/* * Intel SST Firmware Loader * * Copyright (C) 2013, Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include "sst-dsp.h" #include "sst-dsp-priv.h" static void sst_memcpy32(volatile void __iomem *dest, void *src, u32 bytes) { u32 i; /* copy one 32 bit word at a time as 64 bit access is not supported */ for (i = 0; i < bytes; i += 4) memcpy_toio(dest + i, src + i, 4); } /* create new generic firmware object */ struct sst_fw *sst_fw_new(struct sst_dsp *dsp, const struct firmware *fw, void *private) { struct sst_fw *sst_fw; int err; if (!dsp->ops->parse_fw) return NULL; sst_fw = kzalloc(sizeof(*sst_fw), GFP_KERNEL); if (sst_fw == NULL) return NULL; sst_fw->dsp = dsp; sst_fw->private = private; sst_fw->size = fw->size; err = dma_coerce_mask_and_coherent(dsp->dev, DMA_BIT_MASK(32)); if (err < 0) { kfree(sst_fw); return NULL; } /* allocate DMA buffer to store FW data */ sst_fw->dma_buf = dma_alloc_coherent(dsp->dev, sst_fw->size, &sst_fw->dmable_fw_paddr, GFP_DMA | GFP_KERNEL); if (!sst_fw->dma_buf) { dev_err(dsp->dev, "error: DMA alloc failed\n"); kfree(sst_fw); return NULL; } /* copy FW data to DMA-able memory */ memcpy((void *)sst_fw->dma_buf, (void *)fw->data, fw->size); /* call core specific FW paser to load FW data into DSP */ err = dsp->ops->parse_fw(sst_fw); if (err < 0) { dev_err(dsp->dev, "error: parse fw failed %d\n", err); goto parse_err; } mutex_lock(&dsp->mutex); list_add(&sst_fw->list, &dsp->fw_list); mutex_unlock(&dsp->mutex); return sst_fw; parse_err: dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf, sst_fw->dmable_fw_paddr); kfree(sst_fw); return NULL; } EXPORT_SYMBOL_GPL(sst_fw_new); /* free single firmware object */ void sst_fw_free(struct sst_fw *sst_fw) { struct sst_dsp *dsp = sst_fw->dsp; mutex_lock(&dsp->mutex); list_del(&sst_fw->list); mutex_unlock(&dsp->mutex); dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf, sst_fw->dmable_fw_paddr); kfree(sst_fw); } EXPORT_SYMBOL_GPL(sst_fw_free); /* free all firmware objects */ void sst_fw_free_all(struct sst_dsp *dsp) { struct sst_fw *sst_fw, *t; mutex_lock(&dsp->mutex); list_for_each_entry_safe(sst_fw, t, &dsp->fw_list, list) { list_del(&sst_fw->list); dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf, sst_fw->dmable_fw_paddr); kfree(sst_fw); } mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_fw_free_all); /* create a new SST generic module from FW template */ struct sst_module *sst_module_new(struct sst_fw *sst_fw, struct sst_module_template *template, void *private) { struct sst_dsp *dsp = sst_fw->dsp; struct sst_module *sst_module; sst_module = kzalloc(sizeof(*sst_module), GFP_KERNEL); if (sst_module == NULL) return NULL; sst_module->id = template->id; sst_module->dsp = dsp; sst_module->sst_fw = sst_fw; memcpy(&sst_module->s, &template->s, sizeof(struct sst_module_data)); memcpy(&sst_module->p, &template->p, sizeof(struct sst_module_data)); INIT_LIST_HEAD(&sst_module->block_list); mutex_lock(&dsp->mutex); list_add(&sst_module->list, &dsp->module_list); mutex_unlock(&dsp->mutex); return sst_module; } EXPORT_SYMBOL_GPL(sst_module_new); /* free firmware module and remove from available list */ void sst_module_free(struct sst_module *sst_module) { struct sst_dsp *dsp = sst_module->dsp; mutex_lock(&dsp->mutex); list_del(&sst_module->list); mutex_unlock(&dsp->mutex); kfree(sst_module); } EXPORT_SYMBOL_GPL(sst_module_free); static struct sst_mem_block *find_block(struct sst_dsp *dsp, int type, u32 offset) { struct sst_mem_block *block; list_for_each_entry(block, &dsp->free_block_list, list) { if (block->type == type && block->offset == offset) return block; } return NULL; } static int block_alloc_contiguous(struct sst_module *module, struct sst_module_data *data, u32 offset, int size) { struct list_head tmp = LIST_HEAD_INIT(tmp); struct sst_dsp *dsp = module->dsp; struct sst_mem_block *block; while (size > 0) { block = find_block(dsp, data->type, offset); if (!block) { list_splice(&tmp, &dsp->free_block_list); return -ENOMEM; } list_move_tail(&block->list, &tmp); offset += block->size; size -= block->size; } list_splice(&tmp, &dsp->used_block_list); return 0; } /* allocate free DSP blocks for module data - callers hold locks */ static int block_alloc(struct sst_module *module, struct sst_module_data *data) { struct sst_dsp *dsp = module->dsp; struct sst_mem_block *block, *tmp; int ret = 0; if (data->size == 0) return 0; /* find first free whole blocks that can hold module */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { /* ignore blocks with wrong type */ if (block->type != data->type) continue; if (data->size > block->size) continue; data->offset = block->offset; block->data_type = data->data_type; block->bytes_used = data->size % block->size; list_add(&block->module_list, &module->block_list); list_move(&block->list, &dsp->used_block_list); dev_dbg(dsp->dev, " *module %d added block %d:%d\n", module->id, block->type, block->index); return 0; } /* then find free multiple blocks that can hold module */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { /* ignore blocks with wrong type */ if (block->type != data->type) continue; /* do we span > 1 blocks */ if (data->size > block->size) { ret = block_alloc_contiguous(module, data, block->offset + block->size, data->size - block->size); if (ret == 0) return ret; } } /* not enough free block space */ return -ENOMEM; } /* remove module from memory - callers hold locks */ static void block_module_remove(struct sst_module *module) { struct sst_mem_block *block, *tmp; struct sst_dsp *dsp = module->dsp; int err; /* disable each block */ list_for_each_entry(block, &module->block_list, module_list) { if (block->ops && block->ops->disable) { err = block->ops->disable(block); if (err < 0) dev_err(dsp->dev, "error: cant disable block %d:%d\n", block->type, block->index); } } /* mark each block as free */ list_for_each_entry_safe(block, tmp, &module->block_list, module_list) { list_del(&block->module_list); list_move(&block->list, &dsp->free_block_list); } } /* prepare the memory block to receive data from host - callers hold locks */ static int block_module_prepare(struct sst_module *module) { struct sst_mem_block *block; int ret = 0; /* enable each block so that's it'e ready for module P/S data */ list_for_each_entry(block, &module->block_list, module_list) { if (block->ops && block->ops->enable) { ret = block->ops->enable(block); if (ret < 0) { dev_err(module->dsp->dev, "error: cant disable block %d:%d\n", block->type, block->index); goto err; } } } return ret; err: list_for_each_entry(block, &module->block_list, module_list) { if (block->ops && block->ops->disable) block->ops->disable(block); } return ret; } /* allocate memory blocks for static module addresses - callers hold locks */ static int block_alloc_fixed(struct sst_module *module, struct sst_module_data *data) { struct sst_dsp *dsp = module->dsp; struct sst_mem_block *block, *tmp; u32 end = data->offset + data->size, block_end; int err; /* only IRAM/DRAM blocks are managed */ if (data->type != SST_MEM_IRAM && data->type != SST_MEM_DRAM) return 0; /* are blocks already attached to this module */ list_for_each_entry_safe(block, tmp, &module->block_list, module_list) { /* force compacting mem blocks of the same data_type */ if (block->data_type != data->data_type) continue; block_end = block->offset + block->size; /* find block that holds section */ if (data->offset >= block->offset && end < block_end) return 0; /* does block span more than 1 section */ if (data->offset >= block->offset && data->offset < block_end) { err = block_alloc_contiguous(module, data, block->offset + block->size, data->size - block->size + data->offset - block->offset); if (err < 0) return -ENOMEM; /* module already owns blocks */ return 0; } } /* find first free blocks that can hold section in free list */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { block_end = block->offset + block->size; /* find block that holds section */ if (data->offset >= block->offset && end < block_end) { /* add block */ block->data_type = data->data_type; list_move(&block->list, &dsp->used_block_list); list_add(&block->module_list, &module->block_list); return 0; } /* does block span more than 1 section */ if (data->offset >= block->offset && data->offset < block_end) { err = block_alloc_contiguous(module, data, block->offset + block->size, data->size - block->size); if (err < 0) return -ENOMEM; return 0; } } return -ENOMEM; } /* Load fixed module data into DSP memory blocks */ int sst_module_insert_fixed_block(struct sst_module *module, struct sst_module_data *data) { struct sst_dsp *dsp = module->dsp; int ret; mutex_lock(&dsp->mutex); /* alloc blocks that includes this section */ ret = block_alloc_fixed(module, data); if (ret < 0) { dev_err(dsp->dev, "error: no free blocks for section at offset 0x%x size 0x%x\n", data->offset, data->size); mutex_unlock(&dsp->mutex); return -ENOMEM; } /* prepare DSP blocks for module copy */ ret = block_module_prepare(module); if (ret < 0) { dev_err(dsp->dev, "error: fw module prepare failed\n"); goto err; } /* copy partial module data to blocks */ sst_memcpy32(dsp->addr.lpe + data->offset, data->data, data->size); mutex_unlock(&dsp->mutex); return ret; err: block_module_remove(module); mutex_unlock(&dsp->mutex); return ret; } EXPORT_SYMBOL_GPL(sst_module_insert_fixed_block); /* Unload entire module from DSP memory */ int sst_block_module_remove(struct sst_module *module) { struct sst_dsp *dsp = module->dsp; mutex_lock(&dsp->mutex); block_module_remove(module); mutex_unlock(&dsp->mutex); return 0; } EXPORT_SYMBOL_GPL(sst_block_module_remove); /* register a DSP memory block for use with FW based modules */ struct sst_mem_block *sst_mem_block_register(struct sst_dsp *dsp, u32 offset, u32 size, enum sst_mem_type type, struct sst_block_ops *ops, u32 index, void *private) { struct sst_mem_block *block; block = kzalloc(sizeof(*block), GFP_KERNEL); if (block == NULL) return NULL; block->offset = offset; block->size = size; block->index = index; block->type = type; block->dsp = dsp; block->private = private; block->ops = ops; mutex_lock(&dsp->mutex); list_add(&block->list, &dsp->free_block_list); mutex_unlock(&dsp->mutex); return block; } EXPORT_SYMBOL_GPL(sst_mem_block_register); /* unregister all DSP memory blocks */ void sst_mem_block_unregister_all(struct sst_dsp *dsp) { struct sst_mem_block *block, *tmp; mutex_lock(&dsp->mutex); /* unregister used blocks */ list_for_each_entry_safe(block, tmp, &dsp->used_block_list, list) { list_del(&block->list); kfree(block); } /* unregister free blocks */ list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) { list_del(&block->list); kfree(block); } mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_mem_block_unregister_all); /* allocate scratch buffer blocks */ struct sst_module *sst_mem_block_alloc_scratch(struct sst_dsp *dsp) { struct sst_module *sst_module, *scratch; struct sst_mem_block *block, *tmp; u32 block_size; int ret = 0; scratch = kzalloc(sizeof(struct sst_module), GFP_KERNEL); if (scratch == NULL) return NULL; mutex_lock(&dsp->mutex); /* calculate required scratch size */ list_for_each_entry(sst_module, &dsp->module_list, list) { if (scratch->s.size > sst_module->s.size) scratch->s.size = scratch->s.size; else scratch->s.size = sst_module->s.size; } dev_dbg(dsp->dev, "scratch buffer required is %d bytes\n", scratch->s.size); /* init scratch module */ scratch->dsp = dsp; scratch->s.type = SST_MEM_DRAM; scratch->s.data_type = SST_DATA_S; INIT_LIST_HEAD(&scratch->block_list); /* check free blocks before looking at used blocks for space */ if (!list_empty(&dsp->free_block_list)) block = list_first_entry(&dsp->free_block_list, struct sst_mem_block, list); else block = list_first_entry(&dsp->used_block_list, struct sst_mem_block, list); block_size = block->size; /* allocate blocks for module scratch buffers */ dev_dbg(dsp->dev, "allocating scratch blocks\n"); ret = block_alloc(scratch, &scratch->s); if (ret < 0) { dev_err(dsp->dev, "error: can't alloc scratch blocks\n"); goto err; } /* assign the same offset of scratch to each module */ list_for_each_entry(sst_module, &dsp->module_list, list) sst_module->s.offset = scratch->s.offset; mutex_unlock(&dsp->mutex); return scratch; err: list_for_each_entry_safe(block, tmp, &scratch->block_list, module_list) list_del(&block->module_list); mutex_unlock(&dsp->mutex); return NULL; } EXPORT_SYMBOL_GPL(sst_mem_block_alloc_scratch); /* free all scratch blocks */ void sst_mem_block_free_scratch(struct sst_dsp *dsp, struct sst_module *scratch) { struct sst_mem_block *block, *tmp; mutex_lock(&dsp->mutex); list_for_each_entry_safe(block, tmp, &scratch->block_list, module_list) list_del(&block->module_list); mutex_unlock(&dsp->mutex); } EXPORT_SYMBOL_GPL(sst_mem_block_free_scratch); /* get a module from it's unique ID */ struct sst_module *sst_module_get_from_id(struct sst_dsp *dsp, u32 id) { struct sst_module *module; mutex_lock(&dsp->mutex); list_for_each_entry(module, &dsp->module_list, list) { if (module->id == id) { mutex_unlock(&dsp->mutex); return module; } } mutex_unlock(&dsp->mutex); return NULL; } EXPORT_SYMBOL_GPL(sst_module_get_from_id);