/* * Copyright (c) 2016 Avago Technologies. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. * See the GNU General Public License for more details, a copy of which * can be found in the file COPYING included with this package * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include "nvme.h" #include "fabrics.h" #include #include /* *************************** Data Structures/Defines ****************** */ /* * We handle AEN commands ourselves and don't even let the * block layer know about them. */ #define NVME_FC_NR_AEN_COMMANDS 1 #define NVME_FC_AQ_BLKMQ_DEPTH \ (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS) #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1) enum nvme_fc_queue_flags { NVME_FC_Q_CONNECTED = (1 << 0), }; #define NVMEFC_QUEUE_DELAY 3 /* ms units */ struct nvme_fc_queue { struct nvme_fc_ctrl *ctrl; struct device *dev; struct blk_mq_hw_ctx *hctx; void *lldd_handle; int queue_size; size_t cmnd_capsule_len; u32 qnum; u32 rqcnt; u32 seqno; u64 connection_id; atomic_t csn; unsigned long flags; } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ struct nvmefc_ls_req_op { struct nvmefc_ls_req ls_req; struct nvme_fc_ctrl *ctrl; struct nvme_fc_queue *queue; struct request *rq; int ls_error; struct completion ls_done; struct list_head lsreq_list; /* ctrl->ls_req_list */ bool req_queued; }; enum nvme_fcpop_state { FCPOP_STATE_UNINIT = 0, FCPOP_STATE_IDLE = 1, FCPOP_STATE_ACTIVE = 2, FCPOP_STATE_ABORTED = 3, }; struct nvme_fc_fcp_op { struct nvme_request nreq; /* * nvme/host/core.c * requires this to be * the 1st element in the * private structure * associated with the * request. */ struct nvmefc_fcp_req fcp_req; struct nvme_fc_ctrl *ctrl; struct nvme_fc_queue *queue; struct request *rq; atomic_t state; u32 rqno; u32 nents; struct nvme_fc_cmd_iu cmd_iu; struct nvme_fc_ersp_iu rsp_iu; }; struct nvme_fc_lport { struct nvme_fc_local_port localport; struct ida endp_cnt; struct list_head port_list; /* nvme_fc_port_list */ struct list_head endp_list; struct device *dev; /* physical device for dma */ struct nvme_fc_port_template *ops; struct kref ref; } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ struct nvme_fc_rport { struct nvme_fc_remote_port remoteport; struct list_head endp_list; /* for lport->endp_list */ struct list_head ctrl_list; spinlock_t lock; struct kref ref; } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ enum nvme_fcctrl_state { FCCTRL_INIT = 0, FCCTRL_ACTIVE = 1, }; struct nvme_fc_ctrl { spinlock_t lock; struct nvme_fc_queue *queues; u32 queue_count; struct device *dev; struct nvme_fc_lport *lport; struct nvme_fc_rport *rport; u32 cnum; u64 association_id; u64 cap; struct list_head ctrl_list; /* rport->ctrl_list */ struct list_head ls_req_list; struct blk_mq_tag_set admin_tag_set; struct blk_mq_tag_set tag_set; struct work_struct delete_work; struct kref ref; int state; struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS]; struct nvme_ctrl ctrl; }; static inline struct nvme_fc_ctrl * to_fc_ctrl(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_fc_ctrl, ctrl); } static inline struct nvme_fc_lport * localport_to_lport(struct nvme_fc_local_port *portptr) { return container_of(portptr, struct nvme_fc_lport, localport); } static inline struct nvme_fc_rport * remoteport_to_rport(struct nvme_fc_remote_port *portptr) { return container_of(portptr, struct nvme_fc_rport, remoteport); } static inline struct nvmefc_ls_req_op * ls_req_to_lsop(struct nvmefc_ls_req *lsreq) { return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); } static inline struct nvme_fc_fcp_op * fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) { return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); } /* *************************** Globals **************************** */ static DEFINE_SPINLOCK(nvme_fc_lock); static LIST_HEAD(nvme_fc_lport_list); static DEFINE_IDA(nvme_fc_local_port_cnt); static DEFINE_IDA(nvme_fc_ctrl_cnt); static struct workqueue_struct *nvme_fc_wq; /* *********************** FC-NVME Port Management ************************ */ static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *); static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, struct nvme_fc_queue *, unsigned int); /** * nvme_fc_register_localport - transport entry point called by an * LLDD to register the existence of a NVME * host FC port. * @pinfo: pointer to information about the port to be registered * @template: LLDD entrypoints and operational parameters for the port * @dev: physical hardware device node port corresponds to. Will be * used for DMA mappings * @lport_p: pointer to a local port pointer. Upon success, the routine * will allocate a nvme_fc_local_port structure and place its * address in the local port pointer. Upon failure, local port * pointer will be set to 0. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, struct nvme_fc_port_template *template, struct device *dev, struct nvme_fc_local_port **portptr) { struct nvme_fc_lport *newrec; unsigned long flags; int ret, idx; if (!template->localport_delete || !template->remoteport_delete || !template->ls_req || !template->fcp_io || !template->ls_abort || !template->fcp_abort || !template->max_hw_queues || !template->max_sgl_segments || !template->max_dif_sgl_segments || !template->dma_boundary) { ret = -EINVAL; goto out_reghost_failed; } newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), GFP_KERNEL); if (!newrec) { ret = -ENOMEM; goto out_reghost_failed; } idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); if (idx < 0) { ret = -ENOSPC; goto out_fail_kfree; } if (!get_device(dev) && dev) { ret = -ENODEV; goto out_ida_put; } INIT_LIST_HEAD(&newrec->port_list); INIT_LIST_HEAD(&newrec->endp_list); kref_init(&newrec->ref); newrec->ops = template; newrec->dev = dev; ida_init(&newrec->endp_cnt); newrec->localport.private = &newrec[1]; newrec->localport.node_name = pinfo->node_name; newrec->localport.port_name = pinfo->port_name; newrec->localport.port_role = pinfo->port_role; newrec->localport.port_id = pinfo->port_id; newrec->localport.port_state = FC_OBJSTATE_ONLINE; newrec->localport.port_num = idx; spin_lock_irqsave(&nvme_fc_lock, flags); list_add_tail(&newrec->port_list, &nvme_fc_lport_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); if (dev) dma_set_seg_boundary(dev, template->dma_boundary); *portptr = &newrec->localport; return 0; out_ida_put: ida_simple_remove(&nvme_fc_local_port_cnt, idx); out_fail_kfree: kfree(newrec); out_reghost_failed: *portptr = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_fc_register_localport); static void nvme_fc_free_lport(struct kref *ref) { struct nvme_fc_lport *lport = container_of(ref, struct nvme_fc_lport, ref); unsigned long flags; WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); WARN_ON(!list_empty(&lport->endp_list)); /* remove from transport list */ spin_lock_irqsave(&nvme_fc_lock, flags); list_del(&lport->port_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); /* let the LLDD know we've finished tearing it down */ lport->ops->localport_delete(&lport->localport); ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); ida_destroy(&lport->endp_cnt); put_device(lport->dev); kfree(lport); } static void nvme_fc_lport_put(struct nvme_fc_lport *lport) { kref_put(&lport->ref, nvme_fc_free_lport); } static int nvme_fc_lport_get(struct nvme_fc_lport *lport) { return kref_get_unless_zero(&lport->ref); } /** * nvme_fc_unregister_localport - transport entry point called by an * LLDD to deregister/remove a previously * registered a NVME host FC port. * @localport: pointer to the (registered) local port that is to be * deregistered. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) { struct nvme_fc_lport *lport = localport_to_lport(portptr); unsigned long flags; if (!portptr) return -EINVAL; spin_lock_irqsave(&nvme_fc_lock, flags); if (portptr->port_state != FC_OBJSTATE_ONLINE) { spin_unlock_irqrestore(&nvme_fc_lock, flags); return -EINVAL; } portptr->port_state = FC_OBJSTATE_DELETED; spin_unlock_irqrestore(&nvme_fc_lock, flags); nvme_fc_lport_put(lport); return 0; } EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); /** * nvme_fc_register_remoteport - transport entry point called by an * LLDD to register the existence of a NVME * subsystem FC port on its fabric. * @localport: pointer to the (registered) local port that the remote * subsystem port is connected to. * @pinfo: pointer to information about the port to be registered * @rport_p: pointer to a remote port pointer. Upon success, the routine * will allocate a nvme_fc_remote_port structure and place its * address in the remote port pointer. Upon failure, remote port * pointer will be set to 0. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, struct nvme_fc_port_info *pinfo, struct nvme_fc_remote_port **portptr) { struct nvme_fc_lport *lport = localport_to_lport(localport); struct nvme_fc_rport *newrec; unsigned long flags; int ret, idx; newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), GFP_KERNEL); if (!newrec) { ret = -ENOMEM; goto out_reghost_failed; } if (!nvme_fc_lport_get(lport)) { ret = -ESHUTDOWN; goto out_kfree_rport; } idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); if (idx < 0) { ret = -ENOSPC; goto out_lport_put; } INIT_LIST_HEAD(&newrec->endp_list); INIT_LIST_HEAD(&newrec->ctrl_list); kref_init(&newrec->ref); spin_lock_init(&newrec->lock); newrec->remoteport.localport = &lport->localport; newrec->remoteport.private = &newrec[1]; newrec->remoteport.port_role = pinfo->port_role; newrec->remoteport.node_name = pinfo->node_name; newrec->remoteport.port_name = pinfo->port_name; newrec->remoteport.port_id = pinfo->port_id; newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; newrec->remoteport.port_num = idx; spin_lock_irqsave(&nvme_fc_lock, flags); list_add_tail(&newrec->endp_list, &lport->endp_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); *portptr = &newrec->remoteport; return 0; out_lport_put: nvme_fc_lport_put(lport); out_kfree_rport: kfree(newrec); out_reghost_failed: *portptr = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); static void nvme_fc_free_rport(struct kref *ref) { struct nvme_fc_rport *rport = container_of(ref, struct nvme_fc_rport, ref); struct nvme_fc_lport *lport = localport_to_lport(rport->remoteport.localport); unsigned long flags; WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); WARN_ON(!list_empty(&rport->ctrl_list)); /* remove from lport list */ spin_lock_irqsave(&nvme_fc_lock, flags); list_del(&rport->endp_list); spin_unlock_irqrestore(&nvme_fc_lock, flags); /* let the LLDD know we've finished tearing it down */ lport->ops->remoteport_delete(&rport->remoteport); ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); kfree(rport); nvme_fc_lport_put(lport); } static void nvme_fc_rport_put(struct nvme_fc_rport *rport) { kref_put(&rport->ref, nvme_fc_free_rport); } static int nvme_fc_rport_get(struct nvme_fc_rport *rport) { return kref_get_unless_zero(&rport->ref); } /** * nvme_fc_unregister_remoteport - transport entry point called by an * LLDD to deregister/remove a previously * registered a NVME subsystem FC port. * @remoteport: pointer to the (registered) remote port that is to be * deregistered. * * Returns: * a completion status. Must be 0 upon success; a negative errno * (ex: -ENXIO) upon failure. */ int nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) { struct nvme_fc_rport *rport = remoteport_to_rport(portptr); struct nvme_fc_ctrl *ctrl; unsigned long flags; if (!portptr) return -EINVAL; spin_lock_irqsave(&rport->lock, flags); if (portptr->port_state != FC_OBJSTATE_ONLINE) { spin_unlock_irqrestore(&rport->lock, flags); return -EINVAL; } portptr->port_state = FC_OBJSTATE_DELETED; /* tear down all associations to the remote port */ list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) __nvme_fc_del_ctrl(ctrl); spin_unlock_irqrestore(&rport->lock, flags); nvme_fc_rport_put(rport); return 0; } EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); /* *********************** FC-NVME DMA Handling **************************** */ /* * The fcloop device passes in a NULL device pointer. Real LLD's will * pass in a valid device pointer. If NULL is passed to the dma mapping * routines, depending on the platform, it may or may not succeed, and * may crash. * * As such: * Wrapper all the dma routines and check the dev pointer. * * If simple mappings (return just a dma address, we'll noop them, * returning a dma address of 0. * * On more complex mappings (dma_map_sg), a pseudo routine fills * in the scatter list, setting all dma addresses to 0. */ static inline dma_addr_t fc_dma_map_single(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir) { return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; } static inline int fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return dev ? dma_mapping_error(dev, dma_addr) : 0; } static inline void fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev) dma_unmap_single(dev, addr, size, dir); } static inline void fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev) dma_sync_single_for_cpu(dev, addr, size, dir); } static inline void fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev) dma_sync_single_for_device(dev, addr, size, dir); } /* pseudo dma_map_sg call */ static int fc_map_sg(struct scatterlist *sg, int nents) { struct scatterlist *s; int i; WARN_ON(nents == 0 || sg[0].length == 0); for_each_sg(sg, s, nents, i) { s->dma_address = 0L; #ifdef CONFIG_NEED_SG_DMA_LENGTH s->dma_length = s->length; #endif } return nents; } static inline int fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); } static inline void fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { if (dev) dma_unmap_sg(dev, sg, nents, dir); } /* *********************** FC-NVME LS Handling **************************** */ static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); static void __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop) { struct nvmefc_ls_req *lsreq = &lsop->ls_req; unsigned long flags; spin_lock_irqsave(&ctrl->lock, flags); if (!lsop->req_queued) { spin_unlock_irqrestore(&ctrl->lock, flags); return; } list_del(&lsop->lsreq_list); lsop->req_queued = false; spin_unlock_irqrestore(&ctrl->lock, flags); fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma, (lsreq->rqstlen + lsreq->rsplen), DMA_BIDIRECTIONAL); nvme_fc_ctrl_put(ctrl); } static int __nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop, void (*done)(struct nvmefc_ls_req *req, int status)) { struct nvmefc_ls_req *lsreq = &lsop->ls_req; unsigned long flags; int ret; if (!nvme_fc_ctrl_get(ctrl)) return -ESHUTDOWN; lsreq->done = done; lsop->ctrl = ctrl; lsop->req_queued = false; INIT_LIST_HEAD(&lsop->lsreq_list); init_completion(&lsop->ls_done); lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr, lsreq->rqstlen + lsreq->rsplen, DMA_BIDIRECTIONAL); if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) { nvme_fc_ctrl_put(ctrl); dev_err(ctrl->dev, "els request command failed EFAULT.\n"); return -EFAULT; } lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; spin_lock_irqsave(&ctrl->lock, flags); list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list); lsop->req_queued = true; spin_unlock_irqrestore(&ctrl->lock, flags); ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport, &ctrl->rport->remoteport, lsreq); if (ret) lsop->ls_error = ret; return ret; } static void nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) { struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); lsop->ls_error = status; complete(&lsop->ls_done); } static int nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop) { struct nvmefc_ls_req *lsreq = &lsop->ls_req; struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; int ret; ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done); if (!ret) /* * No timeout/not interruptible as we need the struct * to exist until the lldd calls us back. Thus mandate * wait until driver calls back. lldd responsible for * the timeout action */ wait_for_completion(&lsop->ls_done); __nvme_fc_finish_ls_req(ctrl, lsop); if (ret) { dev_err(ctrl->dev, "ls request command failed (%d).\n", ret); return ret; } /* ACC or RJT payload ? */ if (rjt->w0.ls_cmd == FCNVME_LS_RJT) return -ENXIO; return 0; } static void nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop, void (*done)(struct nvmefc_ls_req *req, int status)) { int ret; ret = __nvme_fc_send_ls_req(ctrl, lsop, done); /* don't wait for completion */ if (ret) done(&lsop->ls_req, ret); } /* Validation Error indexes into the string table below */ enum { VERR_NO_ERROR = 0, VERR_LSACC = 1, VERR_LSDESC_RQST = 2, VERR_LSDESC_RQST_LEN = 3, VERR_ASSOC_ID = 4, VERR_ASSOC_ID_LEN = 5, VERR_CONN_ID = 6, VERR_CONN_ID_LEN = 7, VERR_CR_ASSOC = 8, VERR_CR_ASSOC_ACC_LEN = 9, VERR_CR_CONN = 10, VERR_CR_CONN_ACC_LEN = 11, VERR_DISCONN = 12, VERR_DISCONN_ACC_LEN = 13, }; static char *validation_errors[] = { "OK", "Not LS_ACC", "Not LSDESC_RQST", "Bad LSDESC_RQST Length", "Not Association ID", "Bad Association ID Length", "Not Connection ID", "Bad Connection ID Length", "Not CR_ASSOC Rqst", "Bad CR_ASSOC ACC Length", "Not CR_CONN Rqst", "Bad CR_CONN ACC Length", "Not Disconnect Rqst", "Bad Disconnect ACC Length", }; static int nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) { struct nvmefc_ls_req_op *lsop; struct nvmefc_ls_req *lsreq; struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; struct fcnvme_ls_cr_assoc_acc *assoc_acc; int ret, fcret = 0; lsop = kzalloc((sizeof(*lsop) + ctrl->lport->ops->lsrqst_priv_sz + sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); if (!lsop) { ret = -ENOMEM; goto out_no_memory; } lsreq = &lsop->ls_req; lsreq->private = (void *)&lsop[1]; assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; assoc_rqst->desc_list_len = cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); assoc_rqst->assoc_cmd.desc_tag = cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); assoc_rqst->assoc_cmd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); /* Linux supports only Dynamic controllers */ assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id, min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be))); strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); lsop->queue = queue; lsreq->rqstaddr = assoc_rqst; lsreq->rqstlen = sizeof(*assoc_rqst); lsreq->rspaddr = assoc_acc; lsreq->rsplen = sizeof(*assoc_acc); lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; ret = nvme_fc_send_ls_req(ctrl, lsop); if (ret) goto out_free_buffer; /* process connect LS completion */ /* validate the ACC response */ if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) fcret = VERR_LSACC; else if (assoc_acc->hdr.desc_list_len != fcnvme_lsdesc_len( sizeof(struct fcnvme_ls_cr_assoc_acc))) fcret = VERR_CR_ASSOC_ACC_LEN; else if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) fcret = VERR_LSDESC_RQST; else if (assoc_acc->hdr.rqst.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) fcret = VERR_LSDESC_RQST_LEN; else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) fcret = VERR_CR_ASSOC; else if (assoc_acc->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) fcret = VERR_ASSOC_ID; else if (assoc_acc->associd.desc_len != fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_assoc_id))) fcret = VERR_ASSOC_ID_LEN; else if (assoc_acc->connectid.desc_tag != cpu_to_be32(FCNVME_LSDESC_CONN_ID)) fcret = VERR_CONN_ID; else if (assoc_acc->connectid.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) fcret = VERR_CONN_ID_LEN; if (fcret) { ret = -EBADF; dev_err(ctrl->dev, "q %d connect failed: %s\n", queue->qnum, validation_errors[fcret]); } else { ctrl->association_id = be64_to_cpu(assoc_acc->associd.association_id); queue->connection_id = be64_to_cpu(assoc_acc->connectid.connection_id); set_bit(NVME_FC_Q_CONNECTED, &queue->flags); } out_free_buffer: kfree(lsop); out_no_memory: if (ret) dev_err(ctrl->dev, "queue %d connect admin queue failed (%d).\n", queue->qnum, ret); return ret; } static int nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) { struct nvmefc_ls_req_op *lsop; struct nvmefc_ls_req *lsreq; struct fcnvme_ls_cr_conn_rqst *conn_rqst; struct fcnvme_ls_cr_conn_acc *conn_acc; int ret, fcret = 0; lsop = kzalloc((sizeof(*lsop) + ctrl->lport->ops->lsrqst_priv_sz + sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); if (!lsop) { ret = -ENOMEM; goto out_no_memory; } lsreq = &lsop->ls_req; lsreq->private = (void *)&lsop[1]; conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; conn_rqst->desc_list_len = cpu_to_be32( sizeof(struct fcnvme_lsdesc_assoc_id) + sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); conn_rqst->associd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_assoc_id)); conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); conn_rqst->connect_cmd.desc_tag = cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); conn_rqst->connect_cmd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); lsop->queue = queue; lsreq->rqstaddr = conn_rqst; lsreq->rqstlen = sizeof(*conn_rqst); lsreq->rspaddr = conn_acc; lsreq->rsplen = sizeof(*conn_acc); lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; ret = nvme_fc_send_ls_req(ctrl, lsop); if (ret) goto out_free_buffer; /* process connect LS completion */ /* validate the ACC response */ if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) fcret = VERR_LSACC; else if (conn_acc->hdr.desc_list_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) fcret = VERR_CR_CONN_ACC_LEN; else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) fcret = VERR_LSDESC_RQST; else if (conn_acc->hdr.rqst.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) fcret = VERR_LSDESC_RQST_LEN; else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) fcret = VERR_CR_CONN; else if (conn_acc->connectid.desc_tag != cpu_to_be32(FCNVME_LSDESC_CONN_ID)) fcret = VERR_CONN_ID; else if (conn_acc->connectid.desc_len != fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) fcret = VERR_CONN_ID_LEN; if (fcret) { ret = -EBADF; dev_err(ctrl->dev, "q %d connect failed: %s\n", queue->qnum, validation_errors[fcret]); } else { queue->connection_id = be64_to_cpu(conn_acc->connectid.connection_id); set_bit(NVME_FC_Q_CONNECTED, &queue->flags); } out_free_buffer: kfree(lsop); out_no_memory: if (ret) dev_err(ctrl->dev, "queue %d connect command failed (%d).\n", queue->qnum, ret); return ret; } static void nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) { struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); struct nvme_fc_ctrl *ctrl = lsop->ctrl; __nvme_fc_finish_ls_req(ctrl, lsop); if (status) dev_err(ctrl->dev, "disconnect assoc ls request command failed (%d).\n", status); /* fc-nvme iniator doesn't care about success or failure of cmd */ kfree(lsop); } /* * This routine sends a FC-NVME LS to disconnect (aka terminate) * the FC-NVME Association. Terminating the association also * terminates the FC-NVME connections (per queue, both admin and io * queues) that are part of the association. E.g. things are torn * down, and the related FC-NVME Association ID and Connection IDs * become invalid. * * The behavior of the fc-nvme initiator is such that it's * understanding of the association and connections will implicitly * be torn down. The action is implicit as it may be due to a loss of * connectivity with the fc-nvme target, so you may never get a * response even if you tried. As such, the action of this routine * is to asynchronously send the LS, ignore any results of the LS, and * continue on with terminating the association. If the fc-nvme target * is present and receives the LS, it too can tear down. */ static void nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) { struct fcnvme_ls_disconnect_rqst *discon_rqst; struct fcnvme_ls_disconnect_acc *discon_acc; struct nvmefc_ls_req_op *lsop; struct nvmefc_ls_req *lsreq; lsop = kzalloc((sizeof(*lsop) + ctrl->lport->ops->lsrqst_priv_sz + sizeof(*discon_rqst) + sizeof(*discon_acc)), GFP_KERNEL); if (!lsop) /* couldn't sent it... too bad */ return; lsreq = &lsop->ls_req; lsreq->private = (void *)&lsop[1]; discon_rqst = (struct fcnvme_ls_disconnect_rqst *) (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; discon_rqst->desc_list_len = cpu_to_be32( sizeof(struct fcnvme_lsdesc_assoc_id) + sizeof(struct fcnvme_lsdesc_disconn_cmd)); discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); discon_rqst->associd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_assoc_id)); discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); discon_rqst->discon_cmd.desc_tag = cpu_to_be32( FCNVME_LSDESC_DISCONN_CMD); discon_rqst->discon_cmd.desc_len = fcnvme_lsdesc_len( sizeof(struct fcnvme_lsdesc_disconn_cmd)); discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); lsreq->rqstaddr = discon_rqst; lsreq->rqstlen = sizeof(*discon_rqst); lsreq->rspaddr = discon_acc; lsreq->rsplen = sizeof(*discon_acc); lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done); /* only meaningful part to terminating the association */ ctrl->association_id = 0; } /* *********************** NVME Ctrl Routines **************************** */ static int nvme_fc_reinit_request(void *data, struct request *rq) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; memset(cmdiu, 0, sizeof(*cmdiu)); cmdiu->scsi_id = NVME_CMD_SCSI_ID; cmdiu->fc_id = NVME_CMD_FC_ID; cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); return 0; } static void __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) { fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, sizeof(op->rsp_iu), DMA_FROM_DEVICE); fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, sizeof(op->cmd_iu), DMA_TO_DEVICE); atomic_set(&op->state, FCPOP_STATE_UNINIT); } static void nvme_fc_exit_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); return __nvme_fc_exit_request(data, op); } static void nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; int i; for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT) continue; __nvme_fc_exit_request(ctrl, aen_op); nvme_fc_ctrl_put(ctrl); } } void nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) { struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); struct request *rq = op->rq; struct nvmefc_fcp_req *freq = &op->fcp_req; struct nvme_fc_ctrl *ctrl = op->ctrl; struct nvme_fc_queue *queue = op->queue; struct nvme_completion *cqe = &op->rsp_iu.cqe; u16 status = NVME_SC_SUCCESS; /* * WARNING: * The current linux implementation of a nvme controller * allocates a single tag set for all io queues and sizes * the io queues to fully hold all possible tags. Thus, the * implementation does not reference or care about the sqhd * value as it never needs to use the sqhd/sqtail pointers * for submission pacing. * * This affects the FC-NVME implementation in two ways: * 1) As the value doesn't matter, we don't need to waste * cycles extracting it from ERSPs and stamping it in the * cases where the transport fabricates CQEs on successful * completions. * 2) The FC-NVME implementation requires that delivery of * ERSP completions are to go back to the nvme layer in order * relative to the rsn, such that the sqhd value will always * be "in order" for the nvme layer. As the nvme layer in * linux doesn't care about sqhd, there's no need to return * them in order. * * Additionally: * As the core nvme layer in linux currently does not look at * every field in the cqe - in cases where the FC transport must * fabricate a CQE, the following fields will not be set as they * are not referenced: * cqe.sqid, cqe.sqhd, cqe.command_id */ fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, sizeof(op->rsp_iu), DMA_FROM_DEVICE); if (atomic_read(&op->state) == FCPOP_STATE_ABORTED) status = NVME_SC_ABORT_REQ | NVME_SC_DNR; else if (freq->status) status = NVME_SC_FC_TRANSPORT_ERROR; /* * For the linux implementation, if we have an unsuccesful * status, they blk-mq layer can typically be called with the * non-zero status and the content of the cqe isn't important. */ if (status) goto done; /* * command completed successfully relative to the wire * protocol. However, validate anything received and * extract the status and result from the cqe (create it * where necessary). */ switch (freq->rcv_rsplen) { case 0: case NVME_FC_SIZEOF_ZEROS_RSP: /* * No response payload or 12 bytes of payload (which * should all be zeros) are considered successful and * no payload in the CQE by the transport. */ if (freq->transferred_length != be32_to_cpu(op->cmd_iu.data_len)) { status = NVME_SC_FC_TRANSPORT_ERROR; goto done; } op->nreq.result.u64 = 0; break; case sizeof(struct nvme_fc_ersp_iu): /* * The ERSP IU contains a full completion with CQE. * Validate ERSP IU and look at cqe. */ if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != (freq->rcv_rsplen / 4) || be32_to_cpu(op->rsp_iu.xfrd_len) != freq->transferred_length || op->rsp_iu.status_code || op->rqno != le16_to_cpu(cqe->command_id))) { status = NVME_SC_FC_TRANSPORT_ERROR; goto done; } op->nreq.result = cqe->result; status = le16_to_cpu(cqe->status) >> 1; break; default: status = NVME_SC_FC_TRANSPORT_ERROR; goto done; } done: if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) { nvme_complete_async_event(&queue->ctrl->ctrl, status, &op->nreq.result); nvme_fc_ctrl_put(ctrl); return; } blk_mq_complete_request(rq, status); } static int __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, struct request *rq, u32 rqno) { struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; int ret = 0; memset(op, 0, sizeof(*op)); op->fcp_req.cmdaddr = &op->cmd_iu; op->fcp_req.cmdlen = sizeof(op->cmd_iu); op->fcp_req.rspaddr = &op->rsp_iu; op->fcp_req.rsplen = sizeof(op->rsp_iu); op->fcp_req.done = nvme_fc_fcpio_done; op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; op->ctrl = ctrl; op->queue = queue; op->rq = rq; op->rqno = rqno; cmdiu->scsi_id = NVME_CMD_SCSI_ID; cmdiu->fc_id = NVME_CMD_FC_ID; cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { dev_err(ctrl->dev, "FCP Op failed - cmdiu dma mapping failed.\n"); ret = EFAULT; goto out_on_error; } op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, &op->rsp_iu, sizeof(op->rsp_iu), DMA_FROM_DEVICE); if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { dev_err(ctrl->dev, "FCP Op failed - rspiu dma mapping failed.\n"); ret = EFAULT; } atomic_set(&op->state, FCPOP_STATE_IDLE); out_on_error: return ret; } static int nvme_fc_init_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { struct nvme_fc_ctrl *ctrl = data; struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1]; return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); } static int nvme_fc_init_admin_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { struct nvme_fc_ctrl *ctrl = data; struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_queue *queue = &ctrl->queues[0]; return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); } static int nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_fcp_op *aen_op; struct nvme_fc_cmd_iu *cmdiu; struct nvme_command *sqe; int i, ret; aen_op = ctrl->aen_ops; for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { cmdiu = &aen_op->cmd_iu; sqe = &cmdiu->sqe; ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], aen_op, (struct request *)NULL, (AEN_CMDID_BASE + i)); if (ret) return ret; memset(sqe, 0, sizeof(*sqe)); sqe->common.opcode = nvme_admin_async_event; sqe->common.command_id = AEN_CMDID_BASE + i; } return 0; } static inline void __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, unsigned int qidx) { struct nvme_fc_queue *queue = &ctrl->queues[qidx]; hctx->driver_data = queue; queue->hctx = hctx; } static int nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_fc_ctrl *ctrl = data; __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); return 0; } static int nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_fc_ctrl *ctrl = data; __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); return 0; } static void nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size) { struct nvme_fc_queue *queue; queue = &ctrl->queues[idx]; memset(queue, 0, sizeof(*queue)); queue->ctrl = ctrl; queue->qnum = idx; atomic_set(&queue->csn, 1); queue->dev = ctrl->dev; if (idx > 0) queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; else queue->cmnd_capsule_len = sizeof(struct nvme_command); queue->queue_size = queue_size; /* * Considered whether we should allocate buffers for all SQEs * and CQEs and dma map them - mapping their respective entries * into the request structures (kernel vm addr and dma address) * thus the driver could use the buffers/mappings directly. * It only makes sense if the LLDD would use them for its * messaging api. It's very unlikely most adapter api's would use * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload * structures were used instead. */ } /* * This routine terminates a queue at the transport level. * The transport has already ensured that all outstanding ios on * the queue have been terminated. * The transport will send a Disconnect LS request to terminate * the queue's connection. Termination of the admin queue will also * terminate the association at the target. */ static void nvme_fc_free_queue(struct nvme_fc_queue *queue) { if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) return; /* * Current implementation never disconnects a single queue. * It always terminates a whole association. So there is never * a disconnect(queue) LS sent to the target. */ queue->connection_id = 0; clear_bit(NVME_FC_Q_CONNECTED, &queue->flags); } static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, unsigned int qidx) { if (ctrl->lport->ops->delete_queue) ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, queue->lldd_handle); queue->lldd_handle = NULL; } static void nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl) { __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); blk_cleanup_queue(ctrl->ctrl.admin_q); blk_mq_free_tag_set(&ctrl->admin_tag_set); nvme_fc_free_queue(&ctrl->queues[0]); } static void nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) { int i; for (i = 1; i < ctrl->queue_count; i++) nvme_fc_free_queue(&ctrl->queues[i]); } static int __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) { int ret = 0; queue->lldd_handle = NULL; if (ctrl->lport->ops->create_queue) ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, qidx, qsize, &queue->lldd_handle); return ret; } static void nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) { struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1]; int i; for (i = ctrl->queue_count - 1; i >= 1; i--, queue--) __nvme_fc_delete_hw_queue(ctrl, queue, i); } static int nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) { struct nvme_fc_queue *queue = &ctrl->queues[1]; int i, ret; for (i = 1; i < ctrl->queue_count; i++, queue++) { ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); if (ret) goto delete_queues; } return 0; delete_queues: for (; i >= 0; i--) __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); return ret; } static int nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) { int i, ret = 0; for (i = 1; i < ctrl->queue_count; i++) { ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, (qsize / 5)); if (ret) break; ret = nvmf_connect_io_queue(&ctrl->ctrl, i); if (ret) break; } return ret; } static void nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) { int i; for (i = 1; i < ctrl->queue_count; i++) nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize); } static void nvme_fc_ctrl_free(struct kref *ref) { struct nvme_fc_ctrl *ctrl = container_of(ref, struct nvme_fc_ctrl, ref); unsigned long flags; if (ctrl->state != FCCTRL_INIT) { /* remove from rport list */ spin_lock_irqsave(&ctrl->rport->lock, flags); list_del(&ctrl->ctrl_list); spin_unlock_irqrestore(&ctrl->rport->lock, flags); } put_device(ctrl->dev); nvme_fc_rport_put(ctrl->rport); kfree(ctrl->queues); ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); nvmf_free_options(ctrl->ctrl.opts); kfree(ctrl); } static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) { kref_put(&ctrl->ref, nvme_fc_ctrl_free); } static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) { return kref_get_unless_zero(&ctrl->ref); } /* * All accesses from nvme core layer done - can now free the * controller. Called after last nvme_put_ctrl() call */ static void nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl) { struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); WARN_ON(nctrl != &ctrl->ctrl); /* * Tear down the association, which will generate link * traffic to terminate connections */ if (ctrl->state != FCCTRL_INIT) { /* send a Disconnect(association) LS to fc-nvme target */ nvme_fc_xmt_disconnect_assoc(ctrl); if (ctrl->ctrl.tagset) { blk_cleanup_queue(ctrl->ctrl.connect_q); blk_mq_free_tag_set(&ctrl->tag_set); nvme_fc_delete_hw_io_queues(ctrl); nvme_fc_free_io_queues(ctrl); } nvme_fc_exit_aen_ops(ctrl); nvme_fc_destroy_admin_queue(ctrl); } nvme_fc_ctrl_put(ctrl); } static int __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) { int state; state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); if (state != FCPOP_STATE_ACTIVE) { atomic_set(&op->state, state); return -ECANCELED; /* fail */ } ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, &ctrl->rport->remoteport, op->queue->lldd_handle, &op->fcp_req); return 0; } enum blk_eh_timer_return nvme_fc_timeout(struct request *rq, bool reserved) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_ctrl *ctrl = op->ctrl; int ret; if (reserved) return BLK_EH_RESET_TIMER; ret = __nvme_fc_abort_op(ctrl, op); if (ret) /* io wasn't active to abort consider it done */ return BLK_EH_HANDLED; /* * TODO: force a controller reset * when that happens, queues will be torn down and outstanding * ios will be terminated, and the above abort, on a single io * will no longer be needed. */ return BLK_EH_HANDLED; } static int nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, struct nvme_fc_fcp_op *op) { struct nvmefc_fcp_req *freq = &op->fcp_req; enum dma_data_direction dir; int ret; freq->sg_cnt = 0; if (!blk_rq_payload_bytes(rq)) return 0; freq->sg_table.sgl = freq->first_sgl; ret = sg_alloc_table_chained(&freq->sg_table, blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); if (ret) return -ENOMEM; op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, dir); if (unlikely(freq->sg_cnt <= 0)) { sg_free_table_chained(&freq->sg_table, true); freq->sg_cnt = 0; return -EFAULT; } /* * TODO: blk_integrity_rq(rq) for DIF */ return 0; } static void nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, struct nvme_fc_fcp_op *op) { struct nvmefc_fcp_req *freq = &op->fcp_req; if (!freq->sg_cnt) return; fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, ((rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); nvme_cleanup_cmd(rq); sg_free_table_chained(&freq->sg_table, true); freq->sg_cnt = 0; } /* * In FC, the queue is a logical thing. At transport connect, the target * creates its "queue" and returns a handle that is to be given to the * target whenever it posts something to the corresponding SQ. When an * SQE is sent on a SQ, FC effectively considers the SQE, or rather the * command contained within the SQE, an io, and assigns a FC exchange * to it. The SQE and the associated SQ handle are sent in the initial * CMD IU sents on the exchange. All transfers relative to the io occur * as part of the exchange. The CQE is the last thing for the io, * which is transferred (explicitly or implicitly) with the RSP IU * sent on the exchange. After the CQE is received, the FC exchange is * terminaed and the Exchange may be used on a different io. * * The transport to LLDD api has the transport making a request for a * new fcp io request to the LLDD. The LLDD then allocates a FC exchange * resource and transfers the command. The LLDD will then process all * steps to complete the io. Upon completion, the transport done routine * is called. * * So - while the operation is outstanding to the LLDD, there is a link * level FC exchange resource that is also outstanding. This must be * considered in all cleanup operations. */ static int nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, u32 data_len, enum nvmefc_fcp_datadir io_dir) { struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; struct nvme_command *sqe = &cmdiu->sqe; u32 csn; int ret; if (!nvme_fc_ctrl_get(ctrl)) return BLK_MQ_RQ_QUEUE_ERROR; /* format the FC-NVME CMD IU and fcp_req */ cmdiu->connection_id = cpu_to_be64(queue->connection_id); csn = atomic_inc_return(&queue->csn); cmdiu->csn = cpu_to_be32(csn); cmdiu->data_len = cpu_to_be32(data_len); switch (io_dir) { case NVMEFC_FCP_WRITE: cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; break; case NVMEFC_FCP_READ: cmdiu->flags = FCNVME_CMD_FLAGS_READ; break; case NVMEFC_FCP_NODATA: cmdiu->flags = 0; break; } op->fcp_req.payload_length = data_len; op->fcp_req.io_dir = io_dir; op->fcp_req.transferred_length = 0; op->fcp_req.rcv_rsplen = 0; op->fcp_req.status = NVME_SC_SUCCESS; op->fcp_req.sqid = cpu_to_le16(queue->qnum); /* * validate per fabric rules, set fields mandated by fabric spec * as well as those by FC-NVME spec. */ WARN_ON_ONCE(sqe->common.metadata); WARN_ON_ONCE(sqe->common.dptr.prp1); WARN_ON_ONCE(sqe->common.dptr.prp2); sqe->common.flags |= NVME_CMD_SGL_METABUF; /* * format SQE DPTR field per FC-NVME rules * type=data block descr; subtype=offset; * offset is currently 0. */ sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET; sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); sqe->rw.dptr.sgl.addr = 0; /* odd that we set the command_id - should come from nvme-fabrics */ WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno)); if (op->rq) { /* skipped on aens */ ret = nvme_fc_map_data(ctrl, op->rq, op); if (ret < 0) { dev_err(queue->ctrl->ctrl.device, "Failed to map data (%d)\n", ret); nvme_cleanup_cmd(op->rq); nvme_fc_ctrl_put(ctrl); return (ret == -ENOMEM || ret == -EAGAIN) ? BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; } } fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, sizeof(op->cmd_iu), DMA_TO_DEVICE); atomic_set(&op->state, FCPOP_STATE_ACTIVE); if (op->rq) blk_mq_start_request(op->rq); ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, &ctrl->rport->remoteport, queue->lldd_handle, &op->fcp_req); if (ret) { dev_err(ctrl->dev, "Send nvme command failed - lldd returned %d.\n", ret); if (op->rq) { /* normal request */ nvme_fc_unmap_data(ctrl, op->rq, op); nvme_cleanup_cmd(op->rq); } /* else - aen. no cleanup needed */ nvme_fc_ctrl_put(ctrl); if (ret != -EBUSY) return BLK_MQ_RQ_QUEUE_ERROR; if (op->rq) { blk_mq_stop_hw_queues(op->rq->q); blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY); } return BLK_MQ_RQ_QUEUE_BUSY; } return BLK_MQ_RQ_QUEUE_OK; } static int nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_fc_queue *queue = hctx->driver_data; struct nvme_fc_ctrl *ctrl = queue->ctrl; struct request *rq = bd->rq; struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; struct nvme_command *sqe = &cmdiu->sqe; enum nvmefc_fcp_datadir io_dir; u32 data_len; int ret; ret = nvme_setup_cmd(ns, rq, sqe); if (ret) return ret; data_len = blk_rq_payload_bytes(rq); if (data_len) io_dir = ((rq_data_dir(rq) == WRITE) ? NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); else io_dir = NVMEFC_FCP_NODATA; return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); } static struct blk_mq_tags * nvme_fc_tagset(struct nvme_fc_queue *queue) { if (queue->qnum == 0) return queue->ctrl->admin_tag_set.tags[queue->qnum]; return queue->ctrl->tag_set.tags[queue->qnum - 1]; } static int nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) { struct nvme_fc_queue *queue = hctx->driver_data; struct nvme_fc_ctrl *ctrl = queue->ctrl; struct request *req; struct nvme_fc_fcp_op *op; req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); if (!req) { dev_err(queue->ctrl->ctrl.device, "tag 0x%x on QNum %#x not found\n", tag, queue->qnum); return 0; } op = blk_mq_rq_to_pdu(req); if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && (ctrl->lport->ops->poll_queue)) ctrl->lport->ops->poll_queue(&ctrl->lport->localport, queue->lldd_handle); return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); } static void nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx) { struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); struct nvme_fc_fcp_op *aen_op; int ret; if (aer_idx > NVME_FC_NR_AEN_COMMANDS) return; aen_op = &ctrl->aen_ops[aer_idx]; ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, NVMEFC_FCP_NODATA); if (ret) dev_err(ctrl->ctrl.device, "failed async event work [%d]\n", aer_idx); } static void nvme_fc_complete_rq(struct request *rq) { struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); struct nvme_fc_ctrl *ctrl = op->ctrl; int error = 0, state; state = atomic_xchg(&op->state, FCPOP_STATE_IDLE); nvme_cleanup_cmd(rq); nvme_fc_unmap_data(ctrl, rq, op); if (unlikely(rq->errors)) { if (nvme_req_needs_retry(rq, rq->errors)) { rq->retries++; nvme_requeue_req(rq); goto put_ctrl; } if (blk_rq_is_passthrough(rq)) error = rq->errors; else error = nvme_error_status(rq->errors); } blk_mq_end_request(rq, error); put_ctrl: nvme_fc_ctrl_put(ctrl); } static const struct blk_mq_ops nvme_fc_mq_ops = { .queue_rq = nvme_fc_queue_rq, .complete = nvme_fc_complete_rq, .init_request = nvme_fc_init_request, .exit_request = nvme_fc_exit_request, .reinit_request = nvme_fc_reinit_request, .init_hctx = nvme_fc_init_hctx, .poll = nvme_fc_poll, .timeout = nvme_fc_timeout, }; static const struct blk_mq_ops nvme_fc_admin_mq_ops = { .queue_rq = nvme_fc_queue_rq, .complete = nvme_fc_complete_rq, .init_request = nvme_fc_init_admin_request, .exit_request = nvme_fc_exit_request, .reinit_request = nvme_fc_reinit_request, .init_hctx = nvme_fc_init_admin_hctx, .timeout = nvme_fc_timeout, }; static int nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl) { u32 segs; int error; nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH); error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], NVME_FC_AQ_BLKMQ_DEPTH, (NVME_FC_AQ_BLKMQ_DEPTH / 4)); if (error) return error; memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH; ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + (SG_CHUNK_SIZE * sizeof(struct scatterlist)) + ctrl->lport->ops->fcprqst_priv_sz; ctrl->admin_tag_set.driver_data = ctrl; ctrl->admin_tag_set.nr_hw_queues = 1; ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); if (error) goto out_free_queue; ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); if (IS_ERR(ctrl->ctrl.admin_q)) { error = PTR_ERR(ctrl->ctrl.admin_q); goto out_free_tagset; } error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, NVME_FC_AQ_BLKMQ_DEPTH); if (error) goto out_cleanup_queue; error = nvmf_connect_admin_queue(&ctrl->ctrl); if (error) goto out_delete_hw_queue; error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); if (error) { dev_err(ctrl->ctrl.device, "prop_get NVME_REG_CAP failed\n"); goto out_delete_hw_queue; } ctrl->ctrl.sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); if (error) goto out_delete_hw_queue; segs = min_t(u32, NVME_FC_MAX_SEGMENTS, ctrl->lport->ops->max_sgl_segments); ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9); error = nvme_init_identify(&ctrl->ctrl); if (error) goto out_delete_hw_queue; nvme_start_keep_alive(&ctrl->ctrl); return 0; out_delete_hw_queue: __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); out_cleanup_queue: blk_cleanup_queue(ctrl->ctrl.admin_q); out_free_tagset: blk_mq_free_tag_set(&ctrl->admin_tag_set); out_free_queue: nvme_fc_free_queue(&ctrl->queues[0]); return error; } /* * This routine is used by the transport when it needs to find active * io on a queue that is to be terminated. The transport uses * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke * this routine to kill them on a 1 by 1 basis. * * As FC allocates FC exchange for each io, the transport must contact * the LLDD to terminate the exchange, thus releasing the FC exchange. * After terminating the exchange the LLDD will call the transport's * normal io done path for the request, but it will have an aborted * status. The done path will return the io request back to the block * layer with an error status. */ static void nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) { struct nvme_ctrl *nctrl = data; struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); int status; if (!blk_mq_request_started(req)) return; /* this performs an ABTS-LS on the FC exchange for the io */ status = __nvme_fc_abort_op(ctrl, op); /* * if __nvme_fc_abort_op failed: io wasn't active to abort * consider it done. Assume completion path already completing * in parallel */ if (status) /* io wasn't active to abort consider it done */ /* assume completion path already completing in parallel */ return; } /* * This routine stops operation of the controller. Admin and IO queues * are stopped, outstanding ios on them terminated, and the nvme ctrl * is shutdown. */ static void nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl) { /* * If io queues are present, stop them and terminate all outstanding * ios on them. As FC allocates FC exchange for each io, the * transport must contact the LLDD to terminate the exchange, * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() * to tell us what io's are busy and invoke a transport routine * to kill them with the LLDD. After terminating the exchange * the LLDD will call the transport's normal io done path, but it * will have an aborted status. The done path will return the * io requests back to the block layer as part of normal completions * (but with error status). */ if (ctrl->queue_count > 1) { nvme_stop_queues(&ctrl->ctrl); blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_fc_terminate_exchange, &ctrl->ctrl); } if (ctrl->ctrl.state == NVME_CTRL_LIVE) nvme_shutdown_ctrl(&ctrl->ctrl); /* * now clean up the admin queue. Same thing as above. * use blk_mq_tagset_busy_itr() and the transport routine to * terminate the exchanges. */ blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_fc_terminate_exchange, &ctrl->ctrl); } /* * Called to teardown an association. * May be called with association fully in place or partially in place. */ static void __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl) { nvme_stop_keep_alive(&ctrl->ctrl); /* stop and terminate ios on admin and io queues */ nvme_fc_shutdown_ctrl(ctrl); /* * tear down the controller * This will result in the last reference on the nvme ctrl to * expire, calling the transport nvme_fc_free_nvme_ctrl() callback. * From there, the transport will tear down it's logical queues and * association. */ nvme_uninit_ctrl(&ctrl->ctrl); nvme_put_ctrl(&ctrl->ctrl); } static void nvme_fc_del_ctrl_work(struct work_struct *work) { struct nvme_fc_ctrl *ctrl = container_of(work, struct nvme_fc_ctrl, delete_work); __nvme_fc_remove_ctrl(ctrl); } static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl) { if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) return -EBUSY; if (!queue_work(nvme_fc_wq, &ctrl->delete_work)) return -EBUSY; return 0; } /* * Request from nvme core layer to delete the controller */ static int nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl) { struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); struct nvme_fc_rport *rport = ctrl->rport; unsigned long flags; int ret; spin_lock_irqsave(&rport->lock, flags); ret = __nvme_fc_del_ctrl(ctrl); spin_unlock_irqrestore(&rport->lock, flags); if (ret) return ret; flush_work(&ctrl->delete_work); return 0; } static int nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl) { return -EIO; } static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { .name = "fc", .module = THIS_MODULE, .is_fabrics = true, .reg_read32 = nvmf_reg_read32, .reg_read64 = nvmf_reg_read64, .reg_write32 = nvmf_reg_write32, .reset_ctrl = nvme_fc_reset_nvme_ctrl, .free_ctrl = nvme_fc_free_nvme_ctrl, .submit_async_event = nvme_fc_submit_async_event, .delete_ctrl = nvme_fc_del_nvme_ctrl, .get_subsysnqn = nvmf_get_subsysnqn, .get_address = nvmf_get_address, }; static int nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; int ret; ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); if (ret) { dev_info(ctrl->ctrl.device, "set_queue_count failed: %d\n", ret); return ret; } ctrl->queue_count = opts->nr_io_queues + 1; if (!opts->nr_io_queues) return 0; dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", opts->nr_io_queues); nvme_fc_init_io_queues(ctrl); memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); ctrl->tag_set.ops = &nvme_fc_mq_ops; ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; ctrl->tag_set.reserved_tags = 1; /* fabric connect */ ctrl->tag_set.numa_node = NUMA_NO_NODE; ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + (SG_CHUNK_SIZE * sizeof(struct scatterlist)) + ctrl->lport->ops->fcprqst_priv_sz; ctrl->tag_set.driver_data = ctrl; ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; ctrl->tag_set.timeout = NVME_IO_TIMEOUT; ret = blk_mq_alloc_tag_set(&ctrl->tag_set); if (ret) return ret; ctrl->ctrl.tagset = &ctrl->tag_set; ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); if (IS_ERR(ctrl->ctrl.connect_q)) { ret = PTR_ERR(ctrl->ctrl.connect_q); goto out_free_tag_set; } ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); if (ret) goto out_cleanup_blk_queue; ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); if (ret) goto out_delete_hw_queues; return 0; out_delete_hw_queues: nvme_fc_delete_hw_io_queues(ctrl); out_cleanup_blk_queue: nvme_stop_keep_alive(&ctrl->ctrl); blk_cleanup_queue(ctrl->ctrl.connect_q); out_free_tag_set: blk_mq_free_tag_set(&ctrl->tag_set); nvme_fc_free_io_queues(ctrl); /* force put free routine to ignore io queues */ ctrl->ctrl.tagset = NULL; return ret; } static struct nvme_ctrl * __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) { struct nvme_fc_ctrl *ctrl; unsigned long flags; int ret, idx; bool changed; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) { ret = -ENOMEM; goto out_fail; } idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); if (idx < 0) { ret = -ENOSPC; goto out_free_ctrl; } ctrl->ctrl.opts = opts; INIT_LIST_HEAD(&ctrl->ctrl_list); INIT_LIST_HEAD(&ctrl->ls_req_list); ctrl->lport = lport; ctrl->rport = rport; ctrl->dev = lport->dev; ctrl->state = FCCTRL_INIT; ctrl->cnum = idx; ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); if (ret) goto out_free_ida; get_device(ctrl->dev); kref_init(&ctrl->ref); INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work); spin_lock_init(&ctrl->lock); /* io queue count */ ctrl->queue_count = min_t(unsigned int, opts->nr_io_queues, lport->ops->max_hw_queues); opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */ ctrl->queue_count++; /* +1 for admin queue */ ctrl->ctrl.sqsize = opts->queue_size - 1; ctrl->ctrl.kato = opts->kato; ret = -ENOMEM; ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue), GFP_KERNEL); if (!ctrl->queues) goto out_uninit_ctrl; ret = nvme_fc_configure_admin_queue(ctrl); if (ret) goto out_uninit_ctrl; /* sanity checks */ /* FC-NVME does not have other data in the capsule */ if (ctrl->ctrl.icdoff) { dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", ctrl->ctrl.icdoff); goto out_remove_admin_queue; } /* FC-NVME supports normal SGL Data Block Descriptors */ if (opts->queue_size > ctrl->ctrl.maxcmd) { /* warn if maxcmd is lower than queue_size */ dev_warn(ctrl->ctrl.device, "queue_size %zu > ctrl maxcmd %u, reducing " "to queue_size\n", opts->queue_size, ctrl->ctrl.maxcmd); opts->queue_size = ctrl->ctrl.maxcmd; } ret = nvme_fc_init_aen_ops(ctrl); if (ret) goto out_exit_aen_ops; if (ctrl->queue_count > 1) { ret = nvme_fc_create_io_queues(ctrl); if (ret) goto out_exit_aen_ops; } spin_lock_irqsave(&ctrl->lock, flags); ctrl->state = FCCTRL_ACTIVE; spin_unlock_irqrestore(&ctrl->lock, flags); changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); dev_info(ctrl->ctrl.device, "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", ctrl->cnum, ctrl->ctrl.opts->subsysnqn); kref_get(&ctrl->ctrl.kref); spin_lock_irqsave(&rport->lock, flags); list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); spin_unlock_irqrestore(&rport->lock, flags); if (opts->nr_io_queues) { nvme_queue_scan(&ctrl->ctrl); nvme_queue_async_events(&ctrl->ctrl); } return &ctrl->ctrl; out_exit_aen_ops: nvme_fc_exit_aen_ops(ctrl); out_remove_admin_queue: /* send a Disconnect(association) LS to fc-nvme target */ nvme_fc_xmt_disconnect_assoc(ctrl); nvme_stop_keep_alive(&ctrl->ctrl); nvme_fc_destroy_admin_queue(ctrl); out_uninit_ctrl: nvme_uninit_ctrl(&ctrl->ctrl); nvme_put_ctrl(&ctrl->ctrl); if (ret > 0) ret = -EIO; /* exit via here will follow ctlr ref point callbacks to free */ return ERR_PTR(ret); out_free_ida: ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); out_free_ctrl: kfree(ctrl); out_fail: nvme_fc_rport_put(rport); /* exit via here doesn't follow ctlr ref points */ return ERR_PTR(ret); } enum { FCT_TRADDR_ERR = 0, FCT_TRADDR_WWNN = 1 << 0, FCT_TRADDR_WWPN = 1 << 1, }; struct nvmet_fc_traddr { u64 nn; u64 pn; }; static const match_table_t traddr_opt_tokens = { { FCT_TRADDR_WWNN, "nn-%s" }, { FCT_TRADDR_WWPN, "pn-%s" }, { FCT_TRADDR_ERR, NULL } }; static int nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf) { substring_t args[MAX_OPT_ARGS]; char *options, *o, *p; int token, ret = 0; u64 token64; options = o = kstrdup(buf, GFP_KERNEL); if (!options) return -ENOMEM; while ((p = strsep(&o, ":\n")) != NULL) { if (!*p) continue; token = match_token(p, traddr_opt_tokens, args); switch (token) { case FCT_TRADDR_WWNN: if (match_u64(args, &token64)) { ret = -EINVAL; goto out; } traddr->nn = token64; break; case FCT_TRADDR_WWPN: if (match_u64(args, &token64)) { ret = -EINVAL; goto out; } traddr->pn = token64; break; default: pr_warn("unknown traddr token or missing value '%s'\n", p); ret = -EINVAL; goto out; } } out: kfree(options); return ret; } static struct nvme_ctrl * nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_fc_lport *lport; struct nvme_fc_rport *rport; struct nvmet_fc_traddr laddr = { 0L, 0L }; struct nvmet_fc_traddr raddr = { 0L, 0L }; unsigned long flags; int ret; ret = nvme_fc_parse_address(&raddr, opts->traddr); if (ret || !raddr.nn || !raddr.pn) return ERR_PTR(-EINVAL); ret = nvme_fc_parse_address(&laddr, opts->host_traddr); if (ret || !laddr.nn || !laddr.pn) return ERR_PTR(-EINVAL); /* find the host and remote ports to connect together */ spin_lock_irqsave(&nvme_fc_lock, flags); list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { if (lport->localport.node_name != laddr.nn || lport->localport.port_name != laddr.pn) continue; list_for_each_entry(rport, &lport->endp_list, endp_list) { if (rport->remoteport.node_name != raddr.nn || rport->remoteport.port_name != raddr.pn) continue; /* if fail to get reference fall through. Will error */ if (!nvme_fc_rport_get(rport)) break; spin_unlock_irqrestore(&nvme_fc_lock, flags); return __nvme_fc_create_ctrl(dev, opts, lport, rport); } } spin_unlock_irqrestore(&nvme_fc_lock, flags); return ERR_PTR(-ENOENT); } static struct nvmf_transport_ops nvme_fc_transport = { .name = "fc", .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, .allowed_opts = NVMF_OPT_RECONNECT_DELAY, .create_ctrl = nvme_fc_create_ctrl, }; static int __init nvme_fc_init_module(void) { int ret; nvme_fc_wq = create_workqueue("nvme_fc_wq"); if (!nvme_fc_wq) return -ENOMEM; ret = nvmf_register_transport(&nvme_fc_transport); if (ret) goto err; return 0; err: destroy_workqueue(nvme_fc_wq); return ret; } static void __exit nvme_fc_exit_module(void) { /* sanity check - all lports should be removed */ if (!list_empty(&nvme_fc_lport_list)) pr_warn("%s: localport list not empty\n", __func__); nvmf_unregister_transport(&nvme_fc_transport); destroy_workqueue(nvme_fc_wq); ida_destroy(&nvme_fc_local_port_cnt); ida_destroy(&nvme_fc_ctrl_cnt); } module_init(nvme_fc_init_module); module_exit(nvme_fc_exit_module); MODULE_LICENSE("GPL v2");