/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Ben Widawsky * */ #include #include #include #include #include "intel_drv.h" #include "i915_drv.h" static inline struct drm_i915_private *kdev_minor_to_i915(struct device *kdev) { struct drm_minor *minor = dev_get_drvdata(kdev); return to_i915(minor->dev); } #ifdef CONFIG_PM static u32 calc_residency(struct drm_i915_private *dev_priv, i915_reg_t reg) { return DIV_ROUND_CLOSEST_ULL(intel_rc6_residency_us(dev_priv, reg), 1000); } static ssize_t show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%x\n", intel_rc6_enabled()); } static ssize_t show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); u32 rc6_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6); return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); } static ssize_t show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); u32 rc6p_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6p); return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency); } static ssize_t show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); u32 rc6pp_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6pp); return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency); } static ssize_t show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); u32 rc6_residency = calc_residency(dev_priv, VLV_GT_MEDIA_RC6); return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); } static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL); static struct attribute *rc6_attrs[] = { &dev_attr_rc6_enable.attr, &dev_attr_rc6_residency_ms.attr, NULL }; static const struct attribute_group rc6_attr_group = { .name = power_group_name, .attrs = rc6_attrs }; static struct attribute *rc6p_attrs[] = { &dev_attr_rc6p_residency_ms.attr, &dev_attr_rc6pp_residency_ms.attr, NULL }; static const struct attribute_group rc6p_attr_group = { .name = power_group_name, .attrs = rc6p_attrs }; static struct attribute *media_rc6_attrs[] = { &dev_attr_media_rc6_residency_ms.attr, NULL }; static const struct attribute_group media_rc6_attr_group = { .name = power_group_name, .attrs = media_rc6_attrs }; #endif static int l3_access_valid(struct drm_i915_private *dev_priv, loff_t offset) { if (!HAS_L3_DPF(dev_priv)) return -EPERM; if (offset % 4 != 0) return -EINVAL; if (offset >= GEN7_L3LOG_SIZE) return -ENXIO; return 0; } static ssize_t i915_l3_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t offset, size_t count) { struct device *kdev = kobj_to_dev(kobj); struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct drm_device *dev = &dev_priv->drm; int slice = (int)(uintptr_t)attr->private; int ret; count = round_down(count, 4); ret = l3_access_valid(dev_priv, offset); if (ret) return ret; count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count); ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; if (dev_priv->l3_parity.remap_info[slice]) memcpy(buf, dev_priv->l3_parity.remap_info[slice] + (offset/4), count); else memset(buf, 0, count); mutex_unlock(&dev->struct_mutex); return count; } static ssize_t i915_l3_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t offset, size_t count) { struct device *kdev = kobj_to_dev(kobj); struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct drm_device *dev = &dev_priv->drm; struct i915_gem_context *ctx; int slice = (int)(uintptr_t)attr->private; u32 **remap_info; int ret; ret = l3_access_valid(dev_priv, offset); if (ret) return ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; remap_info = &dev_priv->l3_parity.remap_info[slice]; if (!*remap_info) { *remap_info = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); if (!*remap_info) { ret = -ENOMEM; goto out; } } /* TODO: Ideally we really want a GPU reset here to make sure errors * aren't propagated. Since I cannot find a stable way to reset the GPU * at this point it is left as a TODO. */ memcpy(*remap_info + (offset/4), buf, count); /* NB: We defer the remapping until we switch to the context */ list_for_each_entry(ctx, &dev_priv->contexts.list, link) ctx->remap_slice |= (1<struct_mutex); return ret; } static const struct bin_attribute dpf_attrs = { .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, .size = GEN7_L3LOG_SIZE, .read = i915_l3_read, .write = i915_l3_write, .mmap = NULL, .private = (void *)0 }; static const struct bin_attribute dpf_attrs_1 = { .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)}, .size = GEN7_L3LOG_SIZE, .read = i915_l3_read, .write = i915_l3_write, .mmap = NULL, .private = (void *)1 }; static ssize_t gt_act_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); int ret; intel_runtime_pm_get(dev_priv); mutex_lock(&dev_priv->pcu_lock); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { u32 freq; freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff); } else { u32 rpstat = I915_READ(GEN6_RPSTAT1); if (INTEL_GEN(dev_priv) >= 9) ret = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) ret = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; else ret = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; ret = intel_gpu_freq(dev_priv, ret); } mutex_unlock(&dev_priv->pcu_lock); intel_runtime_pm_put(dev_priv); return snprintf(buf, PAGE_SIZE, "%d\n", ret); } static ssize_t gt_cur_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); return snprintf(buf, PAGE_SIZE, "%d\n", intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.cur_freq)); } static ssize_t gt_boost_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); return snprintf(buf, PAGE_SIZE, "%d\n", intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.boost_freq)); } static ssize_t gt_boost_freq_mhz_store(struct device *kdev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct intel_rps *rps = &dev_priv->gt_pm.rps; u32 val; ssize_t ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; /* Validate against (static) hardware limits */ val = intel_freq_opcode(dev_priv, val); if (val < rps->min_freq || val > rps->max_freq) return -EINVAL; mutex_lock(&dev_priv->pcu_lock); rps->boost_freq = val; mutex_unlock(&dev_priv->pcu_lock); return count; } static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); return snprintf(buf, PAGE_SIZE, "%d\n", intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.efficient_freq)); } static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); return snprintf(buf, PAGE_SIZE, "%d\n", intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit)); } static ssize_t gt_max_freq_mhz_store(struct device *kdev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct intel_rps *rps = &dev_priv->gt_pm.rps; u32 val; ssize_t ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; intel_runtime_pm_get(dev_priv); mutex_lock(&dev_priv->pcu_lock); val = intel_freq_opcode(dev_priv, val); if (val < rps->min_freq || val > rps->max_freq || val < rps->min_freq_softlimit) { mutex_unlock(&dev_priv->pcu_lock); intel_runtime_pm_put(dev_priv); return -EINVAL; } if (val > rps->rp0_freq) DRM_DEBUG("User requested overclocking to %d\n", intel_gpu_freq(dev_priv, val)); rps->max_freq_softlimit = val; val = clamp_t(int, rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); /* We still need *_set_rps to process the new max_delay and * update the interrupt limits and PMINTRMSK even though * frequency request may be unchanged. */ ret = intel_set_rps(dev_priv, val); mutex_unlock(&dev_priv->pcu_lock); intel_runtime_pm_put(dev_priv); return ret ?: count; } static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); return snprintf(buf, PAGE_SIZE, "%d\n", intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit)); } static ssize_t gt_min_freq_mhz_store(struct device *kdev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct intel_rps *rps = &dev_priv->gt_pm.rps; u32 val; ssize_t ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; intel_runtime_pm_get(dev_priv); mutex_lock(&dev_priv->pcu_lock); val = intel_freq_opcode(dev_priv, val); if (val < rps->min_freq || val > rps->max_freq || val > rps->max_freq_softlimit) { mutex_unlock(&dev_priv->pcu_lock); intel_runtime_pm_put(dev_priv); return -EINVAL; } rps->min_freq_softlimit = val; val = clamp_t(int, rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); /* We still need *_set_rps to process the new min_delay and * update the interrupt limits and PMINTRMSK even though * frequency request may be unchanged. */ ret = intel_set_rps(dev_priv, val); mutex_unlock(&dev_priv->pcu_lock); intel_runtime_pm_put(dev_priv); return ret ?: count; } static DEVICE_ATTR_RO(gt_act_freq_mhz); static DEVICE_ATTR_RO(gt_cur_freq_mhz); static DEVICE_ATTR_RW(gt_boost_freq_mhz); static DEVICE_ATTR_RW(gt_max_freq_mhz); static DEVICE_ATTR_RW(gt_min_freq_mhz); static DEVICE_ATTR_RO(vlv_rpe_freq_mhz); static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); /* For now we have a static number of RP states */ static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) { struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct intel_rps *rps = &dev_priv->gt_pm.rps; u32 val; if (attr == &dev_attr_gt_RP0_freq_mhz) val = intel_gpu_freq(dev_priv, rps->rp0_freq); else if (attr == &dev_attr_gt_RP1_freq_mhz) val = intel_gpu_freq(dev_priv, rps->rp1_freq); else if (attr == &dev_attr_gt_RPn_freq_mhz) val = intel_gpu_freq(dev_priv, rps->min_freq); else BUG(); return snprintf(buf, PAGE_SIZE, "%d\n", val); } static const struct attribute *gen6_attrs[] = { &dev_attr_gt_act_freq_mhz.attr, &dev_attr_gt_cur_freq_mhz.attr, &dev_attr_gt_boost_freq_mhz.attr, &dev_attr_gt_max_freq_mhz.attr, &dev_attr_gt_min_freq_mhz.attr, &dev_attr_gt_RP0_freq_mhz.attr, &dev_attr_gt_RP1_freq_mhz.attr, &dev_attr_gt_RPn_freq_mhz.attr, NULL, }; static const struct attribute *vlv_attrs[] = { &dev_attr_gt_act_freq_mhz.attr, &dev_attr_gt_cur_freq_mhz.attr, &dev_attr_gt_boost_freq_mhz.attr, &dev_attr_gt_max_freq_mhz.attr, &dev_attr_gt_min_freq_mhz.attr, &dev_attr_gt_RP0_freq_mhz.attr, &dev_attr_gt_RP1_freq_mhz.attr, &dev_attr_gt_RPn_freq_mhz.attr, &dev_attr_vlv_rpe_freq_mhz.attr, NULL, }; #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) static ssize_t error_state_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *kdev = kobj_to_dev(kobj); struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); struct drm_i915_error_state_buf error_str; struct i915_gpu_state *gpu; ssize_t ret; ret = i915_error_state_buf_init(&error_str, dev_priv, count, off); if (ret) return ret; gpu = i915_first_error_state(dev_priv); ret = i915_error_state_to_str(&error_str, gpu); if (ret) goto out; ret = count < error_str.bytes ? count : error_str.bytes; memcpy(buf, error_str.buf, ret); out: i915_gpu_state_put(gpu); i915_error_state_buf_release(&error_str); return ret; } static ssize_t error_state_write(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *kdev = kobj_to_dev(kobj); struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev); DRM_DEBUG_DRIVER("Resetting error state\n"); i915_reset_error_state(dev_priv); return count; } static const struct bin_attribute error_state_attr = { .attr.name = "error", .attr.mode = S_IRUSR | S_IWUSR, .size = 0, .read = error_state_read, .write = error_state_write, }; static void i915_setup_error_capture(struct device *kdev) { if (sysfs_create_bin_file(&kdev->kobj, &error_state_attr)) DRM_ERROR("error_state sysfs setup failed\n"); } static void i915_teardown_error_capture(struct device *kdev) { sysfs_remove_bin_file(&kdev->kobj, &error_state_attr); } #else static void i915_setup_error_capture(struct device *kdev) {} static void i915_teardown_error_capture(struct device *kdev) {} #endif void i915_setup_sysfs(struct drm_i915_private *dev_priv) { struct device *kdev = dev_priv->drm.primary->kdev; int ret; #ifdef CONFIG_PM if (HAS_RC6(dev_priv)) { ret = sysfs_merge_group(&kdev->kobj, &rc6_attr_group); if (ret) DRM_ERROR("RC6 residency sysfs setup failed\n"); } if (HAS_RC6p(dev_priv)) { ret = sysfs_merge_group(&kdev->kobj, &rc6p_attr_group); if (ret) DRM_ERROR("RC6p residency sysfs setup failed\n"); } if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { ret = sysfs_merge_group(&kdev->kobj, &media_rc6_attr_group); if (ret) DRM_ERROR("Media RC6 residency sysfs setup failed\n"); } #endif if (HAS_L3_DPF(dev_priv)) { ret = device_create_bin_file(kdev, &dpf_attrs); if (ret) DRM_ERROR("l3 parity sysfs setup failed\n"); if (NUM_L3_SLICES(dev_priv) > 1) { ret = device_create_bin_file(kdev, &dpf_attrs_1); if (ret) DRM_ERROR("l3 parity slice 1 setup failed\n"); } } ret = 0; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) ret = sysfs_create_files(&kdev->kobj, vlv_attrs); else if (INTEL_GEN(dev_priv) >= 6) ret = sysfs_create_files(&kdev->kobj, gen6_attrs); if (ret) DRM_ERROR("RPS sysfs setup failed\n"); i915_setup_error_capture(kdev); } void i915_teardown_sysfs(struct drm_i915_private *dev_priv) { struct device *kdev = dev_priv->drm.primary->kdev; i915_teardown_error_capture(kdev); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) sysfs_remove_files(&kdev->kobj, vlv_attrs); else sysfs_remove_files(&kdev->kobj, gen6_attrs); device_remove_bin_file(kdev, &dpf_attrs_1); device_remove_bin_file(kdev, &dpf_attrs); #ifdef CONFIG_PM sysfs_unmerge_group(&kdev->kobj, &rc6_attr_group); sysfs_unmerge_group(&kdev->kobj, &rc6p_attr_group); #endif }