/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * Copyright (c) 2012 Red Hat, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_trans.h" #include "xfs_extfree_item.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_bmap_btree.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_trans_space.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_log.h" /* Kernel only BMAP related definitions and functions */ /* * Convert the given file system block to a disk block. We have to treat it * differently based on whether the file is a real time file or not, because the * bmap code does. */ xfs_daddr_t xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) { return (XFS_IS_REALTIME_INODE(ip) ? \ (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); } /* * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi * caller. Frees all the extents that need freeing, which must be done * last due to locking considerations. We never free any extents in * the first transaction. * * Return 1 if the given transaction was committed and a new one * started, and 0 otherwise in the committed parameter. */ int /* error */ xfs_bmap_finish( xfs_trans_t **tp, /* transaction pointer addr */ xfs_bmap_free_t *flist, /* i/o: list extents to free */ int *committed) /* xact committed or not */ { xfs_efd_log_item_t *efd; /* extent free data */ xfs_efi_log_item_t *efi; /* extent free intention */ int error; /* error return value */ xfs_bmap_free_item_t *free; /* free extent item */ xfs_mount_t *mp; /* filesystem mount structure */ xfs_bmap_free_item_t *next; /* next item on free list */ ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); if (flist->xbf_count == 0) { *committed = 0; return 0; } efi = xfs_trans_get_efi(*tp, flist->xbf_count); for (free = flist->xbf_first; free; free = free->xbfi_next) xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock, free->xbfi_blockcount); error = xfs_trans_roll(tp, NULL); *committed = 1; /* * We have a new transaction, so we should return committed=1, * even though we're returning an error. */ if (error) return error; efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count); for (free = flist->xbf_first; free != NULL; free = next) { next = free->xbfi_next; if ((error = xfs_free_extent(*tp, free->xbfi_startblock, free->xbfi_blockcount))) { /* * The bmap free list will be cleaned up at a * higher level. The EFI will be canceled when * this transaction is aborted. * Need to force shutdown here to make sure it * happens, since this transaction may not be * dirty yet. */ mp = (*tp)->t_mountp; if (!XFS_FORCED_SHUTDOWN(mp)) xfs_force_shutdown(mp, (error == -EFSCORRUPTED) ? SHUTDOWN_CORRUPT_INCORE : SHUTDOWN_META_IO_ERROR); return error; } xfs_trans_log_efd_extent(*tp, efd, free->xbfi_startblock, free->xbfi_blockcount); xfs_bmap_del_free(flist, NULL, free); } return 0; } int xfs_bmap_rtalloc( struct xfs_bmalloca *ap) /* bmap alloc argument struct */ { xfs_alloctype_t atype = 0; /* type for allocation routines */ int error; /* error return value */ xfs_mount_t *mp; /* mount point structure */ xfs_extlen_t prod = 0; /* product factor for allocators */ xfs_extlen_t ralen = 0; /* realtime allocation length */ xfs_extlen_t align; /* minimum allocation alignment */ xfs_rtblock_t rtb; mp = ap->ip->i_mount; align = xfs_get_extsz_hint(ap->ip); prod = align / mp->m_sb.sb_rextsize; error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, align, 1, ap->eof, 0, ap->conv, &ap->offset, &ap->length); if (error) return error; ASSERT(ap->length); ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); /* * If the offset & length are not perfectly aligned * then kill prod, it will just get us in trouble. */ if (do_mod(ap->offset, align) || ap->length % align) prod = 1; /* * Set ralen to be the actual requested length in rtextents. */ ralen = ap->length / mp->m_sb.sb_rextsize; /* * If the old value was close enough to MAXEXTLEN that * we rounded up to it, cut it back so it's valid again. * Note that if it's a really large request (bigger than * MAXEXTLEN), we don't hear about that number, and can't * adjust the starting point to match it. */ if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; /* * Lock out other modifications to the RT bitmap inode. */ xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL); xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); /* * If it's an allocation to an empty file at offset 0, * pick an extent that will space things out in the rt area. */ if (ap->eof && ap->offset == 0) { xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); if (error) return error; ap->blkno = rtx * mp->m_sb.sb_rextsize; } else { ap->blkno = 0; } xfs_bmap_adjacent(ap); /* * Realtime allocation, done through xfs_rtallocate_extent. */ atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO; do_div(ap->blkno, mp->m_sb.sb_rextsize); rtb = ap->blkno; ap->length = ralen; if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, &ralen, atype, ap->wasdel, prod, &rtb))) return error; if (rtb == NULLFSBLOCK && prod > 1 && (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, &ralen, atype, ap->wasdel, 1, &rtb))) return error; ap->blkno = rtb; if (ap->blkno != NULLFSBLOCK) { ap->blkno *= mp->m_sb.sb_rextsize; ralen *= mp->m_sb.sb_rextsize; ap->length = ralen; ap->ip->i_d.di_nblocks += ralen; xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); if (ap->wasdel) ap->ip->i_delayed_blks -= ralen; /* * Adjust the disk quota also. This was reserved * earlier. */ xfs_trans_mod_dquot_byino(ap->tp, ap->ip, ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : XFS_TRANS_DQ_RTBCOUNT, (long) ralen); } else { ap->length = 0; } return 0; } /* * Check if the endoff is outside the last extent. If so the caller will grow * the allocation to a stripe unit boundary. All offsets are considered outside * the end of file for an empty fork, so 1 is returned in *eof in that case. */ int xfs_bmap_eof( struct xfs_inode *ip, xfs_fileoff_t endoff, int whichfork, int *eof) { struct xfs_bmbt_irec rec; int error; error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); if (error || *eof) return error; *eof = endoff >= rec.br_startoff + rec.br_blockcount; return 0; } /* * Extent tree block counting routines. */ /* * Count leaf blocks given a range of extent records. */ STATIC void xfs_bmap_count_leaves( xfs_ifork_t *ifp, xfs_extnum_t idx, int numrecs, int *count) { int b; for (b = 0; b < numrecs; b++) { xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b); *count += xfs_bmbt_get_blockcount(frp); } } /* * Count leaf blocks given a range of extent records originally * in btree format. */ STATIC void xfs_bmap_disk_count_leaves( struct xfs_mount *mp, struct xfs_btree_block *block, int numrecs, int *count) { int b; xfs_bmbt_rec_t *frp; for (b = 1; b <= numrecs; b++) { frp = XFS_BMBT_REC_ADDR(mp, block, b); *count += xfs_bmbt_disk_get_blockcount(frp); } } /* * Recursively walks each level of a btree * to count total fsblocks in use. */ STATIC int /* error */ xfs_bmap_count_tree( xfs_mount_t *mp, /* file system mount point */ xfs_trans_t *tp, /* transaction pointer */ xfs_ifork_t *ifp, /* inode fork pointer */ xfs_fsblock_t blockno, /* file system block number */ int levelin, /* level in btree */ int *count) /* Count of blocks */ { int error; xfs_buf_t *bp, *nbp; int level = levelin; __be64 *pp; xfs_fsblock_t bno = blockno; xfs_fsblock_t nextbno; struct xfs_btree_block *block, *nextblock; int numrecs; error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, &xfs_bmbt_buf_ops); if (error) return error; *count += 1; block = XFS_BUF_TO_BLOCK(bp); if (--level) { /* Not at node above leaves, count this level of nodes */ nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); while (nextbno != NULLFSBLOCK) { error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, XFS_BMAP_BTREE_REF, &xfs_bmbt_buf_ops); if (error) return error; *count += 1; nextblock = XFS_BUF_TO_BLOCK(nbp); nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); xfs_trans_brelse(tp, nbp); } /* Dive to the next level */ pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); bno = be64_to_cpu(*pp); if (unlikely((error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) { xfs_trans_brelse(tp, bp); XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", XFS_ERRLEVEL_LOW, mp); return -EFSCORRUPTED; } xfs_trans_brelse(tp, bp); } else { /* count all level 1 nodes and their leaves */ for (;;) { nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); numrecs = be16_to_cpu(block->bb_numrecs); xfs_bmap_disk_count_leaves(mp, block, numrecs, count); xfs_trans_brelse(tp, bp); if (nextbno == NULLFSBLOCK) break; bno = nextbno; error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, &xfs_bmbt_buf_ops); if (error) return error; *count += 1; block = XFS_BUF_TO_BLOCK(bp); } } return 0; } /* * Count fsblocks of the given fork. */ int /* error */ xfs_bmap_count_blocks( xfs_trans_t *tp, /* transaction pointer */ xfs_inode_t *ip, /* incore inode */ int whichfork, /* data or attr fork */ int *count) /* out: count of blocks */ { struct xfs_btree_block *block; /* current btree block */ xfs_fsblock_t bno; /* block # of "block" */ xfs_ifork_t *ifp; /* fork structure */ int level; /* btree level, for checking */ xfs_mount_t *mp; /* file system mount structure */ __be64 *pp; /* pointer to block address */ bno = NULLFSBLOCK; mp = ip->i_mount; ifp = XFS_IFORK_PTR(ip, whichfork); if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) { xfs_bmap_count_leaves(ifp, 0, ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t), count); return 0; } /* * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. */ block = ifp->if_broot; level = be16_to_cpu(block->bb_level); ASSERT(level > 0); pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); bno = be64_to_cpu(*pp); ASSERT(bno != NULLFSBLOCK); ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) { XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, mp); return -EFSCORRUPTED; } return 0; } /* * returns 1 for success, 0 if we failed to map the extent. */ STATIC int xfs_getbmapx_fix_eof_hole( xfs_inode_t *ip, /* xfs incore inode pointer */ struct getbmapx *out, /* output structure */ int prealloced, /* this is a file with * preallocated data space */ __int64_t end, /* last block requested */ xfs_fsblock_t startblock) { __int64_t fixlen; xfs_mount_t *mp; /* file system mount point */ xfs_ifork_t *ifp; /* inode fork pointer */ xfs_extnum_t lastx; /* last extent pointer */ xfs_fileoff_t fileblock; if (startblock == HOLESTARTBLOCK) { mp = ip->i_mount; out->bmv_block = -1; fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); fixlen -= out->bmv_offset; if (prealloced && out->bmv_offset + out->bmv_length == end) { /* Came to hole at EOF. Trim it. */ if (fixlen <= 0) return 0; out->bmv_length = fixlen; } } else { if (startblock == DELAYSTARTBLOCK) out->bmv_block = -2; else out->bmv_block = xfs_fsb_to_db(ip, startblock); fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1)) out->bmv_oflags |= BMV_OF_LAST; } return 1; } /* * Get inode's extents as described in bmv, and format for output. * Calls formatter to fill the user's buffer until all extents * are mapped, until the passed-in bmv->bmv_count slots have * been filled, or until the formatter short-circuits the loop, * if it is tracking filled-in extents on its own. */ int /* error code */ xfs_getbmap( xfs_inode_t *ip, struct getbmapx *bmv, /* user bmap structure */ xfs_bmap_format_t formatter, /* format to user */ void *arg) /* formatter arg */ { __int64_t bmvend; /* last block requested */ int error = 0; /* return value */ __int64_t fixlen; /* length for -1 case */ int i; /* extent number */ int lock; /* lock state */ xfs_bmbt_irec_t *map; /* buffer for user's data */ xfs_mount_t *mp; /* file system mount point */ int nex; /* # of user extents can do */ int nexleft; /* # of user extents left */ int subnex; /* # of bmapi's can do */ int nmap; /* number of map entries */ struct getbmapx *out; /* output structure */ int whichfork; /* data or attr fork */ int prealloced; /* this is a file with * preallocated data space */ int iflags; /* interface flags */ int bmapi_flags; /* flags for xfs_bmapi */ int cur_ext = 0; mp = ip->i_mount; iflags = bmv->bmv_iflags; whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK; if (whichfork == XFS_ATTR_FORK) { if (XFS_IFORK_Q(ip)) { if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) return -EINVAL; } else if (unlikely( ip->i_d.di_aformat != 0 && ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, ip->i_mount); return -EFSCORRUPTED; } prealloced = 0; fixlen = 1LL << 32; } else { if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && ip->i_d.di_format != XFS_DINODE_FMT_BTREE && ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) return -EINVAL; if (xfs_get_extsz_hint(ip) || ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ prealloced = 1; fixlen = mp->m_super->s_maxbytes; } else { prealloced = 0; fixlen = XFS_ISIZE(ip); } } if (bmv->bmv_length == -1) { fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); bmv->bmv_length = max_t(__int64_t, fixlen - bmv->bmv_offset, 0); } else if (bmv->bmv_length == 0) { bmv->bmv_entries = 0; return 0; } else if (bmv->bmv_length < 0) { return -EINVAL; } nex = bmv->bmv_count - 1; if (nex <= 0) return -EINVAL; bmvend = bmv->bmv_offset + bmv->bmv_length; if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) return -ENOMEM; out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); if (!out) return -ENOMEM; xfs_ilock(ip, XFS_IOLOCK_SHARED); if (whichfork == XFS_DATA_FORK) { if (!(iflags & BMV_IF_DELALLOC) && (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { error = filemap_write_and_wait(VFS_I(ip)->i_mapping); if (error) goto out_unlock_iolock; /* * Even after flushing the inode, there can still be * delalloc blocks on the inode beyond EOF due to * speculative preallocation. These are not removed * until the release function is called or the inode * is inactivated. Hence we cannot assert here that * ip->i_delayed_blks == 0. */ } lock = xfs_ilock_data_map_shared(ip); } else { lock = xfs_ilock_attr_map_shared(ip); } /* * Don't let nex be bigger than the number of extents * we can have assuming alternating holes and real extents. */ if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; bmapi_flags = xfs_bmapi_aflag(whichfork); if (!(iflags & BMV_IF_PREALLOC)) bmapi_flags |= XFS_BMAPI_IGSTATE; /* * Allocate enough space to handle "subnex" maps at a time. */ error = -ENOMEM; subnex = 16; map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); if (!map) goto out_unlock_ilock; bmv->bmv_entries = 0; if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { error = 0; goto out_free_map; } nexleft = nex; do { nmap = (nexleft > subnex) ? subnex : nexleft; error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), XFS_BB_TO_FSB(mp, bmv->bmv_length), map, &nmap, bmapi_flags); if (error) goto out_free_map; ASSERT(nmap <= subnex); for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) { out[cur_ext].bmv_oflags = 0; if (map[i].br_state == XFS_EXT_UNWRITTEN) out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; else if (map[i].br_startblock == DELAYSTARTBLOCK) out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; out[cur_ext].bmv_offset = XFS_FSB_TO_BB(mp, map[i].br_startoff); out[cur_ext].bmv_length = XFS_FSB_TO_BB(mp, map[i].br_blockcount); out[cur_ext].bmv_unused1 = 0; out[cur_ext].bmv_unused2 = 0; /* * delayed allocation extents that start beyond EOF can * occur due to speculative EOF allocation when the * delalloc extent is larger than the largest freespace * extent at conversion time. These extents cannot be * converted by data writeback, so can exist here even * if we are not supposed to be finding delalloc * extents. */ if (map[i].br_startblock == DELAYSTARTBLOCK && map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) ASSERT((iflags & BMV_IF_DELALLOC) != 0); if (map[i].br_startblock == HOLESTARTBLOCK && whichfork == XFS_ATTR_FORK) { /* came to the end of attribute fork */ out[cur_ext].bmv_oflags |= BMV_OF_LAST; goto out_free_map; } if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext], prealloced, bmvend, map[i].br_startblock)) goto out_free_map; bmv->bmv_offset = out[cur_ext].bmv_offset + out[cur_ext].bmv_length; bmv->bmv_length = max_t(__int64_t, 0, bmvend - bmv->bmv_offset); /* * In case we don't want to return the hole, * don't increase cur_ext so that we can reuse * it in the next loop. */ if ((iflags & BMV_IF_NO_HOLES) && map[i].br_startblock == HOLESTARTBLOCK) { memset(&out[cur_ext], 0, sizeof(out[cur_ext])); continue; } nexleft--; bmv->bmv_entries++; cur_ext++; } } while (nmap && nexleft && bmv->bmv_length); out_free_map: kmem_free(map); out_unlock_ilock: xfs_iunlock(ip, lock); out_unlock_iolock: xfs_iunlock(ip, XFS_IOLOCK_SHARED); for (i = 0; i < cur_ext; i++) { int full = 0; /* user array is full */ /* format results & advance arg */ error = formatter(&arg, &out[i], &full); if (error || full) break; } kmem_free(out); return error; } /* * dead simple method of punching delalyed allocation blocks from a range in * the inode. Walks a block at a time so will be slow, but is only executed in * rare error cases so the overhead is not critical. This will always punch out * both the start and end blocks, even if the ranges only partially overlap * them, so it is up to the caller to ensure that partial blocks are not * passed in. */ int xfs_bmap_punch_delalloc_range( struct xfs_inode *ip, xfs_fileoff_t start_fsb, xfs_fileoff_t length) { xfs_fileoff_t remaining = length; int error = 0; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); do { int done; xfs_bmbt_irec_t imap; int nimaps = 1; xfs_fsblock_t firstblock; xfs_bmap_free_t flist; /* * Map the range first and check that it is a delalloc extent * before trying to unmap the range. Otherwise we will be * trying to remove a real extent (which requires a * transaction) or a hole, which is probably a bad idea... */ error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, XFS_BMAPI_ENTIRE); if (error) { /* something screwed, just bail */ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_alert(ip->i_mount, "Failed delalloc mapping lookup ino %lld fsb %lld.", ip->i_ino, start_fsb); } break; } if (!nimaps) { /* nothing there */ goto next_block; } if (imap.br_startblock != DELAYSTARTBLOCK) { /* been converted, ignore */ goto next_block; } WARN_ON(imap.br_blockcount == 0); /* * Note: while we initialise the firstblock/flist pair, they * should never be used because blocks should never be * allocated or freed for a delalloc extent and hence we need * don't cancel or finish them after the xfs_bunmapi() call. */ xfs_bmap_init(&flist, &firstblock); error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, &flist, &done); if (error) break; ASSERT(!flist.xbf_count && !flist.xbf_first); next_block: start_fsb++; remaining--; } while(remaining > 0); return error; } /* * Test whether it is appropriate to check an inode for and free post EOF * blocks. The 'force' parameter determines whether we should also consider * regular files that are marked preallocated or append-only. */ bool xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) { /* prealloc/delalloc exists only on regular files */ if (!S_ISREG(ip->i_d.di_mode)) return false; /* * Zero sized files with no cached pages and delalloc blocks will not * have speculative prealloc/delalloc blocks to remove. */ if (VFS_I(ip)->i_size == 0 && VFS_I(ip)->i_mapping->nrpages == 0 && ip->i_delayed_blks == 0) return false; /* If we haven't read in the extent list, then don't do it now. */ if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) return false; /* * Do not free real preallocated or append-only files unless the file * has delalloc blocks and we are forced to remove them. */ if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) if (!force || ip->i_delayed_blks == 0) return false; return true; } /* * This is called by xfs_inactive to free any blocks beyond eof * when the link count isn't zero and by xfs_dm_punch_hole() when * punching a hole to EOF. */ int xfs_free_eofblocks( xfs_mount_t *mp, xfs_inode_t *ip, bool need_iolock) { xfs_trans_t *tp; int error; xfs_fileoff_t end_fsb; xfs_fileoff_t last_fsb; xfs_filblks_t map_len; int nimaps; xfs_bmbt_irec_t imap; /* * Figure out if there are any blocks beyond the end * of the file. If not, then there is nothing to do. */ end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); if (last_fsb <= end_fsb) return 0; map_len = last_fsb - end_fsb; nimaps = 1; xfs_ilock(ip, XFS_ILOCK_SHARED); error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); xfs_iunlock(ip, XFS_ILOCK_SHARED); if (!error && (nimaps != 0) && (imap.br_startblock != HOLESTARTBLOCK || ip->i_delayed_blks)) { /* * Attach the dquots to the inode up front. */ error = xfs_qm_dqattach(ip, 0); if (error) return error; /* * There are blocks after the end of file. * Free them up now by truncating the file to * its current size. */ tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); if (need_iolock) { if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { xfs_trans_cancel(tp); return -EAGAIN; } } error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); if (error) { ASSERT(XFS_FORCED_SHUTDOWN(mp)); xfs_trans_cancel(tp); if (need_iolock) xfs_iunlock(ip, XFS_IOLOCK_EXCL); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * Do not update the on-disk file size. If we update the * on-disk file size and then the system crashes before the * contents of the file are flushed to disk then the files * may be full of holes (ie NULL files bug). */ error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, XFS_ISIZE(ip)); if (error) { /* * If we get an error at this point we simply don't * bother truncating the file. */ xfs_trans_cancel(tp); } else { error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); if (!error) xfs_inode_clear_eofblocks_tag(ip); } xfs_iunlock(ip, XFS_ILOCK_EXCL); if (need_iolock) xfs_iunlock(ip, XFS_IOLOCK_EXCL); } return error; } int xfs_alloc_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len, int alloc_type) { xfs_mount_t *mp = ip->i_mount; xfs_off_t count; xfs_filblks_t allocated_fsb; xfs_filblks_t allocatesize_fsb; xfs_extlen_t extsz, temp; xfs_fileoff_t startoffset_fsb; xfs_fsblock_t firstfsb; int nimaps; int quota_flag; int rt; xfs_trans_t *tp; xfs_bmbt_irec_t imaps[1], *imapp; xfs_bmap_free_t free_list; uint qblocks, resblks, resrtextents; int committed; int error; trace_xfs_alloc_file_space(ip); if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; error = xfs_qm_dqattach(ip, 0); if (error) return error; if (len <= 0) return -EINVAL; rt = XFS_IS_REALTIME_INODE(ip); extsz = xfs_get_extsz_hint(ip); count = len; imapp = &imaps[0]; nimaps = 1; startoffset_fsb = XFS_B_TO_FSBT(mp, offset); allocatesize_fsb = XFS_B_TO_FSB(mp, count); /* * Allocate file space until done or until there is an error */ while (allocatesize_fsb && !error) { xfs_fileoff_t s, e; /* * Determine space reservations for data/realtime. */ if (unlikely(extsz)) { s = startoffset_fsb; do_div(s, extsz); s *= extsz; e = startoffset_fsb + allocatesize_fsb; if ((temp = do_mod(startoffset_fsb, extsz))) e += temp; if ((temp = do_mod(e, extsz))) e += extsz - temp; } else { s = 0; e = allocatesize_fsb; } /* * The transaction reservation is limited to a 32-bit block * count, hence we need to limit the number of blocks we are * trying to reserve to avoid an overflow. We can't allocate * more than @nimaps extents, and an extent is limited on disk * to MAXEXTLEN (21 bits), so use that to enforce the limit. */ resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); if (unlikely(rt)) { resrtextents = qblocks = resblks; resrtextents /= mp->m_sb.sb_rextsize; resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); quota_flag = XFS_QMOPT_RES_RTBLKS; } else { resrtextents = 0; resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); quota_flag = XFS_QMOPT_RES_REGBLKS; } /* * Allocate and setup the transaction. */ tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, resrtextents); /* * Check for running out of space */ if (error) { /* * Free the transaction structure. */ ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); xfs_trans_cancel(tp); break; } xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag); if (error) goto error1; xfs_trans_ijoin(tp, ip, 0); xfs_bmap_init(&free_list, &firstfsb); error = xfs_bmapi_write(tp, ip, startoffset_fsb, allocatesize_fsb, alloc_type, &firstfsb, 0, imapp, &nimaps, &free_list); if (error) { goto error0; } /* * Complete the transaction */ error = xfs_bmap_finish(&tp, &free_list, &committed); if (error) { goto error0; } error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); xfs_iunlock(ip, XFS_ILOCK_EXCL); if (error) { break; } allocated_fsb = imapp->br_blockcount; if (nimaps == 0) { error = -ENOSPC; break; } startoffset_fsb += allocated_fsb; allocatesize_fsb -= allocated_fsb; } return error; error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ xfs_bmap_cancel(&free_list); xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); error1: /* Just cancel transaction */ xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * Zero file bytes between startoff and endoff inclusive. * The iolock is held exclusive and no blocks are buffered. * * This function is used by xfs_free_file_space() to zero * partial blocks when the range to free is not block aligned. * When unreserving space with boundaries that are not block * aligned we round up the start and round down the end * boundaries and then use this function to zero the parts of * the blocks that got dropped during the rounding. */ STATIC int xfs_zero_remaining_bytes( xfs_inode_t *ip, xfs_off_t startoff, xfs_off_t endoff) { xfs_bmbt_irec_t imap; xfs_fileoff_t offset_fsb; xfs_off_t lastoffset; xfs_off_t offset; xfs_buf_t *bp; xfs_mount_t *mp = ip->i_mount; int nimap; int error = 0; /* * Avoid doing I/O beyond eof - it's not necessary * since nothing can read beyond eof. The space will * be zeroed when the file is extended anyway. */ if (startoff >= XFS_ISIZE(ip)) return 0; if (endoff > XFS_ISIZE(ip)) endoff = XFS_ISIZE(ip); for (offset = startoff; offset <= endoff; offset = lastoffset + 1) { uint lock_mode; offset_fsb = XFS_B_TO_FSBT(mp, offset); nimap = 1; lock_mode = xfs_ilock_data_map_shared(ip); error = xfs_bmapi_read(ip, offset_fsb, 1, &imap, &nimap, 0); xfs_iunlock(ip, lock_mode); if (error || nimap < 1) break; ASSERT(imap.br_blockcount >= 1); ASSERT(imap.br_startoff == offset_fsb); lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1; if (lastoffset > endoff) lastoffset = endoff; if (imap.br_startblock == HOLESTARTBLOCK) continue; ASSERT(imap.br_startblock != DELAYSTARTBLOCK); if (imap.br_state == XFS_EXT_UNWRITTEN) continue; error = xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip) ? mp->m_rtdev_targp : mp->m_ddev_targp, xfs_fsb_to_db(ip, imap.br_startblock), BTOBB(mp->m_sb.sb_blocksize), 0, &bp, NULL); if (error) return error; memset(bp->b_addr + (offset - XFS_FSB_TO_B(mp, imap.br_startoff)), 0, lastoffset - offset + 1); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) return error; } return error; } int xfs_free_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { int committed; int done; xfs_fileoff_t endoffset_fsb; int error; xfs_fsblock_t firstfsb; xfs_bmap_free_t free_list; xfs_bmbt_irec_t imap; xfs_off_t ioffset; xfs_off_t iendoffset; xfs_extlen_t mod=0; xfs_mount_t *mp; int nimap; uint resblks; xfs_off_t rounding; int rt; xfs_fileoff_t startoffset_fsb; xfs_trans_t *tp; mp = ip->i_mount; trace_xfs_free_file_space(ip); error = xfs_qm_dqattach(ip, 0); if (error) return error; error = 0; if (len <= 0) /* if nothing being freed */ return error; rt = XFS_IS_REALTIME_INODE(ip); startoffset_fsb = XFS_B_TO_FSB(mp, offset); endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); /* wait for the completion of any pending DIOs */ inode_dio_wait(VFS_I(ip)); rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE); ioffset = round_down(offset, rounding); iendoffset = round_up(offset + len, rounding) - 1; error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ioffset, iendoffset); if (error) goto out; truncate_pagecache_range(VFS_I(ip), ioffset, iendoffset); /* * Need to zero the stuff we're not freeing, on disk. * If it's a realtime file & can't use unwritten extents then we * actually need to zero the extent edges. Otherwise xfs_bunmapi * will take care of it for us. */ if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) { nimap = 1; error = xfs_bmapi_read(ip, startoffset_fsb, 1, &imap, &nimap, 0); if (error) goto out; ASSERT(nimap == 0 || nimap == 1); if (nimap && imap.br_startblock != HOLESTARTBLOCK) { xfs_daddr_t block; ASSERT(imap.br_startblock != DELAYSTARTBLOCK); block = imap.br_startblock; mod = do_div(block, mp->m_sb.sb_rextsize); if (mod) startoffset_fsb += mp->m_sb.sb_rextsize - mod; } nimap = 1; error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1, &imap, &nimap, 0); if (error) goto out; ASSERT(nimap == 0 || nimap == 1); if (nimap && imap.br_startblock != HOLESTARTBLOCK) { ASSERT(imap.br_startblock != DELAYSTARTBLOCK); mod++; if (mod && (mod != mp->m_sb.sb_rextsize)) endoffset_fsb -= mod; } } if ((done = (endoffset_fsb <= startoffset_fsb))) /* * One contiguous piece to clear */ error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1); else { /* * Some full blocks, possibly two pieces to clear */ if (offset < XFS_FSB_TO_B(mp, startoffset_fsb)) error = xfs_zero_remaining_bytes(ip, offset, XFS_FSB_TO_B(mp, startoffset_fsb) - 1); if (!error && XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len) error = xfs_zero_remaining_bytes(ip, XFS_FSB_TO_B(mp, endoffset_fsb), offset + len - 1); } /* * free file space until done or until there is an error */ resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); while (!error && !done) { /* * allocate and setup the transaction. Allow this * transaction to dip into the reserve blocks to ensure * the freeing of the space succeeds at ENOSPC. */ tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0); /* * check for running out of space */ if (error) { /* * Free the transaction structure. */ ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); xfs_trans_cancel(tp); break; } xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); if (error) goto error1; xfs_trans_ijoin(tp, ip, 0); /* * issue the bunmapi() call to free the blocks */ xfs_bmap_init(&free_list, &firstfsb); error = xfs_bunmapi(tp, ip, startoffset_fsb, endoffset_fsb - startoffset_fsb, 0, 2, &firstfsb, &free_list, &done); if (error) { goto error0; } /* * complete the transaction */ error = xfs_bmap_finish(&tp, &free_list, &committed); if (error) { goto error0; } error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); xfs_iunlock(ip, XFS_ILOCK_EXCL); } out: return error; error0: xfs_bmap_cancel(&free_list); error1: xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); goto out; } /* * Preallocate and zero a range of a file. This mechanism has the allocation * semantics of fallocate and in addition converts data in the range to zeroes. */ int xfs_zero_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; uint blksize; int error; trace_xfs_zero_file_space(ip); blksize = 1 << mp->m_sb.sb_blocklog; /* * Punch a hole and prealloc the range. We use hole punch rather than * unwritten extent conversion for two reasons: * * 1.) Hole punch handles partial block zeroing for us. * * 2.) If prealloc returns ENOSPC, the file range is still zero-valued * by virtue of the hole punch. */ error = xfs_free_file_space(ip, offset, len); if (error) goto out; error = xfs_alloc_file_space(ip, round_down(offset, blksize), round_up(offset + len, blksize) - round_down(offset, blksize), XFS_BMAPI_PREALLOC); out: return error; } /* * @next_fsb will keep track of the extent currently undergoing shift. * @stop_fsb will keep track of the extent at which we have to stop. * If we are shifting left, we will start with block (offset + len) and * shift each extent till last extent. * If we are shifting right, we will start with last extent inside file space * and continue until we reach the block corresponding to offset. */ static int xfs_shift_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len, enum shift_direction direction) { int done = 0; struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; struct xfs_bmap_free free_list; xfs_fsblock_t first_block; int committed; xfs_fileoff_t stop_fsb; xfs_fileoff_t next_fsb; xfs_fileoff_t shift_fsb; ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); if (direction == SHIFT_LEFT) { next_fsb = XFS_B_TO_FSB(mp, offset + len); stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); } else { /* * If right shift, delegate the work of initialization of * next_fsb to xfs_bmap_shift_extent as it has ilock held. */ next_fsb = NULLFSBLOCK; stop_fsb = XFS_B_TO_FSB(mp, offset); } shift_fsb = XFS_B_TO_FSB(mp, len); /* * Trim eofblocks to avoid shifting uninitialized post-eof preallocation * into the accessible region of the file. */ if (xfs_can_free_eofblocks(ip, true)) { error = xfs_free_eofblocks(mp, ip, false); if (error) return error; } /* * Writeback and invalidate cache for the remainder of the file as we're * about to shift down every extent from offset to EOF. */ error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, offset, -1); if (error) return error; error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, offset >> PAGE_CACHE_SHIFT, -1); if (error) return error; /* * The extent shiting code works on extent granularity. So, if * stop_fsb is not the starting block of extent, we need to split * the extent at stop_fsb. */ if (direction == SHIFT_RIGHT) { error = xfs_bmap_split_extent(ip, stop_fsb); if (error) return error; } while (!error && !done) { tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT); /* * We would need to reserve permanent block for transaction. * This will come into picture when after shifting extent into * hole we found that adjacent extents can be merged which * may lead to freeing of a block during record update. */ error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, XFS_DIOSTRAT_SPACE_RES(mp, 0), 0); if (error) { xfs_trans_cancel(tp); break; } xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, ip->i_pdquot, XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, XFS_QMOPT_RES_REGBLKS); if (error) goto out; xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_bmap_init(&free_list, &first_block); /* * We are using the write transaction in which max 2 bmbt * updates are allowed */ error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, &done, stop_fsb, &first_block, &free_list, direction, XFS_BMAP_MAX_SHIFT_EXTENTS); if (error) goto out; error = xfs_bmap_finish(&tp, &free_list, &committed); if (error) goto out; error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); } return error; out: xfs_trans_cancel(tp); return error; } /* * xfs_collapse_file_space() * This routine frees disk space and shift extent for the given file. * The first thing we do is to free data blocks in the specified range * by calling xfs_free_file_space(). It would also sync dirty data * and invalidate page cache over the region on which collapse range * is working. And Shift extent records to the left to cover a hole. * RETURNS: * 0 on success * errno on error * */ int xfs_collapse_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { int error; ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); trace_xfs_collapse_file_space(ip); error = xfs_free_file_space(ip, offset, len); if (error) return error; return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); } /* * xfs_insert_file_space() * This routine create hole space by shifting extents for the given file. * The first thing we do is to sync dirty data and invalidate page cache * over the region on which insert range is working. And split an extent * to two extents at given offset by calling xfs_bmap_split_extent. * And shift all extent records which are laying between [offset, * last allocated extent] to the right to reserve hole range. * RETURNS: * 0 on success * errno on error */ int xfs_insert_file_space( struct xfs_inode *ip, loff_t offset, loff_t len) { ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); trace_xfs_insert_file_space(ip); return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); } /* * We need to check that the format of the data fork in the temporary inode is * valid for the target inode before doing the swap. This is not a problem with * attr1 because of the fixed fork offset, but attr2 has a dynamically sized * data fork depending on the space the attribute fork is taking so we can get * invalid formats on the target inode. * * E.g. target has space for 7 extents in extent format, temp inode only has * space for 6. If we defragment down to 7 extents, then the tmp format is a * btree, but when swapped it needs to be in extent format. Hence we can't just * blindly swap data forks on attr2 filesystems. * * Note that we check the swap in both directions so that we don't end up with * a corrupt temporary inode, either. * * Note that fixing the way xfs_fsr sets up the attribute fork in the source * inode will prevent this situation from occurring, so all we do here is * reject and log the attempt. basically we are putting the responsibility on * userspace to get this right. */ static int xfs_swap_extents_check_format( xfs_inode_t *ip, /* target inode */ xfs_inode_t *tip) /* tmp inode */ { /* Should never get a local format */ if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) return -EINVAL; /* * if the target inode has less extents that then temporary inode then * why did userspace call us? */ if (ip->i_d.di_nextents < tip->i_d.di_nextents) return -EINVAL; /* * if the target inode is in extent form and the temp inode is in btree * form then we will end up with the target inode in the wrong format * as we already know there are less extents in the temp inode. */ if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && tip->i_d.di_format == XFS_DINODE_FMT_BTREE) return -EINVAL; /* Check temp in extent form to max in target */ if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) return -EINVAL; /* Check target in extent form to max in temp */ if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) return -EINVAL; /* * If we are in a btree format, check that the temp root block will fit * in the target and that it has enough extents to be in btree format * in the target. * * Note that we have to be careful to allow btree->extent conversions * (a common defrag case) which will occur when the temp inode is in * extent format... */ if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { if (XFS_IFORK_BOFF(ip) && XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) return -EINVAL; if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) return -EINVAL; } /* Reciprocal target->temp btree format checks */ if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { if (XFS_IFORK_BOFF(tip) && XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) return -EINVAL; if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) return -EINVAL; } return 0; } static int xfs_swap_extent_flush( struct xfs_inode *ip) { int error; error = filemap_write_and_wait(VFS_I(ip)->i_mapping); if (error) return error; truncate_pagecache_range(VFS_I(ip), 0, -1); /* Verify O_DIRECT for ftmp */ if (VFS_I(ip)->i_mapping->nrpages) return -EINVAL; return 0; } int xfs_swap_extents( xfs_inode_t *ip, /* target inode */ xfs_inode_t *tip, /* tmp inode */ xfs_swapext_t *sxp) { xfs_mount_t *mp = ip->i_mount; xfs_trans_t *tp; xfs_bstat_t *sbp = &sxp->sx_stat; xfs_ifork_t *tempifp, *ifp, *tifp; int src_log_flags, target_log_flags; int error = 0; int aforkblks = 0; int taforkblks = 0; __uint64_t tmp; int lock_flags; tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL); if (!tempifp) { error = -ENOMEM; goto out; } /* * Lock the inodes against other IO, page faults and truncate to * begin with. Then we can ensure the inodes are flushed and have no * page cache safely. Once we have done this we can take the ilocks and * do the rest of the checks. */ lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL); xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); /* Verify that both files have the same format */ if ((ip->i_d.di_mode & S_IFMT) != (tip->i_d.di_mode & S_IFMT)) { error = -EINVAL; goto out_unlock; } /* Verify both files are either real-time or non-realtime */ if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { error = -EINVAL; goto out_unlock; } error = xfs_swap_extent_flush(ip); if (error) goto out_unlock; error = xfs_swap_extent_flush(tip); if (error) goto out_unlock; tp = xfs_trans_alloc(mp, XFS_TRANS_SWAPEXT); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0); if (error) { xfs_trans_cancel(tp); goto out_unlock; } /* * Lock and join the inodes to the tansaction so that transaction commit * or cancel will unlock the inodes from this point onwards. */ xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); lock_flags |= XFS_ILOCK_EXCL; xfs_trans_ijoin(tp, ip, lock_flags); xfs_trans_ijoin(tp, tip, lock_flags); /* Verify all data are being swapped */ if (sxp->sx_offset != 0 || sxp->sx_length != ip->i_d.di_size || sxp->sx_length != tip->i_d.di_size) { error = -EFAULT; goto out_trans_cancel; } trace_xfs_swap_extent_before(ip, 0); trace_xfs_swap_extent_before(tip, 1); /* check inode formats now that data is flushed */ error = xfs_swap_extents_check_format(ip, tip); if (error) { xfs_notice(mp, "%s: inode 0x%llx format is incompatible for exchanging.", __func__, ip->i_ino); goto out_trans_cancel; } /* * Compare the current change & modify times with that * passed in. If they differ, we abort this swap. * This is the mechanism used to ensure the calling * process that the file was not changed out from * under it. */ if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { error = -EBUSY; goto out_trans_cancel; } /* * Count the number of extended attribute blocks */ if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks); if (error) goto out_trans_cancel; } if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &taforkblks); if (error) goto out_trans_cancel; } /* * Before we've swapped the forks, lets set the owners of the forks * appropriately. We have to do this as we are demand paging the btree * buffers, and so the validation done on read will expect the owner * field to be correctly set. Once we change the owners, we can swap the * inode forks. * * Note the trickiness in setting the log flags - we set the owner log * flag on the opposite inode (i.e. the inode we are setting the new * owner to be) because once we swap the forks and log that, log * recovery is going to see the fork as owned by the swapped inode, * not the pre-swapped inodes. */ src_log_flags = XFS_ILOG_CORE; target_log_flags = XFS_ILOG_CORE; if (ip->i_d.di_version == 3 && ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { target_log_flags |= XFS_ILOG_DOWNER; error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, tip->i_ino, NULL); if (error) goto out_trans_cancel; } if (tip->i_d.di_version == 3 && tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { src_log_flags |= XFS_ILOG_DOWNER; error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, ip->i_ino, NULL); if (error) goto out_trans_cancel; } /* * Swap the data forks of the inodes */ ifp = &ip->i_df; tifp = &tip->i_df; *tempifp = *ifp; /* struct copy */ *ifp = *tifp; /* struct copy */ *tifp = *tempifp; /* struct copy */ /* * Fix the on-disk inode values */ tmp = (__uint64_t)ip->i_d.di_nblocks; ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; tmp = (__uint64_t) ip->i_d.di_nextents; ip->i_d.di_nextents = tip->i_d.di_nextents; tip->i_d.di_nextents = tmp; tmp = (__uint64_t) ip->i_d.di_format; ip->i_d.di_format = tip->i_d.di_format; tip->i_d.di_format = tmp; /* * The extents in the source inode could still contain speculative * preallocation beyond EOF (e.g. the file is open but not modified * while defrag is in progress). In that case, we need to copy over the * number of delalloc blocks the data fork in the source inode is * tracking beyond EOF so that when the fork is truncated away when the * temporary inode is unlinked we don't underrun the i_delayed_blks * counter on that inode. */ ASSERT(tip->i_delayed_blks == 0); tip->i_delayed_blks = ip->i_delayed_blks; ip->i_delayed_blks = 0; switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: /* If the extents fit in the inode, fix the * pointer. Otherwise it's already NULL or * pointing to the extent. */ if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) { ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; } src_log_flags |= XFS_ILOG_DEXT; break; case XFS_DINODE_FMT_BTREE: ASSERT(ip->i_d.di_version < 3 || (src_log_flags & XFS_ILOG_DOWNER)); src_log_flags |= XFS_ILOG_DBROOT; break; } switch (tip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: /* If the extents fit in the inode, fix the * pointer. Otherwise it's already NULL or * pointing to the extent. */ if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) { tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext; } target_log_flags |= XFS_ILOG_DEXT; break; case XFS_DINODE_FMT_BTREE: target_log_flags |= XFS_ILOG_DBROOT; ASSERT(tip->i_d.di_version < 3 || (target_log_flags & XFS_ILOG_DOWNER)); break; } xfs_trans_log_inode(tp, ip, src_log_flags); xfs_trans_log_inode(tp, tip, target_log_flags); /* * If this is a synchronous mount, make sure that the * transaction goes to disk before returning to the user. */ if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp, 0); trace_xfs_swap_extent_after(ip, 0); trace_xfs_swap_extent_after(tip, 1); out: kmem_free(tempifp); return error; out_unlock: xfs_iunlock(ip, lock_flags); xfs_iunlock(tip, lock_flags); goto out; out_trans_cancel: xfs_trans_cancel(tp); goto out; }