/* irq.c: UltraSparc IRQ handling/init/registry. * * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net) * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* UPA nodes send interrupt packet to UltraSparc with first data reg * value low 5 (7 on Starfire) bits holding the IRQ identifier being * delivered. We must translate this into a non-vector IRQ so we can * set the softint on this cpu. * * To make processing these packets efficient and race free we use * an array of irq buckets below. The interrupt vector handler in * entry.S feeds incoming packets into per-cpu pil-indexed lists. * The IVEC handler does not need to act atomically, the PIL dispatch * code uses CAS to get an atomic snapshot of the list and clear it * at the same time. * * If you make changes to ino_bucket, please update hand coded assembler * of the vectored interrupt trap handler(s) in entry.S and sun4v_ivec.S */ struct ino_bucket { /* Next handler in per-CPU IRQ worklist. We know that * bucket pointers have the high 32-bits clear, so to * save space we only store the bits we need. */ /*0x00*/unsigned int irq_chain; /* Virtual interrupt number assigned to this INO. */ /*0x04*/unsigned int virt_irq; }; #define NUM_IVECS (IMAP_INR + 1) struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES))); #define __irq_ino(irq) \ (((struct ino_bucket *)(unsigned long)(irq)) - &ivector_table[0]) #define __bucket(irq) ((struct ino_bucket *)(unsigned long)(irq)) #define __irq(bucket) ((unsigned int)(unsigned long)(bucket)) /* This has to be in the main kernel image, it cannot be * turned into per-cpu data. The reason is that the main * kernel image is locked into the TLB and this structure * is accessed from the vectored interrupt trap handler. If * access to this structure takes a TLB miss it could cause * the 5-level sparc v9 trap stack to overflow. */ #define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist) static unsigned int virt_to_real_irq_table[NR_IRQS]; static unsigned char virt_irq_alloc(unsigned int real_irq) { unsigned char ent; BUILD_BUG_ON(NR_IRQS >= 256); for (ent = 1; ent < NR_IRQS; ent++) { if (!virt_to_real_irq_table[ent]) break; } if (ent >= NR_IRQS) { printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); return 0; } virt_to_real_irq_table[ent] = real_irq; return ent; } #ifdef CONFIG_PCI_MSI static void virt_irq_free(unsigned int virt_irq) { unsigned int real_irq; if (virt_irq >= NR_IRQS) return; real_irq = virt_to_real_irq_table[virt_irq]; virt_to_real_irq_table[virt_irq] = 0; __bucket(real_irq)->virt_irq = 0; } #endif static unsigned int virt_to_real_irq(unsigned char virt_irq) { return virt_to_real_irq_table[virt_irq]; } /* * /proc/interrupts printing: */ int show_interrupts(struct seq_file *p, void *v) { int i = *(loff_t *) v, j; struct irqaction * action; unsigned long flags; if (i == 0) { seq_printf(p, " "); for_each_online_cpu(j) seq_printf(p, "CPU%d ",j); seq_putc(p, '\n'); } if (i < NR_IRQS) { spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (!action) goto skip; seq_printf(p, "%3d: ",i); #ifndef CONFIG_SMP seq_printf(p, "%10u ", kstat_irqs(i)); #else for_each_online_cpu(j) seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); #endif seq_printf(p, " %9s", irq_desc[i].chip->typename); seq_printf(p, " %s", action->name); for (action=action->next; action; action = action->next) seq_printf(p, ", %s", action->name); seq_putc(p, '\n'); skip: spin_unlock_irqrestore(&irq_desc[i].lock, flags); } return 0; } static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) { unsigned int tid; if (this_is_starfire) { tid = starfire_translate(imap, cpuid); tid <<= IMAP_TID_SHIFT; tid &= IMAP_TID_UPA; } else { if (tlb_type == cheetah || tlb_type == cheetah_plus) { unsigned long ver; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32UL) == __JALAPENO_ID || (ver >> 32UL) == __SERRANO_ID) { tid = cpuid << IMAP_TID_SHIFT; tid &= IMAP_TID_JBUS; } else { unsigned int a = cpuid & 0x1f; unsigned int n = (cpuid >> 5) & 0x1f; tid = ((a << IMAP_AID_SHIFT) | (n << IMAP_NID_SHIFT)); tid &= (IMAP_AID_SAFARI | IMAP_NID_SAFARI);; } } else { tid = cpuid << IMAP_TID_SHIFT; tid &= IMAP_TID_UPA; } } return tid; } struct irq_handler_data { unsigned long iclr; unsigned long imap; void (*pre_handler)(unsigned int, void *, void *); void *pre_handler_arg1; void *pre_handler_arg2; }; static inline struct ino_bucket *virt_irq_to_bucket(unsigned int virt_irq) { unsigned int real_irq = virt_to_real_irq(virt_irq); struct ino_bucket *bucket = NULL; if (likely(real_irq)) bucket = __bucket(real_irq); return bucket; } #ifdef CONFIG_SMP static int irq_choose_cpu(unsigned int virt_irq) { cpumask_t mask = irq_desc[virt_irq].affinity; int cpuid; if (cpus_equal(mask, CPU_MASK_ALL)) { static int irq_rover; static DEFINE_SPINLOCK(irq_rover_lock); unsigned long flags; /* Round-robin distribution... */ do_round_robin: spin_lock_irqsave(&irq_rover_lock, flags); while (!cpu_online(irq_rover)) { if (++irq_rover >= NR_CPUS) irq_rover = 0; } cpuid = irq_rover; do { if (++irq_rover >= NR_CPUS) irq_rover = 0; } while (!cpu_online(irq_rover)); spin_unlock_irqrestore(&irq_rover_lock, flags); } else { cpumask_t tmp; cpus_and(tmp, cpu_online_map, mask); if (cpus_empty(tmp)) goto do_round_robin; cpuid = first_cpu(tmp); } return cpuid; } #else static int irq_choose_cpu(unsigned int virt_irq) { return real_hard_smp_processor_id(); } #endif static void sun4u_irq_enable(unsigned int virt_irq) { struct irq_handler_data *data = get_irq_chip_data(virt_irq); if (likely(data)) { unsigned long cpuid, imap, val; unsigned int tid; cpuid = irq_choose_cpu(virt_irq); imap = data->imap; tid = sun4u_compute_tid(imap, cpuid); val = upa_readq(imap); val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | IMAP_AID_SAFARI | IMAP_NID_SAFARI); val |= tid | IMAP_VALID; upa_writeq(val, imap); } } static void sun4u_irq_disable(unsigned int virt_irq) { struct irq_handler_data *data = get_irq_chip_data(virt_irq); if (likely(data)) { unsigned long imap = data->imap; u32 tmp = upa_readq(imap); tmp &= ~IMAP_VALID; upa_writeq(tmp, imap); } } static void sun4u_irq_end(unsigned int virt_irq) { struct irq_handler_data *data = get_irq_chip_data(virt_irq); if (likely(data)) upa_writeq(ICLR_IDLE, data->iclr); } static void sun4v_irq_enable(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = bucket - &ivector_table[0]; if (likely(bucket)) { unsigned long cpuid; int err; cpuid = irq_choose_cpu(virt_irq); err = sun4v_intr_settarget(ino, cpuid); if (err != HV_EOK) printk("sun4v_intr_settarget(%x,%lu): err(%d)\n", ino, cpuid, err); err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); if (err != HV_EOK) printk("sun4v_intr_setenabled(%x): err(%d)\n", ino, err); } } static void sun4v_irq_disable(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = bucket - &ivector_table[0]; if (likely(bucket)) { int err; err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); if (err != HV_EOK) printk("sun4v_intr_setenabled(%x): " "err(%d)\n", ino, err); } } #ifdef CONFIG_PCI_MSI static void sun4v_msi_enable(unsigned int virt_irq) { sun4v_irq_enable(virt_irq); unmask_msi_irq(virt_irq); } static void sun4v_msi_disable(unsigned int virt_irq) { mask_msi_irq(virt_irq); sun4v_irq_disable(virt_irq); } #endif static void sun4v_irq_end(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = bucket - &ivector_table[0]; if (likely(bucket)) { int err; err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); if (err != HV_EOK) printk("sun4v_intr_setstate(%x): " "err(%d)\n", ino, err); } } static void sun4v_virq_enable(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = bucket - &ivector_table[0]; if (likely(bucket)) { unsigned long cpuid, dev_handle, dev_ino; int err; cpuid = irq_choose_cpu(virt_irq); dev_handle = ino & IMAP_IGN; dev_ino = ino & IMAP_INO; err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); if (err != HV_EOK) printk("sun4v_vintr_set_target(%lx,%lx,%lu): " "err(%d)\n", dev_handle, dev_ino, cpuid, err); err = sun4v_vintr_set_state(dev_handle, dev_ino, HV_INTR_ENABLED); if (err != HV_EOK) printk("sun4v_vintr_set_state(%lx,%lx," "HV_INTR_ENABLED): err(%d)\n", dev_handle, dev_ino, err); } } static void sun4v_virq_disable(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = bucket - &ivector_table[0]; if (likely(bucket)) { unsigned long dev_handle, dev_ino; int err; dev_handle = ino & IMAP_IGN; dev_ino = ino & IMAP_INO; err = sun4v_vintr_set_state(dev_handle, dev_ino, HV_INTR_DISABLED); if (err != HV_EOK) printk("sun4v_vintr_set_state(%lx,%lx," "HV_INTR_DISABLED): err(%d)\n", dev_handle, dev_ino, err); } } static void sun4v_virq_end(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = bucket - &ivector_table[0]; if (likely(bucket)) { unsigned long dev_handle, dev_ino; int err; dev_handle = ino & IMAP_IGN; dev_ino = ino & IMAP_INO; err = sun4v_vintr_set_state(dev_handle, dev_ino, HV_INTR_STATE_IDLE); if (err != HV_EOK) printk("sun4v_vintr_set_state(%lx,%lx," "HV_INTR_STATE_IDLE): err(%d)\n", dev_handle, dev_ino, err); } } static void run_pre_handler(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); struct irq_handler_data *data = get_irq_chip_data(virt_irq); if (likely(data->pre_handler)) { data->pre_handler(__irq_ino(__irq(bucket)), data->pre_handler_arg1, data->pre_handler_arg2); } } static struct irq_chip sun4u_irq = { .typename = "sun4u", .enable = sun4u_irq_enable, .disable = sun4u_irq_disable, .end = sun4u_irq_end, }; static struct irq_chip sun4u_irq_ack = { .typename = "sun4u+ack", .enable = sun4u_irq_enable, .disable = sun4u_irq_disable, .ack = run_pre_handler, .end = sun4u_irq_end, }; static struct irq_chip sun4v_irq = { .typename = "sun4v", .enable = sun4v_irq_enable, .disable = sun4v_irq_disable, .end = sun4v_irq_end, }; static struct irq_chip sun4v_irq_ack = { .typename = "sun4v+ack", .enable = sun4v_irq_enable, .disable = sun4v_irq_disable, .ack = run_pre_handler, .end = sun4v_irq_end, }; #ifdef CONFIG_PCI_MSI static struct irq_chip sun4v_msi = { .typename = "sun4v+msi", .mask = mask_msi_irq, .unmask = unmask_msi_irq, .enable = sun4v_msi_enable, .disable = sun4v_msi_disable, .ack = run_pre_handler, .end = sun4v_irq_end, }; #endif static struct irq_chip sun4v_virq = { .typename = "vsun4v", .enable = sun4v_virq_enable, .disable = sun4v_virq_disable, .end = sun4v_virq_end, }; static struct irq_chip sun4v_virq_ack = { .typename = "vsun4v+ack", .enable = sun4v_virq_enable, .disable = sun4v_virq_disable, .ack = run_pre_handler, .end = sun4v_virq_end, }; void irq_install_pre_handler(int virt_irq, void (*func)(unsigned int, void *, void *), void *arg1, void *arg2) { struct irq_handler_data *data = get_irq_chip_data(virt_irq); struct irq_chip *chip; data->pre_handler = func; data->pre_handler_arg1 = arg1; data->pre_handler_arg2 = arg2; chip = get_irq_chip(virt_irq); if (chip == &sun4u_irq_ack || chip == &sun4v_irq_ack || chip == &sun4v_virq_ack #ifdef CONFIG_PCI_MSI || chip == &sun4v_msi #endif ) return; chip = (chip == &sun4u_irq ? &sun4u_irq_ack : (chip == &sun4v_irq ? &sun4v_irq_ack : &sun4v_virq_ack)); set_irq_chip(virt_irq, chip); } unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) { struct ino_bucket *bucket; struct irq_handler_data *data; int ino; BUG_ON(tlb_type == hypervisor); ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; bucket = &ivector_table[ino]; if (!bucket->virt_irq) { bucket->virt_irq = virt_irq_alloc(__irq(bucket)); set_irq_chip(bucket->virt_irq, &sun4u_irq); } data = get_irq_chip_data(bucket->virt_irq); if (unlikely(data)) goto out; data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); if (unlikely(!data)) { prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); prom_halt(); } set_irq_chip_data(bucket->virt_irq, data); data->imap = imap; data->iclr = iclr; out: return bucket->virt_irq; } static unsigned int sun4v_build_common(unsigned long sysino, struct irq_chip *chip) { struct ino_bucket *bucket; struct irq_handler_data *data; BUG_ON(tlb_type != hypervisor); bucket = &ivector_table[sysino]; if (!bucket->virt_irq) { bucket->virt_irq = virt_irq_alloc(__irq(bucket)); set_irq_chip(bucket->virt_irq, chip); } data = get_irq_chip_data(bucket->virt_irq); if (unlikely(data)) goto out; data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); if (unlikely(!data)) { prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); prom_halt(); } set_irq_chip_data(bucket->virt_irq, data); /* Catch accidental accesses to these things. IMAP/ICLR handling * is done by hypervisor calls on sun4v platforms, not by direct * register accesses. */ data->imap = ~0UL; data->iclr = ~0UL; out: return bucket->virt_irq; } unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) { unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); return sun4v_build_common(sysino, &sun4v_irq); } unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) { unsigned long sysino, hv_err; BUG_ON(devhandle & ~IMAP_IGN); BUG_ON(devino & ~IMAP_INO); sysino = devhandle | devino; hv_err = sun4v_vintr_set_cookie(devhandle, devino, sysino); if (hv_err) { prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] " "err=%lu\n", devhandle, devino, hv_err); prom_halt(); } return sun4v_build_common(sysino, &sun4v_virq); } #ifdef CONFIG_PCI_MSI unsigned int sun4v_build_msi(u32 devhandle, unsigned int *virt_irq_p, unsigned int msi_start, unsigned int msi_end) { struct ino_bucket *bucket; struct irq_handler_data *data; unsigned long sysino; unsigned int devino; BUG_ON(tlb_type != hypervisor); /* Find a free devino in the given range. */ for (devino = msi_start; devino < msi_end; devino++) { sysino = sun4v_devino_to_sysino(devhandle, devino); bucket = &ivector_table[sysino]; if (!bucket->virt_irq) break; } if (devino >= msi_end) return 0; sysino = sun4v_devino_to_sysino(devhandle, devino); bucket = &ivector_table[sysino]; bucket->virt_irq = virt_irq_alloc(__irq(bucket)); *virt_irq_p = bucket->virt_irq; set_irq_chip(bucket->virt_irq, &sun4v_msi); data = get_irq_chip_data(bucket->virt_irq); if (unlikely(data)) return devino; data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); if (unlikely(!data)) { prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); prom_halt(); } set_irq_chip_data(bucket->virt_irq, data); data->imap = ~0UL; data->iclr = ~0UL; return devino; } void sun4v_destroy_msi(unsigned int virt_irq) { virt_irq_free(virt_irq); } #endif void ack_bad_irq(unsigned int virt_irq) { struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq); unsigned int ino = 0xdeadbeef; if (bucket) ino = bucket - &ivector_table[0]; printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n", ino, virt_irq); } void handler_irq(int irq, struct pt_regs *regs) { struct ino_bucket *bucket; struct pt_regs *old_regs; clear_softint(1 << irq); old_regs = set_irq_regs(regs); irq_enter(); /* Sliiiick... */ bucket = __bucket(xchg32(irq_work(smp_processor_id()), 0)); while (bucket) { struct ino_bucket *next = __bucket(bucket->irq_chain); bucket->irq_chain = 0; __do_IRQ(bucket->virt_irq); bucket = next; } irq_exit(); set_irq_regs(old_regs); } struct sun5_timer { u64 count0; u64 limit0; u64 count1; u64 limit1; }; static struct sun5_timer *prom_timers; static u64 prom_limit0, prom_limit1; static void map_prom_timers(void) { struct device_node *dp; const unsigned int *addr; /* PROM timer node hangs out in the top level of device siblings... */ dp = of_find_node_by_path("/"); dp = dp->child; while (dp) { if (!strcmp(dp->name, "counter-timer")) break; dp = dp->sibling; } /* Assume if node is not present, PROM uses different tick mechanism * which we should not care about. */ if (!dp) { prom_timers = (struct sun5_timer *) 0; return; } /* If PROM is really using this, it must be mapped by him. */ addr = of_get_property(dp, "address", NULL); if (!addr) { prom_printf("PROM does not have timer mapped, trying to continue.\n"); prom_timers = (struct sun5_timer *) 0; return; } prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); } static void kill_prom_timer(void) { if (!prom_timers) return; /* Save them away for later. */ prom_limit0 = prom_timers->limit0; prom_limit1 = prom_timers->limit1; /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. * We turn both off here just to be paranoid. */ prom_timers->limit0 = 0; prom_timers->limit1 = 0; /* Wheee, eat the interrupt packet too... */ __asm__ __volatile__( " mov 0x40, %%g2\n" " ldxa [%%g0] %0, %%g1\n" " ldxa [%%g2] %1, %%g1\n" " stxa %%g0, [%%g0] %0\n" " membar #Sync\n" : /* no outputs */ : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) : "g1", "g2"); } void init_irqwork_curcpu(void) { int cpu = hard_smp_processor_id(); trap_block[cpu].irq_worklist = 0; } /* Please be very careful with register_one_mondo() and * sun4v_register_mondo_queues(). * * On SMP this gets invoked from the CPU trampoline before * the cpu has fully taken over the trap table from OBP, * and it's kernel stack + %g6 thread register state is * not fully cooked yet. * * Therefore you cannot make any OBP calls, not even prom_printf, * from these two routines. */ static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) { unsigned long num_entries = (qmask + 1) / 64; unsigned long status; status = sun4v_cpu_qconf(type, paddr, num_entries); if (status != HV_EOK) { prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " "err %lu\n", type, paddr, num_entries, status); prom_halt(); } } static void __cpuinit sun4v_register_mondo_queues(int this_cpu) { struct trap_per_cpu *tb = &trap_block[this_cpu]; register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, tb->cpu_mondo_qmask); register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, tb->dev_mondo_qmask); register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, tb->resum_qmask); register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, tb->nonresum_qmask); } static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask, int use_bootmem) { unsigned long size = PAGE_ALIGN(qmask + 1); unsigned long order = get_order(size); void *p = NULL; if (use_bootmem) { p = __alloc_bootmem_low(size, size, 0); } else { struct page *page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, order); if (page) p = page_address(page); } if (!p) { prom_printf("SUN4V: Error, cannot allocate mondo queue.\n"); prom_halt(); } *pa_ptr = __pa(p); } static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask, int use_bootmem) { unsigned long size = PAGE_ALIGN(qmask + 1); unsigned long order = get_order(size); void *p = NULL; if (use_bootmem) { p = __alloc_bootmem_low(size, size, 0); } else { struct page *page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, order); if (page) p = page_address(page); } if (!p) { prom_printf("SUN4V: Error, cannot allocate kbuf page.\n"); prom_halt(); } *pa_ptr = __pa(p); } static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem) { #ifdef CONFIG_SMP void *page; BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64)); if (use_bootmem) page = alloc_bootmem_low_pages(PAGE_SIZE); else page = (void *) get_zeroed_page(GFP_ATOMIC); if (!page) { prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n"); prom_halt(); } tb->cpu_mondo_block_pa = __pa(page); tb->cpu_list_pa = __pa(page + 64); #endif } /* Allocate and register the mondo and error queues for this cpu. */ void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load) { struct trap_per_cpu *tb = &trap_block[cpu]; if (alloc) { alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask, use_bootmem); alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask, use_bootmem); alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask, use_bootmem); alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask, use_bootmem); alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask, use_bootmem); alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, tb->nonresum_qmask, use_bootmem); init_cpu_send_mondo_info(tb, use_bootmem); } if (load) { if (cpu != hard_smp_processor_id()) { prom_printf("SUN4V: init mondo on cpu %d not %d\n", cpu, hard_smp_processor_id()); prom_halt(); } sun4v_register_mondo_queues(cpu); } } static struct irqaction timer_irq_action = { .name = "timer", }; /* Only invoked on boot processor. */ void __init init_IRQ(void) { map_prom_timers(); kill_prom_timer(); memset(&ivector_table[0], 0, sizeof(ivector_table)); if (tlb_type == hypervisor) sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1); /* We need to clear any IRQ's pending in the soft interrupt * registers, a spurious one could be left around from the * PROM timer which we just disabled. */ clear_softint(get_softint()); /* Now that ivector table is initialized, it is safe * to receive IRQ vector traps. We will normally take * one or two right now, in case some device PROM used * to boot us wants to speak to us. We just ignore them. */ __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" "or %%g1, %0, %%g1\n\t" "wrpr %%g1, 0x0, %%pstate" : /* No outputs */ : "i" (PSTATE_IE) : "g1"); irq_desc[0].action = &timer_irq_action; }