan to the vid table */ for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) { vpath = &vdev->vpaths[vp_id]; if (!vpath->is_open) continue; vxge_hw_vpath_vid_add(vpath->handle, vid); } } /** * vxge_vlan_rx_add_vid * @dev: net device pointer. * @vid: vid * * Remove the vlan id from the device's vlan id table */ static void vxge_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) { struct vxgedev *vdev; struct vxge_vpath *vpath; int vp_id; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); vdev = (struct vxgedev *)netdev_priv(dev); vlan_group_set_device(vdev->vlgrp, vid, NULL); /* Delete this vlan from the vid table */ for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) { vpath = &vdev->vpaths[vp_id]; if (!vpath->is_open) continue; vxge_hw_vpath_vid_delete(vpath->handle, vid); } vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__); } static const struct net_device_ops vxge_netdev_ops = { .ndo_open = vxge_open, .ndo_stop = vxge_close, .ndo_get_stats = vxge_get_stats, .ndo_start_xmit = vxge_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_set_multicast_list = vxge_set_multicast, .ndo_do_ioctl = vxge_ioctl, .ndo_set_mac_address = vxge_set_mac_addr, .ndo_change_mtu = vxge_change_mtu, .ndo_vlan_rx_register = vxge_vlan_rx_register, .ndo_vlan_rx_kill_vid = vxge_vlan_rx_kill_vid, .ndo_vlan_rx_add_vid = vxge_vlan_rx_add_vid, .ndo_tx_timeout = vxge_tx_watchdog, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = vxge_netpoll, #endif }; int __devinit vxge_device_register(struct __vxge_hw_device *hldev, struct vxge_config *config, int high_dma, int no_of_vpath, struct vxgedev **vdev_out) { struct net_device *ndev; enum vxge_hw_status status = VXGE_HW_OK; struct vxgedev *vdev; int i, ret = 0, no_of_queue = 1; u64 stat; *vdev_out = NULL; if (config->tx_steering_type == TX_MULTIQ_STEERING) no_of_queue = no_of_vpath; ndev = alloc_etherdev_mq(sizeof(struct vxgedev), no_of_queue); if (ndev == NULL) { vxge_debug_init( vxge_hw_device_trace_level_get(hldev), "%s : device allocation failed", __func__); ret = -ENODEV; goto _out0; } vxge_debug_entryexit( vxge_hw_device_trace_level_get(hldev), "%s: %s:%d Entering...", ndev->name, __func__, __LINE__); vdev = netdev_priv(ndev); memset(vdev, 0, sizeof(struct vxgedev)); vdev->ndev = ndev; vdev->devh = hldev; vdev->pdev = hldev->pdev; memcpy(&vdev->config, config, sizeof(struct vxge_config)); vdev->rx_csum = 1; /* Enable Rx CSUM by default. */ SET_NETDEV_DEV(ndev, &vdev->pdev->dev); ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER; /* Driver entry points */ ndev->irq = vdev->pdev->irq; ndev->base_addr = (unsigned long) hldev->bar0; ndev->netdev_ops = &vxge_netdev_ops; ndev->watchdog_timeo = VXGE_LL_WATCH_DOG_TIMEOUT; initialize_ethtool_ops(ndev); /* Allocate memory for vpath */ vdev->vpaths = kzalloc((sizeof(struct vxge_vpath)) * no_of_vpath, GFP_KERNEL); if (!vdev->vpaths) { vxge_debug_init(VXGE_ERR, "%s: vpath memory allocation failed", vdev->ndev->name); ret = -ENODEV; goto _out1; } ndev->features |= NETIF_F_SG; ndev->features |= NETIF_F_HW_CSUM; vxge_debug_init(vxge_hw_device_trace_level_get(hldev), "%s : checksuming enabled", __func__); if (high_dma) { ndev->features |= NETIF_F_HIGHDMA; vxge_debug_init(vxge_hw_device_trace_level_get(hldev), "%s : using High DMA", __func__); } ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; if (vdev->config.gro_enable) ndev->features |= NETIF_F_GRO; if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING) ndev->real_num_tx_queues = no_of_vpath; #ifdef NETIF_F_LLTX ndev->features |= NETIF_F_LLTX; #endif for (i = 0; i < no_of_vpath; i++) spin_lock_init(&vdev->vpaths[i].fifo.tx_lock); if (register_netdev(ndev)) { vxge_debug_init(vxge_hw_device_trace_level_get(hldev), "%s: %s : device registration failed!", ndev->name, __func__); ret = -ENODEV; goto _out2; } /* Set the factory defined MAC address initially */ ndev->addr_len = ETH_ALEN; /* Make Link state as off at this point, when the Link change * interrupt comes the state will be automatically changed to * the right state. */ netif_carrier_off(ndev); vxge_debug_init(vxge_hw_device_trace_level_get(hldev), "%s: Ethernet device registered", ndev->name); *vdev_out = vdev; /* Resetting the Device stats */ status = vxge_hw_mrpcim_stats_access( hldev, VXGE_HW_STATS_OP_CLEAR_ALL_STATS, 0, 0, &stat); if (status == VXGE_HW_ERR_PRIVILAGED_OPEARATION) vxge_debug_init( vxge_hw_device_trace_level_get(hldev), "%s: device stats clear returns" "VXGE_HW_ERR_PRIVILAGED_OPEARATION", ndev->name); vxge_debug_entryexit(vxge_hw_device_trace_level_get(hldev), "%s: %s:%d Exiting...", ndev->name, __func__, __LINE__); return ret; _out2: kfree(vdev->vpaths); _out1: free_netdev(ndev); _out0: return ret; } /* * vxge_device_unregister * * This function will unregister and free network device */ void vxge_device_unregister(struct __vxge_hw_device *hldev) { struct vxgedev *vdev; struct net_device *dev; char buf[IFNAMSIZ]; #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \ (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK)) u32 level_trace; #endif dev = hldev->ndev; vdev = netdev_priv(dev); #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \ (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK)) level_trace = vdev->level_trace; #endif vxge_debug_entryexit(level_trace, "%s: %s:%d", vdev->ndev->name, __func__, __LINE__); memcpy(buf, vdev->ndev->name, IFNAMSIZ); /* in 2.6 will call stop() if device is up */ unregister_netdev(dev); flush_scheduled_work(); vxge_debug_init(level_trace, "%s: ethernet device unregistered", buf); vxge_debug_entryexit(level_trace, "%s: %s:%d Exiting...", buf, __func__, __LINE__); } /* * vxge_callback_crit_err * * This function is called by the alarm handler in interrupt context. * Driver must analyze it based on the event type. */ static void vxge_callback_crit_err(struct __vxge_hw_device *hldev, enum vxge_hw_event type, u64 vp_id) { struct net_device *dev = hldev->ndev; struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev); int vpath_idx; vxge_debug_entryexit(vdev->level_trace, "%s: %s:%d", vdev->ndev->name, __func__, __LINE__); /* Note: This event type should be used for device wide * indications only - Serious errors, Slot freeze and critical errors */ vdev->cric_err_event = type; for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) if (vdev->vpaths[vpath_idx].device_id == vp_id) break; if (!test_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) { if (type == VXGE_HW_EVENT_SLOT_FREEZE) { vxge_debug_init(VXGE_ERR, "%s: Slot is frozen", vdev->ndev->name); } else if (type == VXGE_HW_EVENT_SERR) { vxge_debug_init(VXGE_ERR, "%s: Encountered Serious Error", vdev->ndev->name); } else if (type == VXGE_HW_EVENT_CRITICAL_ERR) vxge_debug_init(VXGE_ERR, "%s: Encountered Critical Error", vdev->ndev->name); } if ((type == VXGE_HW_EVENT_SERR) || (type == VXGE_HW_EVENT_SLOT_FREEZE)) { if (unlikely(vdev->exec_mode)) clear_bit(__VXGE_STATE_CARD_UP, &vdev->state); } else if (type == VXGE_HW_EVENT_CRITICAL_ERR) { vxge_hw_device_mask_all(hldev); if (unlikely(vdev->exec_mode)) clear_bit(__VXGE_STATE_CARD_UP, &vdev->state); } else if ((type == VXGE_HW_EVENT_FIFO_ERR) || (type == VXGE_HW_EVENT_VPATH_ERR)) { if (unlikely(vdev->exec_mode)) clear_bit(__VXGE_STATE_CARD_UP, &vdev->state); else { /* check if this vpath is already set for reset */ if (!test_and_set_bit(vpath_idx, &vdev->vp_reset)) { /* disable interrupts for this vpath */ vxge_vpath_intr_disable(vdev, vpath_idx); /* stop the queue for this vpath */ vxge_stop_tx_queue(&vdev->vpaths[vpath_idx]. fifo); } } } vxge_debug_entryexit(vdev->level_trace, "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__); } static void verify_bandwidth(void) { int i, band_width, total = 0, equal_priority = 0; /* 1. If user enters 0 for some fifo, give equal priority to all */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (bw_percentage[i] == 0) { equal_priority = 1; break; } } if (!equal_priority) { /* 2. If sum exceeds 100, give equal priority to all */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (bw_percentage[i] == 0xFF) break; total += bw_percentage[i]; if (total > VXGE_HW_VPATH_BANDWIDTH_MAX) { equal_priority = 1; break; } } } if (!equal_priority) { /* Is all the bandwidth consumed? */ if (total < VXGE_HW_VPATH_BANDWIDTH_MAX) { if (i < VXGE_HW_MAX_VIRTUAL_PATHS) { /* Split rest of bw equally among next VPs*/ band_width = (VXGE_HW_VPATH_BANDWIDTH_MAX - total) / (VXGE_HW_MAX_VIRTUAL_PATHS - i); if (band_width < 2) /* min of 2% */ equal_priority = 1; else { for (; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) bw_percentage[i] = band_width; } } } else if (i < VXGE_HW_MAX_VIRTUAL_PATHS) equal_priority = 1; } if (equal_priority) { vxge_debug_init(VXGE_ERR, "%s: Assigning equal bandwidth to all the vpaths", VXGE_DRIVER_NAME); bw_percentage[0] = VXGE_HW_VPATH_BANDWIDTH_MAX / VXGE_HW_MAX_VIRTUAL_PATHS; for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) bw_percentage[i] = bw_percentage[0]; } return; } /* * Vpath configuration */ static int __devinit vxge_config_vpaths( struct vxge_hw_device_config *device_config, u64 vpath_mask, struct vxge_config *config_param) { int i, no_of_vpaths = 0, default_no_vpath = 0, temp; u32 txdl_size, txdl_per_memblock; temp = driver_config->vpath_per_dev; if ((driver_config->vpath_per_dev == VXGE_USE_DEFAULT) && (max_config_dev == VXGE_MAX_CONFIG_DEV)) { /* No more CPU. Return vpath number as zero.*/ if (driver_config->g_no_cpus == -1) return 0; if (!driver_config->g_no_cpus) driver_config->g_no_cpus = num_online_cpus(); driver_config->vpath_per_dev = driver_config->g_no_cpus >> 1; if (!driver_config->vpath_per_dev) driver_config->vpath_per_dev = 1; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) if (!vxge_bVALn(vpath_mask, i, 1)) continue; else default_no_vpath++; if (default_no_vpath < driver_config->vpath_per_dev) driver_config->vpath_per_dev = default_no_vpath; driver_config->g_no_cpus = driver_config->g_no_cpus - (driver_config->vpath_per_dev * 2); if (driver_config->g_no_cpus <= 0) driver_config->g_no_cpus = -1; } if (driver_config->vpath_per_dev == 1) { vxge_debug_ll_config(VXGE_TRACE, "%s: Disable tx and rx steering, " "as single vpath is configured", VXGE_DRIVER_NAME); config_param->rth_steering = NO_STEERING; config_param->tx_steering_type = NO_STEERING; device_config->rth_en = 0; } /* configure bandwidth */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) device_config->vp_config[i].min_bandwidth = bw_percentage[i]; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { device_config->vp_config[i].vp_id = i; device_config->vp_config[i].mtu = VXGE_HW_DEFAULT_MTU; if (no_of_vpaths < driver_config->vpath_per_dev) { if (!vxge_bVALn(vpath_mask, i, 1)) { vxge_debug_ll_config(VXGE_TRACE, "%s: vpath: %d is not available", VXGE_DRIVER_NAME, i); continue; } else { vxge_debug_ll_config(VXGE_TRACE, "%s: vpath: %d available", VXGE_DRIVER_NAME, i); no_of_vpaths++; } } else { vxge_debug_ll_config(VXGE_TRACE, "%s: vpath: %d is not configured, " "max_config_vpath exceeded", VXGE_DRIVER_NAME, i); break; } /* Configure Tx fifo's */ device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE; device_config->vp_config[i].fifo.max_frags = MAX_SKB_FRAGS + 1; device_config->vp_config[i].fifo.memblock_size = VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE; txdl_size = device_config->vp_config[i].fifo.max_frags * sizeof(struct vxge_hw_fifo_txd); txdl_per_memblock = VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE / txdl_size; device_config->vp_config[i].fifo.fifo_blocks = ((VXGE_DEF_FIFO_LENGTH - 1) / txdl_per_memblock) + 1; device_config->vp_config[i].fifo.intr = VXGE_HW_FIFO_QUEUE_INTR_DISABLE; /* Configure tti properties */ device_config->vp_config[i].tti.intr_enable = VXGE_HW_TIM_INTR_ENABLE; device_config->vp_config[i].tti.btimer_val = (VXGE_TTI_BTIMER_VAL * 1000) / 272; device_config->vp_config[i].tti.timer_ac_en = VXGE_HW_TIM_TIMER_AC_ENABLE; /* For msi-x with napi (each vector has a handler of its own) - Set CI to OFF for all vpaths */ device_config->vp_config[i].tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_DISABLE; device_config->vp_config[i].tti.timer_ri_en = VXGE_HW_TIM_TIMER_RI_DISABLE; device_config->vp_config[i].tti.util_sel = VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL; device_config->vp_config[i].tti.ltimer_val = (VXGE_TTI_LTIMER_VAL * 1000) / 272; device_config->vp_config[i].tti.rtimer_val = (VXGE_TTI_RTIMER_VAL * 1000) / 272; device_config->vp_config[i].tti.urange_a = TTI_TX_URANGE_A; device_config->vp_config[i].tti.urange_b = TTI_TX_URANGE_B; device_config->vp_config[i].tti.urange_c = TTI_TX_URANGE_C; device_config->vp_config[i].tti.uec_a = TTI_TX_UFC_A; device_config->vp_config[i].tti.uec_b = TTI_TX_UFC_B; device_config->vp_config[i].tti.uec_c = TTI_TX_UFC_C; device_config->vp_config[i].tti.uec_d = TTI_TX_UFC_D; /* Configure Rx rings */ device_config->vp_config[i].ring.enable = VXGE_HW_RING_ENABLE; device_config->vp_config[i].ring.ring_blocks = VXGE_HW_DEF_RING_BLOCKS; device_config->vp_config[i].ring.buffer_mode = VXGE_HW_RING_RXD_BUFFER_MODE_1; device_config->vp_config[i].ring.rxds_limit = VXGE_HW_DEF_RING_RXDS_LIMIT; device_config->vp_config[i].ring.scatter_mode = VXGE_HW_RING_SCATTER_MODE_A; /* Configure rti properties */ device_config->vp_config[i].rti.intr_enable = VXGE_HW_TIM_INTR_ENABLE; device_config->vp_config[i].rti.btimer_val = (VXGE_RTI_BTIMER_VAL * 1000)/272; device_config->vp_config[i].rti.timer_ac_en = VXGE_HW_TIM_TIMER_AC_ENABLE; device_config->vp_config[i].rti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_DISABLE; device_config->vp_config[i].rti.timer_ri_en = VXGE_HW_TIM_TIMER_RI_DISABLE; device_config->vp_config[i].rti.util_sel = VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL; device_config->vp_config[i].rti.urange_a = RTI_RX_URANGE_A; device_config->vp_config[i].rti.urange_b = RTI_RX_URANGE_B; device_config->vp_config[i].rti.urange_c = RTI_RX_URANGE_C; device_config->vp_config[i].rti.uec_a = RTI_RX_UFC_A; device_config->vp_config[i].rti.uec_b = RTI_RX_UFC_B; device_config->vp_config[i].rti.uec_c = RTI_RX_UFC_C; device_config->vp_config[i].rti.uec_d = RTI_RX_UFC_D; device_config->vp_config[i].rti.rtimer_val = (VXGE_RTI_RTIMER_VAL * 1000) / 272; device_config->vp_config[i].rti.ltimer_val = (VXGE_RTI_LTIMER_VAL * 1000) / 272; device_config->vp_config[i].rpa_strip_vlan_tag = vlan_tag_strip; } driver_config->vpath_per_dev = temp; return no_of_vpaths; } /* initialize device configuratrions */ static void __devinit vxge_device_config_init( struct vxge_hw_device_config *device_config, int *intr_type) { /* Used for CQRQ/SRQ. */ device_config->dma_blockpool_initial = VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE; device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE; if (max_mac_vpath > VXGE_MAX_MAC_ADDR_COUNT) max_mac_vpath = VXGE_MAX_MAC_ADDR_COUNT; #ifndef CONFIG_PCI_MSI vxge_debug_init(VXGE_ERR, "%s: This Kernel does not support " "MSI-X. Defaulting to INTA", VXGE_DRIVER_NAME); *intr_type = INTA; #endif /* Configure whether MSI-X or IRQL. */ switch (*intr_type) { case INTA: device_config->intr_mode = VXGE_HW_INTR_MODE_IRQLINE; break; case MSI_X: device_config->intr_mode = VXGE_HW_INTR_MODE_MSIX; break; } /* Timer period between device poll */ device_config->device_poll_millis = VXGE_TIMER_DELAY; /* Configure mac based steering. */ device_config->rts_mac_en = addr_learn_en; /* Configure Vpaths */ device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_MULTI_IT; vxge_debug_ll_config(VXGE_TRACE, "%s : Device Config Params ", __func__); vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_initial : %d", device_config->dma_blockpool_initial); vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_max : %d", device_config->dma_blockpool_max); vxge_debug_ll_config(VXGE_TRACE, "intr_mode : %d", device_config->intr_mode); vxge_debug_ll_config(VXGE_TRACE, "device_poll_millis : %d", device_config->device_poll_millis); vxge_debug_ll_config(VXGE_TRACE, "rts_mac_en : %d", device_config->rts_mac_en); vxge_debug_ll_config(VXGE_TRACE, "rth_en : %d", device_config->rth_en); vxge_debug_ll_config(VXGE_TRACE, "rth_it_type : %d", device_config->rth_it_type); } static void __devinit vxge_print_parm(struct vxgedev *vdev, u64 vpath_mask) { int i; vxge_debug_init(VXGE_TRACE, "%s: %d Vpath(s) opened", vdev->ndev->name, vdev->no_of_vpath); switch (vdev->config.intr_type) { case INTA: vxge_debug_init(VXGE_TRACE, "%s: Interrupt type INTA", vdev->ndev->name); break; case MSI_X: vxge_debug_init(VXGE_TRACE, "%s: Interrupt type MSI-X", vdev->ndev->name); break; } if (vdev->config.rth_steering) { vxge_debug_init(VXGE_TRACE, "%s: RTH steering enabled for TCP_IPV4", vdev->ndev->name); } else { vxge_debug_init(VXGE_TRACE, "%s: RTH steering disabled", vdev->ndev->name); } switch (vdev->config.tx_steering_type) { case NO_STEERING: vxge_debug_init(VXGE_TRACE, "%s: Tx steering disabled", vdev->ndev->name); break; case TX_PRIORITY_STEERING: vxge_debug_init(VXGE_TRACE, "%s: Unsupported tx steering option", vdev->ndev->name); vxge_debug_init(VXGE_TRACE, "%s: Tx steering disabled", vdev->ndev->name); vdev->config.tx_steering_type = 0; break; case TX_VLAN_STEERING: vxge_debug_init(VXGE_TRACE, "%s: Unsupported tx steering option", vdev->ndev->name); vxge_debug_init(VXGE_TRACE, "%s: Tx steering disabled", vdev->ndev->name); vdev->config.tx_steering_type = 0; break; case TX_MULTIQ_STEERING: vxge_debug_init(VXGE_TRACE, "%s: Tx multiqueue steering enabled", vdev->ndev->name); break; case TX_PORT_STEERING: vxge_debug_init(VXGE_TRACE, "%s: Tx port steering enabled", vdev->ndev->name); break; default: vxge_debug_init(VXGE_ERR, "%s: Unsupported tx steering type", vdev->ndev->name); vxge_debug_init(VXGE_TRACE, "%s: Tx steering disabled", vdev->ndev->name); vdev->config.tx_steering_type = 0; } if (vdev->config.gro_enable) { vxge_debug_init(VXGE_ERR, "%s: Generic receive offload enabled", vdev->ndev->name); } else vxge_debug_init(VXGE_TRACE, "%s: Generic receive offload disabled", vdev->ndev->name); if (vdev->config.addr_learn_en) vxge_debug_init(VXGE_TRACE, "%s: MAC Address learning enabled", vdev->ndev->name); vxge_debug_init(VXGE_TRACE, "%s: Rx doorbell mode enabled", vdev->ndev->name); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!vxge_bVALn(vpath_mask, i, 1)) continue; vxge_debug_ll_config(VXGE_TRACE, "%s: MTU size - %d", vdev->ndev->name, ((struct __vxge_hw_device *)(vdev->devh))-> config.vp_config[i].mtu); vxge_debug_init(VXGE_TRACE, "%s: VLAN tag stripping %s", vdev->ndev->name, ((struct __vxge_hw_device *)(vdev->devh))-> config.vp_config[i].rpa_strip_vlan_tag ? "Enabled" : "Disabled"); vxge_debug_init(VXGE_TRACE, "%s: Ring blocks : %d", vdev->ndev->name, ((struct __vxge_hw_device *)(vdev->devh))-> config.vp_config[i].ring.ring_blocks); vxge_debug_init(VXGE_TRACE, "%s: Fifo blocks : %d", vdev->ndev->name, ((struct __vxge_hw_device *)(vdev->devh))-> config.vp_config[i].fifo.fifo_blocks); vxge_debug_ll_config(VXGE_TRACE, "%s: Max frags : %d", vdev->ndev->name, ((struct __vxge_hw_device *)(vdev->devh))-> config.vp_config[i].fifo.max_frags); break; } } #ifdef CONFIG_PM /** * vxge_pm_suspend - vxge power management suspend entry point * */ static int vxge_pm_suspend(struct pci_dev *pdev, pm_message_t state) { return -ENOSYS; } /** * vxge_pm_resume - vxge power management resume entry point * */ static int vxge_pm_resume(struct pci_dev *pdev) { return -ENOSYS; } #endif /** * vxge_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t vxge_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct __vxge_hw_device *hldev = (struct __vxge_hw_device *) pci_get_drvdata(pdev); struct net_device *netdev = hldev->ndev; netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) { /* Bring down the card, while avoiding PCI I/O */ do_vxge_close(netdev, 0); } pci_disable_device(pdev); return PCI_ERS_RESULT_NEED_RESET; } /** * vxge_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. * At this point, the card has exprienced a hard reset, * followed by fixups by BIOS, and has its config space * set up identically to what it was at cold boot. */ static pci_ers_result_t vxge_io_slot_reset(struct pci_dev *pdev) { struct __vxge_hw_device *hldev = (struct __vxge_hw_device *) pci_get_drvdata(pdev); struct net_device *netdev = hldev->ndev; struct vxgedev *vdev = netdev_priv(netdev); if (pci_enable_device(pdev)) { printk(KERN_ERR "%s: " "Cannot re-enable device after reset\n", VXGE_DRIVER_NAME); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); vxge_reset(vdev); return PCI_ERS_RESULT_RECOVERED; } /** * vxge_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells * us that its OK to resume normal operation. */ static void vxge_io_resume(struct pci_dev *pdev) { struct __vxge_hw_device *hldev = (struct __vxge_hw_device *) pci_get_drvdata(pdev); struct net_device *netdev = hldev->ndev; if (netif_running(netdev)) { if (vxge_open(netdev)) { printk(KERN_ERR "%s: " "Can't bring device back up after reset\n", VXGE_DRIVER_NAME); return; } } netif_device_attach(netdev); } /** * vxge_probe * @pdev : structure containing the PCI related information of the device. * @pre: List of PCI devices supported by the driver listed in vxge_id_table. * Description: * This function is called when a new PCI device gets detected and initializes * it. * Return value: * returns 0 on success and negative on failure. * */ static int __devinit vxge_probe(struct pci_dev *pdev, const struct pci_device_id *pre) { struct __vxge_hw_device *hldev; enum vxge_hw_status status; int ret; int high_dma = 0; u64 vpath_mask = 0; struct vxgedev *vdev; struct vxge_config ll_config; struct vxge_hw_device_config *device_config = NULL; struct vxge_hw_device_attr attr; int i, j, no_of_vpath = 0, max_vpath_supported = 0; u8 *macaddr; struct vxge_mac_addrs *entry; static int bus = -1, device = -1; u8 new_device = 0; vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__); attr.pdev = pdev; if (bus != pdev->bus->number) new_device = 1; if (device != PCI_SLOT(pdev->devfn)) new_device = 1; bus = pdev->bus->number; device = PCI_SLOT(pdev->devfn); if (new_device) { if (driver_config->config_dev_cnt && (driver_config->config_dev_cnt != driver_config->total_dev_cnt)) vxge_debug_init(VXGE_ERR, "%s: Configured %d of %d devices", VXGE_DRIVER_NAME, driver_config->config_dev_cnt, driver_config->total_dev_cnt); driver_config->config_dev_cnt = 0; driver_config->total_dev_cnt = 0; driver_config->g_no_cpus = 0; } driver_config->vpath_per_dev = max_config_vpath; driver_config->total_dev_cnt++; if (++driver_config->config_dev_cnt > max_config_dev) { ret = 0; goto _exit0; } device_config = kzalloc(sizeof(struct vxge_hw_device_config), GFP_KERNEL); if (!device_config) { ret = -ENOMEM; vxge_debug_init(VXGE_ERR, "device_config : malloc failed %s %d", __FILE__, __LINE__); goto _exit0; } memset(&ll_config, 0, sizeof(struct vxge_config)); ll_config.tx_steering_type = TX_MULTIQ_STEERING; ll_config.intr_type = MSI_X; ll_config.napi_weight = NEW_NAPI_WEIGHT; ll_config.rth_steering = RTH_STEERING; /* get the default configuration parameters */ vxge_hw_device_config_default_get(device_config); /* initialize configuration parameters */ vxge_device_config_init(device_config, &ll_config.intr_type); ret = pci_enable_device(pdev); if (ret) { vxge_debug_init(VXGE_ERR, "%s : can not enable PCI device", __func__); goto _exit0; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { vxge_debug_ll_config(VXGE_TRACE, "%s : using 64bit DMA", __func__); high_dma = 1; if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { vxge_debug_init(VXGE_ERR, "%s : unable to obtain 64bit DMA for " "consistent allocations", __func__); ret = -ENOMEM; goto _exit1; } } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { vxge_debug_ll_config(VXGE_TRACE, "%s : using 32bit DMA", __func__); } else { ret = -ENOMEM; goto _exit1; } if (pci_request_regions(pdev, VXGE_DRIVER_NAME)) { vxge_debug_init(VXGE_ERR, "%s : request regions failed", __func__); ret = -ENODEV; goto _exit1; } pci_set_master(pdev); attr.bar0 = pci_ioremap_bar(pdev, 0); if (!attr.bar0) { vxge_debug_init(VXGE_ERR, "%s : cannot remap io memory bar0", __func__); ret = -ENODEV; goto _exit2; } vxge_debug_ll_config(VXGE_TRACE, "pci ioremap bar0: %p:0x%llx", attr.bar0, (unsigned long long)pci_resource_start(pdev, 0)); status = vxge_hw_device_hw_info_get(attr.bar0, &ll_config.device_hw_info); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s: Reading of hardware info failed." "Please try upgrading the firmware.", VXGE_DRIVER_NAME); ret = -EINVAL; goto _exit3; } if (ll_config.device_hw_info.fw_version.major != VXGE_DRIVER_FW_VERSION_MAJOR) { vxge_debug_init(VXGE_ERR, "%s: Incorrect firmware version." "Please upgrade the firmware to version 1.x.x", VXGE_DRIVER_NAME); ret = -EINVAL; goto _exit3; } vpath_mask = ll_config.device_hw_info.vpath_mask; if (vpath_mask == 0) { vxge_debug_ll_config(VXGE_TRACE, "%s: No vpaths available in device", VXGE_DRIVER_NAME); ret = -EINVAL; goto _exit3; } vxge_debug_ll_config(VXGE_TRACE, "%s:%d Vpath mask = %llx", __func__, __LINE__, (unsigned long long)vpath_mask); /* Check how many vpaths are available */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!((vpath_mask) & vxge_mBIT(i))) continue; max_vpath_supported++; } /* Enable SRIOV mode, if firmware has SRIOV support and if it is a PF */ if ((VXGE_HW_FUNCTION_MODE_SRIOV == ll_config.device_hw_info.function_mode) && (max_config_dev > 1) && (pdev->is_physfn)) { ret = pci_enable_sriov(pdev, max_config_dev - 1); if (ret) vxge_debug_ll_config(VXGE_ERR, "Failed to enable SRIOV: %d\n", ret); } /* * Configure vpaths and get driver configured number of vpaths * which is less than or equal to the maximum vpaths per function. */ no_of_vpath = vxge_config_vpaths(device_config, vpath_mask, &ll_config); if (!no_of_vpath) { vxge_debug_ll_config(VXGE_ERR, "%s: No more vpaths to configure", VXGE_DRIVER_NAME); ret = 0; goto _exit3; } /* Setting driver callbacks */ attr.uld_callbacks.link_up = vxge_callback_link_up; attr.uld_callbacks.link_down = vxge_callback_link_down; attr.uld_callbacks.crit_err = vxge_callback_crit_err; status = vxge_hw_device_initialize(&hldev, &attr, device_config); if (status != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "Failed to initialize device (%d)", status); ret = -EINVAL; goto _exit3; } /* if FCS stripping is not disabled in MAC fail driver load */ if (vxge_hw_vpath_strip_fcs_check(hldev, vpath_mask) != VXGE_HW_OK) { vxge_debug_init(VXGE_ERR, "%s: FCS stripping is not disabled in MAC" " failing driver load", VXGE_DRIVER_NAME); ret = -EINVAL; goto _exit4; } vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL); /* set private device info */ pci_set_drvdata(pdev, hldev); ll_config.gro_enable = VXGE_GRO_ALWAYS_AGGREGATE; ll_config.fifo_indicate_max_pkts = VXGE_FIFO_INDICATE_MAX_PKTS; ll_config.addr_learn_en = addr_learn_en; ll_config.rth_algorithm = RTH_ALG_JENKINS; ll_config.rth_hash_type_tcpipv4 = VXGE_HW_RING_HASH_TYPE_TCP_IPV4; ll_config.rth_hash_type_ipv4 = VXGE_HW_RING_HASH_TYPE_NONE; ll_config.rth_hash_type_tcpipv6 = VXGE_HW_RING_HASH_TYPE_NONE; ll_config.rth_hash_type_ipv6 = VXGE_HW_RING_HASH_TYPE_NONE; ll_config.rth_hash_type_tcpipv6ex = VXGE_HW_RING_HASH_TYPE_NONE; ll_config.rth_hash_type_ipv6ex = VXGE_HW_RING_HASH_TYPE_NONE; ll_config.rth_bkt_sz = RTH_BUCKET_SIZE; ll_config.tx_pause_enable = VXGE_PAUSE_CTRL_ENABLE; ll_config.rx_pause_enable = VXGE_PAUSE_CTRL_ENABLE; if (vxge_device_register(hldev, &ll_config, high_dma, no_of_vpath, &vdev)) { ret = -EINVAL; goto _exit4; } vxge_hw_device_debug_set(hldev, VXGE_TRACE, VXGE_COMPONENT_LL); VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev), vxge_hw_device_trace_level_get(hldev)); /* set private HW device info */ hldev->ndev = vdev->ndev; vdev->mtu = VXGE_HW_DEFAULT_MTU; vdev->bar0 = attr.bar0; vdev->max_vpath_supported = max_vpath_supported; vdev->no_of_vpath = no_of_vpath; /* Virtual Path count */ for (i = 0, j = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!vxge_bVALn(vpath_mask, i, 1)) continue; if (j >= vdev->no_of_vpath) break; vdev->vpaths[j].is_configured = 1; vdev->vpaths[j].device_id = i; vdev->vpaths[j].fifo.driver_id = j; vdev->vpaths[j].ring.driver_id = j; vdev->vpaths[j].vdev = vdev; vdev->vpaths[j].max_mac_addr_cnt = max_mac_vpath; memcpy((u8 *)vdev->vpaths[j].macaddr, (u8 *)ll_config.device_hw_info.mac_addrs[i], ETH_ALEN); /* Initialize the mac address list header */ INIT_LIST_HEAD(&vdev->vpaths[j].mac_addr_list); vdev->vpaths[j].mac_addr_cnt = 0; vdev->vpaths[j].mcast_addr_cnt = 0; j++; } vdev->exec_mode = VXGE_EXEC_MODE_DISABLE; vdev->max_config_port = max_config_port; vdev->vlan_tag_strip = vlan_tag_strip; /* map the hashing selector table to the configured vpaths */ for (i = 0; i < vdev->no_of_vpath; i++) vdev->vpath_selector[i] = vpath_selector[i]; macaddr = (u8 *)vdev->vpaths[0].macaddr; ll_config.device_hw_info.serial_number[VXGE_HW_INFO_LEN - 1] = '\0'; ll_config.device_hw_info.product_desc[VXGE_HW_INFO_LEN - 1] = '\0'; ll_config.device_hw_info.part_number[VXGE_HW_INFO_LEN - 1] = '\0'; vxge_debug_init(VXGE_TRACE, "%s: SERIAL NUMBER: %s", vdev->ndev->name, ll_config.device_hw_info.serial_number); vxge_debug_init(VXGE_TRACE, "%s: PART NUMBER: %s", vdev->ndev->name, ll_config.device_hw_info.part_number); vxge_debug_init(VXGE_TRACE, "%s: Neterion %s Server Adapter", vdev->ndev->name, ll_config.device_hw_info.product_desc); vxge_debug_init(VXGE_TRACE, "%s: MAC ADDR: %pM", vdev->ndev->name, macaddr); vxge_debug_init(VXGE_TRACE, "%s: Link Width x%d", vdev->ndev->name, vxge_hw_device_link_width_get(hldev)); vxge_debug_init(VXGE_TRACE, "%s: Firmware version : %s Date : %s", vdev->ndev->name, ll_config.device_hw_info.fw_version.version, ll_config.device_hw_info.fw_date.date); if (new_device) { switch (ll_config.device_hw_info.function_mode) { case VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION: vxge_debug_init(VXGE_TRACE, "%s: Single Function Mode Enabled", vdev->ndev->name); break; case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION: vxge_debug_init(VXGE_TRACE, "%s: Multi Function Mode Enabled", vdev->ndev->name); break; case VXGE_HW_FUNCTION_MODE_SRIOV: vxge_debug_init(VXGE_TRACE, "%s: Single Root IOV Mode Enabled", vdev->ndev->name); break; case VXGE_HW_FUNCTION_MODE_MRIOV: vxge_debug_init(VXGE_TRACE, "%s: Multi Root IOV Mode Enabled", vdev->ndev->name); break; } } vxge_print_parm(vdev, vpath_mask); /* Store the fw version for ethttool option */ strcpy(vdev->fw_version, ll_config.device_hw_info.fw_version.version); memcpy(vdev->ndev->dev_addr, (u8 *)vdev->vpaths[0].macaddr, ETH_ALEN); memcpy(vdev->ndev->perm_addr, vdev->ndev->dev_addr, ETH_ALEN); /* Copy the station mac address to the list */ for (i = 0; i < vdev->no_of_vpath; i++) { entry = (struct vxge_mac_addrs *) kzalloc(sizeof(struct vxge_mac_addrs), GFP_KERNEL); if (NULL == entry) { vxge_debug_init(VXGE_ERR, "%s: mac_addr_list : memory allocation failed", vdev->ndev->name); ret = -EPERM; goto _exit5; } macaddr = (u8 *)&entry->macaddr; memcpy(macaddr, vdev->ndev->dev_addr, ETH_ALEN); list_add(&entry->item, &vdev->vpaths[i].mac_addr_list); vdev->vpaths[i].mac_addr_cnt = 1; } kfree(device_config); /* * INTA is shared in multi-function mode. This is unlike the INTA * implementation in MR mode, where each VH has its own INTA message. * - INTA is masked (disabled) as long as at least one function sets * its TITAN_MASK_ALL_INT.ALARM bit. * - INTA is unmasked (enabled) when all enabled functions have cleared * their own TITAN_MASK_ALL_INT.ALARM bit. * The TITAN_MASK_ALL_INT ALARM & TRAFFIC bits are cleared on power up. * Though this driver leaves the top level interrupts unmasked while * leaving the required module interrupt bits masked on exit, there * could be a rougue driver around that does not follow this procedure * resulting in a failure to generate interrupts. The following code is * present to prevent such a failure. */ if (ll_config.device_hw_info.function_mode == VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) if (vdev->config.intr_type == INTA) vxge_hw_device_unmask_all(hldev); vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__); vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL); VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev), vxge_hw_device_trace_level_get(hldev)); return 0; _exit5: for (i = 0; i < vdev->no_of_vpath; i++) vxge_free_mac_add_list(&vdev->vpaths[i]); vxge_device_unregister(hldev); _exit4: pci_disable_sriov(pdev); vxge_hw_device_terminate(hldev); _exit3: iounmap(attr.bar0); _exit2: pci_release_regions(pdev); _exit1: pci_disable_device(pdev); _exit0: kfree(device_config); driver_config->config_dev_cnt--; pci_set_drvdata(pdev, NULL); return ret; } /** * vxge_rem_nic - Free the PCI device * @pdev: structure containing the PCI related information of the device. * Description: This function is called by the Pci subsystem to release a * PCI device and free up all resource held up by the device. */ static void __devexit vxge_remove(struct pci_dev *pdev) { struct __vxge_hw_device *hldev; struct vxgedev *vdev = NULL; struct net_device *dev; int i = 0; #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \ (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK)) u32 level_trace; #endif hldev = (struct __vxge_hw_device *) pci_get_drvdata(pdev); if (hldev == NULL) return; dev = hldev->ndev; vdev = netdev_priv(dev); #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \ (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK)) level_trace = vdev->level_trace; #endif vxge_debug_entryexit(level_trace, "%s:%d", __func__, __LINE__); vxge_debug_init(level_trace, "%s : removing PCI device...", __func__); vxge_device_unregister(hldev); for (i = 0; i < vdev->no_of_vpath; i++) { vxge_free_mac_add_list(&vdev->vpaths[i]); vdev->vpaths[i].mcast_addr_cnt = 0; vdev->vpaths[i].mac_addr_cnt = 0; } kfree(vdev->vpaths); iounmap(vdev->bar0); pci_disable_sriov(pdev); /* we are safe to free it now */ free_netdev(dev); vxge_debug_init(level_trace, "%s:%d Device unregistered", __func__, __LINE__); vxge_hw_device_terminate(hldev); pci_disable_device(pdev); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); vxge_debug_entryexit(level_trace, "%s:%d Exiting...", __func__, __LINE__); } static struct pci_error_handlers vxge_err_handler = { .error_detected = vxge_io_error_detected, .slot_reset = vxge_io_slot_reset, .resume = vxge_io_resume, }; static struct pci_driver vxge_driver = { .name = VXGE_DRIVER_NAME, .id_table = vxge_id_table, .probe = vxge_probe, .remove = __devexit_p(vxge_remove), #ifdef CONFIG_PM .suspend = vxge_pm_suspend, .resume = vxge_pm_resume, #endif .err_handler = &vxge_err_handler, }; static int __init vxge_starter(void) { int ret = 0; char version[32]; snprintf(version, 32, "%s", DRV_VERSION); printk(KERN_CRIT "%s: Copyright(c) 2002-2009 Neterion Inc\n", VXGE_DRIVER_NAME); printk(KERN_CRIT "%s: Driver version: %s\n", VXGE_DRIVER_NAME, version); verify_bandwidth(); driver_config = kzalloc(sizeof(struct vxge_drv_config), GFP_KERNEL); if (!driver_config) return -ENOMEM; ret = pci_register_driver(&vxge_driver); if (driver_config->config_dev_cnt && (driver_config->config_dev_cnt != driver_config->total_dev_cnt)) vxge_debug_init(VXGE_ERR, "%s: Configured %d of %d devices", VXGE_DRIVER_NAME, driver_config->config_dev_cnt, driver_config->total_dev_cnt); if (ret) kfree(driver_config); return ret; } static void __exit vxge_closer(void) { pci_unregister_driver(&vxge_driver); kfree(driver_config); } module_init(vxge_starter); module_exit(vxge_closer);