/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ #include #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #define DP_LINK_CHECK_TIMEOUT (10 * 1000) /* Compliance test status bits */ #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) struct dp_link_dpll { int link_bw; struct dpll dpll; }; static const struct dp_link_dpll gen4_dpll[] = { { DP_LINK_BW_1_62, { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, { DP_LINK_BW_2_7, { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } }; static const struct dp_link_dpll pch_dpll[] = { { DP_LINK_BW_1_62, { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, { DP_LINK_BW_2_7, { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } }; static const struct dp_link_dpll vlv_dpll[] = { { DP_LINK_BW_1_62, { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, { DP_LINK_BW_2_7, { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } }; /* * CHV supports eDP 1.4 that have more link rates. * Below only provides the fixed rate but exclude variable rate. */ static const struct dp_link_dpll chv_dpll[] = { /* * CHV requires to program fractional division for m2. * m2 is stored in fixed point format using formula below * (m2_int << 22) | m2_fraction */ { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */ { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */ { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */ { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } } }; static const int bxt_rates[] = { 162000, 216000, 243000, 270000, 324000, 432000, 540000 }; static const int skl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000 }; static const int default_rates[] = { 162000, 270000, 540000 }; /** * is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. */ static bool is_edp(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.type == INTEL_OUTPUT_EDP; } static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.base.dev; } static struct intel_dp *intel_attached_dp(struct drm_connector *connector) { return enc_to_intel_dp(&intel_attached_encoder(connector)->base); } static void intel_dp_link_down(struct intel_dp *intel_dp); static bool edp_panel_vdd_on(struct intel_dp *intel_dp); static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp); static void vlv_steal_power_sequencer(struct drm_device *dev, enum pipe pipe); static int intel_dp_max_link_bw(struct intel_dp *intel_dp) { int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; switch (max_link_bw) { case DP_LINK_BW_1_62: case DP_LINK_BW_2_7: case DP_LINK_BW_5_4: break; default: WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n", max_link_bw); max_link_bw = DP_LINK_BW_1_62; break; } return max_link_bw; } static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; u8 source_max, sink_max; source_max = 4; if (HAS_DDI(dev) && intel_dig_port->port == PORT_A && (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0) source_max = 2; sink_max = drm_dp_max_lane_count(intel_dp->dpcd); return min(source_max, sink_max); } /* * The units on the numbers in the next two are... bizarre. Examples will * make it clearer; this one parallels an example in the eDP spec. * * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as: * * 270000 * 1 * 8 / 10 == 216000 * * The actual data capacity of that configuration is 2.16Gbit/s, so the * units are decakilobits. ->clock in a drm_display_mode is in kilohertz - * or equivalently, kilopixels per second - so for 1680x1050R it'd be * 119000. At 18bpp that's 2142000 kilobits per second. * * Thus the strange-looking division by 10 in intel_dp_link_required, to * get the result in decakilobits instead of kilobits. */ static int intel_dp_link_required(int pixel_clock, int bpp) { return (pixel_clock * bpp + 9) / 10; } static int intel_dp_max_data_rate(int max_link_clock, int max_lanes) { return (max_link_clock * max_lanes * 8) / 10; } static enum drm_mode_status intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; int target_clock = mode->clock; int max_rate, mode_rate, max_lanes, max_link_clock; if (is_edp(intel_dp) && fixed_mode) { if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; target_clock = fixed_mode->clock; } max_link_clock = intel_dp_max_link_rate(intel_dp); max_lanes = intel_dp_max_lane_count(intel_dp); max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); mode_rate = intel_dp_link_required(target_clock, 18); if (mode_rate > max_rate) return MODE_CLOCK_HIGH; if (mode->clock < 10000) return MODE_CLOCK_LOW; if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_H_ILLEGAL; return MODE_OK; } uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } /* hrawclock is 1/4 the FSB frequency */ static int intel_hrawclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t clkcfg; /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */ if (IS_VALLEYVIEW(dev)) return 200; clkcfg = I915_READ(CLKCFG); switch (clkcfg & CLKCFG_FSB_MASK) { case CLKCFG_FSB_400: return 100; case CLKCFG_FSB_533: return 133; case CLKCFG_FSB_667: return 166; case CLKCFG_FSB_800: return 200; case CLKCFG_FSB_1067: return 266; case CLKCFG_FSB_1333: return 333; /* these two are just a guess; one of them might be right */ case CLKCFG_FSB_1600: case CLKCFG_FSB_1600_ALT: return 400; default: return 133; } } static void intel_dp_init_panel_power_sequencer(struct drm_device *dev, struct intel_dp *intel_dp); static void intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, struct intel_dp *intel_dp); static void pps_lock(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; /* * See vlv_power_sequencer_reset() why we need * a power domain reference here. */ power_domain = intel_display_port_power_domain(encoder); intel_display_power_get(dev_priv, power_domain); mutex_lock(&dev_priv->pps_mutex); } static void pps_unlock(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; mutex_unlock(&dev_priv->pps_mutex); power_domain = intel_display_port_power_domain(encoder); intel_display_power_put(dev_priv, power_domain); } static void vlv_power_sequencer_kick(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_dp->pps_pipe; bool pll_enabled; uint32_t DP; if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, "skipping pipe %c power seqeuncer kick due to port %c being active\n", pipe_name(pipe), port_name(intel_dig_port->port))) return; DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", pipe_name(pipe), port_name(intel_dig_port->port)); /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; DP |= DP_PORT_WIDTH(1); DP |= DP_LINK_TRAIN_PAT_1; if (IS_CHERRYVIEW(dev)) DP |= DP_PIPE_SELECT_CHV(pipe); else if (pipe == PIPE_B) DP |= DP_PIPEB_SELECT; pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; /* * The DPLL for the pipe must be enabled for this to work. * So enable temporarily it if it's not already enabled. */ if (!pll_enabled) vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ? &chv_dpll[0].dpll : &vlv_dpll[0].dpll); /* * Similar magic as in intel_dp_enable_port(). * We _must_ do this port enable + disable trick * to make this power seqeuencer lock onto the port. * Otherwise even VDD force bit won't work. */ I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); POSTING_READ(intel_dp->output_reg); I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); POSTING_READ(intel_dp->output_reg); if (!pll_enabled) vlv_force_pll_off(dev, pipe); } static enum pipe vlv_power_sequencer_pipe(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); enum pipe pipe; lockdep_assert_held(&dev_priv->pps_mutex); /* We should never land here with regular DP ports */ WARN_ON(!is_edp(intel_dp)); if (intel_dp->pps_pipe != INVALID_PIPE) return intel_dp->pps_pipe; /* * We don't have power sequencer currently. * Pick one that's not used by other ports. */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { struct intel_dp *tmp; if (encoder->type != INTEL_OUTPUT_EDP) continue; tmp = enc_to_intel_dp(&encoder->base); if (tmp->pps_pipe != INVALID_PIPE) pipes &= ~(1 << tmp->pps_pipe); } /* * Didn't find one. This should not happen since there * are two power sequencers and up to two eDP ports. */ if (WARN_ON(pipes == 0)) pipe = PIPE_A; else pipe = ffs(pipes) - 1; vlv_steal_power_sequencer(dev, pipe); intel_dp->pps_pipe = pipe; DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port)); /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(dev, intel_dp); intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); /* * Even vdd force doesn't work until we've made * the power sequencer lock in on the port. */ vlv_power_sequencer_kick(intel_dp); return intel_dp->pps_pipe; } typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, enum pipe pipe); static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, enum pipe pipe) { return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON; } static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, enum pipe pipe) { return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD; } static bool vlv_pipe_any(struct drm_i915_private *dev_priv, enum pipe pipe) { return true; } static enum pipe vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, enum port port, vlv_pipe_check pipe_check) { enum pipe pipe; for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) & PANEL_PORT_SELECT_MASK; if (port_sel != PANEL_PORT_SELECT_VLV(port)) continue; if (!pipe_check(dev_priv, pipe)) continue; return pipe; } return INVALID_PIPE; } static void vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; lockdep_assert_held(&dev_priv->pps_mutex); /* try to find a pipe with this port selected */ /* first pick one where the panel is on */ intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_has_pp_on); /* didn't find one? pick one where vdd is on */ if (intel_dp->pps_pipe == INVALID_PIPE) intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_has_vdd_on); /* didn't find one? pick one with just the correct port */ if (intel_dp->pps_pipe == INVALID_PIPE) intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_any); /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ if (intel_dp->pps_pipe == INVALID_PIPE) { DRM_DEBUG_KMS("no initial power sequencer for port %c\n", port_name(port)); return; } DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", port_name(port), pipe_name(intel_dp->pps_pipe)); intel_dp_init_panel_power_sequencer(dev, intel_dp); intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); } void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct intel_encoder *encoder; if (WARN_ON(!IS_VALLEYVIEW(dev))) return; /* * We can't grab pps_mutex here due to deadlock with power_domain * mutex when power_domain functions are called while holding pps_mutex. * That also means that in order to use pps_pipe the code needs to * hold both a power domain reference and pps_mutex, and the power domain * reference get/put must be done while _not_ holding pps_mutex. * pps_{lock,unlock}() do these steps in the correct order, so one * should use them always. */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { struct intel_dp *intel_dp; if (encoder->type != INTEL_OUTPUT_EDP) continue; intel_dp = enc_to_intel_dp(&encoder->base); intel_dp->pps_pipe = INVALID_PIPE; } } static u32 _pp_ctrl_reg(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); if (IS_BROXTON(dev)) return BXT_PP_CONTROL(0); else if (HAS_PCH_SPLIT(dev)) return PCH_PP_CONTROL; else return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp)); } static u32 _pp_stat_reg(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); if (IS_BROXTON(dev)) return BXT_PP_STATUS(0); else if (HAS_PCH_SPLIT(dev)) return PCH_PP_STATUS; else return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp)); } /* Reboot notifier handler to shutdown panel power to guarantee T12 timing This function only applicable when panel PM state is not to be tracked */ static int edp_notify_handler(struct notifier_block *this, unsigned long code, void *unused) { struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), edp_notifier); struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp_div; u32 pp_ctrl_reg, pp_div_reg; if (!is_edp(intel_dp) || code != SYS_RESTART) return 0; pps_lock(intel_dp); if (IS_VALLEYVIEW(dev)) { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); pp_div = I915_READ(pp_div_reg); pp_div &= PP_REFERENCE_DIVIDER_MASK; /* 0x1F write to PP_DIV_REG sets max cycle delay */ I915_WRITE(pp_div_reg, pp_div | 0x1F); I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF); msleep(intel_dp->panel_power_cycle_delay); } pps_unlock(intel_dp); return 0; } static bool edp_have_panel_power(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; lockdep_assert_held(&dev_priv->pps_mutex); if (IS_VALLEYVIEW(dev) && intel_dp->pps_pipe == INVALID_PIPE) return false; return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; } static bool edp_have_panel_vdd(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; lockdep_assert_held(&dev_priv->pps_mutex); if (IS_VALLEYVIEW(dev) && intel_dp->pps_pipe == INVALID_PIPE) return false; return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; } static void intel_dp_check_edp(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; if (!is_edp(intel_dp)) return; if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { WARN(1, "eDP powered off while attempting aux channel communication.\n"); DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", I915_READ(_pp_stat_reg(intel_dp)), I915_READ(_pp_ctrl_reg(intel_dp))); } } static uint32_t intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; uint32_t status; bool done; #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) if (has_aux_irq) done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, msecs_to_jiffies_timeout(10)); else done = wait_for_atomic(C, 10) == 0; if (!done) DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n", has_aux_irq); #undef C return status; } static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; /* * The clock divider is based off the hrawclk, and would like to run at * 2MHz. So, take the hrawclk value and divide by 2 and use that */ return index ? 0 : intel_hrawclk(dev) / 2; } static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (index) return 0; if (intel_dig_port->port == PORT_A) { return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000); } else { return DIV_ROUND_UP(intel_pch_rawclk(dev), 2); } } static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (intel_dig_port->port == PORT_A) { if (index) return 0; return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000); } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { /* Workaround for non-ULT HSW */ switch (index) { case 0: return 63; case 1: return 72; default: return 0; } } else { return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2); } } static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { return index ? 0 : 100; } static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { /* * SKL doesn't need us to program the AUX clock divider (Hardware will * derive the clock from CDCLK automatically). We still implement the * get_aux_clock_divider vfunc to plug-in into the existing code. */ return index ? 0 : 1; } static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp, bool has_aux_irq, int send_bytes, uint32_t aux_clock_divider) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; uint32_t precharge, timeout; if (IS_GEN6(dev)) precharge = 3; else precharge = 5; if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL) timeout = DP_AUX_CH_CTL_TIME_OUT_600us; else timeout = DP_AUX_CH_CTL_TIME_OUT_400us; return DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | DP_AUX_CH_CTL_TIME_OUT_ERROR | timeout | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); } static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp, bool has_aux_irq, int send_bytes, uint32_t unused) { return DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_TIME_OUT_1600us | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); } static int intel_dp_aux_ch(struct intel_dp *intel_dp, const uint8_t *send, int send_bytes, uint8_t *recv, int recv_size) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; uint32_t ch_data = ch_ctl + 4; uint32_t aux_clock_divider; int i, ret, recv_bytes; uint32_t status; int try, clock = 0; bool has_aux_irq = HAS_AUX_IRQ(dev); bool vdd; pps_lock(intel_dp); /* * We will be called with VDD already enabled for dpcd/edid/oui reads. * In such cases we want to leave VDD enabled and it's up to upper layers * to turn it off. But for eg. i2c-dev access we need to turn it on/off * ourselves. */ vdd = edp_panel_vdd_on(intel_dp); /* dp aux is extremely sensitive to irq latency, hence request the * lowest possible wakeup latency and so prevent the cpu from going into * deep sleep states. */ pm_qos_update_request(&dev_priv->pm_qos, 0); intel_dp_check_edp(intel_dp); intel_aux_display_runtime_get(dev_priv); /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = I915_READ_NOTRACE(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; msleep(1); } if (try == 3) { static u32 last_status = -1; const u32 status = I915_READ(ch_ctl); if (status != last_status) { WARN(1, "dp_aux_ch not started status 0x%08x\n", status); last_status = status; } ret = -EBUSY; goto out; } /* Only 5 data registers! */ if (WARN_ON(send_bytes > 20 || recv_size > 20)) { ret = -E2BIG; goto out; } while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, has_aux_irq, send_bytes, aux_clock_divider); /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) I915_WRITE(ch_data + i, intel_dp_pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ I915_WRITE(ch_ctl, send_ctl); status = intel_dp_aux_wait_done(intel_dp, has_aux_irq); /* Clear done status and any errors */ I915_WRITE(ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) continue; /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 * 400us delay required for errors and timeouts * Timeout errors from the HW already meet this * requirement so skip to next iteration */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { usleep_range(400, 500); continue; } if (status & DP_AUX_CH_CTL_DONE) goto done; } } if ((status & DP_AUX_CH_CTL_DONE) == 0) { DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); ret = -EBUSY; goto out; } done: /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); ret = -EIO; goto out; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); ret = -ETIMEDOUT; goto out; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) intel_dp_unpack_aux(I915_READ(ch_data + i), recv + i, recv_bytes - i); ret = recv_bytes; out: pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE); intel_aux_display_runtime_put(dev_priv); if (vdd) edp_panel_vdd_off(intel_dp, false); pps_unlock(intel_dp); return ret; } #define BARE_ADDRESS_SIZE 3 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) static ssize_t intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); uint8_t txbuf[20], rxbuf[20]; size_t txsize, rxsize; int ret; txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); txbuf[1] = (msg->address >> 8) & 0xff; txbuf[2] = msg->address & 0xff; txbuf[3] = msg->size - 1; switch (msg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; rxsize = 2; /* 0 or 1 data bytes */ if (WARN_ON(txsize > 20)) return -E2BIG; memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); if (ret > 0) { msg->reply = rxbuf[0] >> 4; if (ret > 1) { /* Number of bytes written in a short write. */ ret = clamp_t(int, rxbuf[1], 0, msg->size); } else { /* Return payload size. */ ret = msg->size; } } break; case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; rxsize = msg->size + 1; if (WARN_ON(rxsize > 20)) return -E2BIG; ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); if (ret > 0) { msg->reply = rxbuf[0] >> 4; /* * Assume happy day, and copy the data. The caller is * expected to check msg->reply before touching it. * * Return payload size. */ ret--; memcpy(msg->buffer, rxbuf + 1, ret); } break; default: ret = -EINVAL; break; } return ret; } static void intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->port; struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; const char *name = NULL; uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL; int ret; /* On SKL we don't have Aux for port E so we rely on VBT to set * a proper alternate aux channel. */ if (IS_SKYLAKE(dev) && port == PORT_E) { switch (info->alternate_aux_channel) { case DP_AUX_B: porte_aux_ctl_reg = DPB_AUX_CH_CTL; break; case DP_AUX_C: porte_aux_ctl_reg = DPC_AUX_CH_CTL; break; case DP_AUX_D: porte_aux_ctl_reg = DPD_AUX_CH_CTL; break; case DP_AUX_A: default: porte_aux_ctl_reg = DPA_AUX_CH_CTL; } } switch (port) { case PORT_A: intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL; name = "DPDDC-A"; break; case PORT_B: intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL; name = "DPDDC-B"; break; case PORT_C: intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL; name = "DPDDC-C"; break; case PORT_D: intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL; name = "DPDDC-D"; break; case PORT_E: intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg; name = "DPDDC-E"; break; default: BUG(); } /* * The AUX_CTL register is usually DP_CTL + 0x10. * * On Haswell and Broadwell though: * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU * * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU. */ if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E) intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10; intel_dp->aux.name = name; intel_dp->aux.dev = dev->dev; intel_dp->aux.transfer = intel_dp_aux_transfer; DRM_DEBUG_KMS("registering %s bus for %s\n", name, connector->base.kdev->kobj.name); ret = drm_dp_aux_register(&intel_dp->aux); if (ret < 0) { DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n", name, ret); return; } ret = sysfs_create_link(&connector->base.kdev->kobj, &intel_dp->aux.ddc.dev.kobj, intel_dp->aux.ddc.dev.kobj.name); if (ret < 0) { DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret); drm_dp_aux_unregister(&intel_dp->aux); } } static void intel_dp_connector_unregister(struct intel_connector *intel_connector) { struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base); if (!intel_connector->mst_port) sysfs_remove_link(&intel_connector->base.kdev->kobj, intel_dp->aux.ddc.dev.kobj.name); intel_connector_unregister(intel_connector); } static void skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock) { u32 ctrl1; memset(&pipe_config->dpll_hw_state, 0, sizeof(pipe_config->dpll_hw_state)); pipe_config->ddi_pll_sel = SKL_DPLL0; pipe_config->dpll_hw_state.cfgcr1 = 0; pipe_config->dpll_hw_state.cfgcr2 = 0; ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0); switch (link_clock / 2) { case 81000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); break; case 135000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0); break; case 270000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0); break; case 162000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0); break; /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which results in CDCLK change. Need to handle the change of CDCLK by disabling pipes and re-enabling them */ case 108000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); break; case 216000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0); break; } pipe_config->dpll_hw_state.ctrl1 = ctrl1; } static void hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw) { memset(&pipe_config->dpll_hw_state, 0, sizeof(pipe_config->dpll_hw_state)); switch (link_bw) { case DP_LINK_BW_1_62: pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810; break; case DP_LINK_BW_2_7: pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350; break; case DP_LINK_BW_5_4: pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700; break; } } static int intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates) { if (intel_dp->num_sink_rates) { *sink_rates = intel_dp->sink_rates; return intel_dp->num_sink_rates; } *sink_rates = default_rates; return (intel_dp_max_link_bw(intel_dp) >> 3) + 1; } static bool intel_dp_source_supports_hbr2(struct drm_device *dev) { /* WaDisableHBR2:skl */ if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) return false; if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) || (INTEL_INFO(dev)->gen >= 9)) return true; else return false; } static int intel_dp_source_rates(struct drm_device *dev, const int **source_rates) { int size; if (IS_BROXTON(dev)) { *source_rates = bxt_rates; size = ARRAY_SIZE(bxt_rates); } else if (IS_SKYLAKE(dev)) { *source_rates = skl_rates; size = ARRAY_SIZE(skl_rates); } else { *source_rates = default_rates; size = ARRAY_SIZE(default_rates); } /* This depends on the fact that 5.4 is last value in the array */ if (!intel_dp_source_supports_hbr2(dev)) size--; return size; } static void intel_dp_set_clock(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, int link_bw) { struct drm_device *dev = encoder->base.dev; const struct dp_link_dpll *divisor = NULL; int i, count = 0; if (IS_G4X(dev)) { divisor = gen4_dpll; count = ARRAY_SIZE(gen4_dpll); } else if (HAS_PCH_SPLIT(dev)) { divisor = pch_dpll; count = ARRAY_SIZE(pch_dpll); } else if (IS_CHERRYVIEW(dev)) { divisor = chv_dpll; count = ARRAY_SIZE(chv_dpll); } else if (IS_VALLEYVIEW(dev)) { divisor = vlv_dpll; count = ARRAY_SIZE(vlv_dpll); } if (divisor && count) { for (i = 0; i < count; i++) { if (link_bw == divisor[i].link_bw) { pipe_config->dpll = divisor[i].dpll; pipe_config->clock_set = true; break; } } } } static int intersect_rates(const int *source_rates, int source_len, const int *sink_rates, int sink_len, int *common_rates) { int i = 0, j = 0, k = 0; while (i < source_len && j < sink_len) { if (source_rates[i] == sink_rates[j]) { if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) return k; common_rates[k] = source_rates[i]; ++k; ++i; ++j; } else if (source_rates[i] < sink_rates[j]) { ++i; } else { ++j; } } return k; } static int intel_dp_common_rates(struct intel_dp *intel_dp, int *common_rates) { struct drm_device *dev = intel_dp_to_dev(intel_dp); const int *source_rates, *sink_rates; int source_len, sink_len; sink_len = intel_dp_sink_rates(intel_dp, &sink_rates); source_len = intel_dp_source_rates(dev, &source_rates); return intersect_rates(source_rates, source_len, sink_rates, sink_len, common_rates); } static void snprintf_int_array(char *str, size_t len, const int *array, int nelem) { int i; str[0] = '\0'; for (i = 0; i < nelem; i++) { int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); if (r >= len) return; str += r; len -= r; } } static void intel_dp_print_rates(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); const int *source_rates, *sink_rates; int source_len, sink_len, common_len; int common_rates[DP_MAX_SUPPORTED_RATES]; char str[128]; /* FIXME: too big for stack? */ if ((drm_debug & DRM_UT_KMS) == 0) return; source_len = intel_dp_source_rates(dev, &source_rates); snprintf_int_array(str, sizeof(str), source_rates, source_len); DRM_DEBUG_KMS("source rates: %s\n", str); sink_len = intel_dp_sink_rates(intel_dp, &sink_rates); snprintf_int_array(str, sizeof(str), sink_rates, sink_len); DRM_DEBUG_KMS("sink rates: %s\n", str); common_len = intel_dp_common_rates(intel_dp, common_rates); snprintf_int_array(str, sizeof(str), common_rates, common_len); DRM_DEBUG_KMS("common rates: %s\n", str); } static int rate_to_index(int find, const int *rates) { int i = 0; for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i) if (find == rates[i]) break; return i; } int intel_dp_max_link_rate(struct intel_dp *intel_dp) { int rates[DP_MAX_SUPPORTED_RATES] = {}; int len; len = intel_dp_common_rates(intel_dp, rates); if (WARN_ON(len <= 0)) return 162000; return rates[rate_to_index(0, rates) - 1]; } int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) { return rate_to_index(rate, intel_dp->sink_rates); } bool intel_dp_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); struct intel_connector *intel_connector = intel_dp->attached_connector; int lane_count, clock; int min_lane_count = 1; int max_lane_count = intel_dp_max_lane_count(intel_dp); /* Conveniently, the link BW constants become indices with a shift...*/ int min_clock = 0; int max_clock; int bpp, mode_rate; int link_avail, link_clock; int common_rates[DP_MAX_SUPPORTED_RATES] = {}; int common_len; common_len = intel_dp_common_rates(intel_dp, common_rates); /* No common link rates between source and sink */ WARN_ON(common_len <= 0); max_clock = common_len - 1; if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A) pipe_config->has_pch_encoder = true; pipe_config->has_dp_encoder = true; pipe_config->has_drrs = false; pipe_config->has_audio = intel_dp->has_audio && port != PORT_A; if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { intel_fixed_panel_mode(intel_connector->panel.fixed_mode, adjusted_mode); if (INTEL_INFO(dev)->gen >= 9) { int ret; ret = skl_update_scaler_crtc(pipe_config); if (ret) return ret; } if (!HAS_PCH_SPLIT(dev)) intel_gmch_panel_fitting(intel_crtc, pipe_config, intel_connector->panel.fitting_mode); else intel_pch_panel_fitting(intel_crtc, pipe_config, intel_connector->panel.fitting_mode); } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) return false; DRM_DEBUG_KMS("DP link computation with max lane count %i " "max bw %d pixel clock %iKHz\n", max_lane_count, common_rates[max_clock], adjusted_mode->crtc_clock); /* Walk through all bpp values. Luckily they're all nicely spaced with 2 * bpc in between. */ bpp = pipe_config->pipe_bpp; if (is_edp(intel_dp)) { /* Get bpp from vbt only for panels that dont have bpp in edid */ if (intel_connector->base.display_info.bpc == 0 && (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) { DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", dev_priv->vbt.edp_bpp); bpp = dev_priv->vbt.edp_bpp; } /* * Use the maximum clock and number of lanes the eDP panel * advertizes being capable of. The panels are generally * designed to support only a single clock and lane * configuration, and typically these values correspond to the * native resolution of the panel. */ min_lane_count = max_lane_count; min_clock = max_clock; } for (; bpp >= 6*3; bpp -= 2*3) { mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, bpp); for (clock = min_clock; clock <= max_clock; clock++) { for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) { link_clock = common_rates[clock]; link_avail = intel_dp_max_data_rate(link_clock, lane_count); if (mode_rate <= link_avail) { goto found; } } } } return false; found: if (intel_dp->color_range_auto) { /* * See: * CEA-861-E - 5.1 Default Encoding Parameters * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry */ if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1) intel_dp->color_range = DP_COLOR_RANGE_16_235; else intel_dp->color_range = 0; } if (intel_dp->color_range) pipe_config->limited_color_range = true; intel_dp->lane_count = lane_count; if (intel_dp->num_sink_rates) { intel_dp->link_bw = 0; intel_dp->rate_select = intel_dp_rate_select(intel_dp, common_rates[clock]); } else { intel_dp->link_bw = drm_dp_link_rate_to_bw_code(common_rates[clock]); intel_dp->rate_select = 0; } pipe_config->pipe_bpp = bpp; pipe_config->port_clock = common_rates[clock]; DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n", intel_dp->link_bw, intel_dp->lane_count, pipe_config->port_clock, bpp); DRM_DEBUG_KMS("DP link bw required %i available %i\n", mode_rate, link_avail); intel_link_compute_m_n(bpp, lane_count, adjusted_mode->crtc_clock, pipe_config->port_clock, &pipe_config->dp_m_n); if (intel_connector->panel.downclock_mode != NULL && dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { pipe_config->has_drrs = true; intel_link_compute_m_n(bpp, lane_count, intel_connector->panel.downclock_mode->clock, pipe_config->port_clock, &pipe_config->dp_m2_n2); } if (IS_SKYLAKE(dev) && is_edp(intel_dp)) skl_edp_set_pll_config(pipe_config, common_rates[clock]); else if (IS_BROXTON(dev)) /* handled in ddi */; else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw); else intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw); return true; } static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config->port_clock); dpa_ctl = I915_READ(DP_A); dpa_ctl &= ~DP_PLL_FREQ_MASK; if (crtc->config->port_clock == 162000) { /* For a long time we've carried around a ILK-DevA w/a for the * 160MHz clock. If we're really unlucky, it's still required. */ DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n"); dpa_ctl |= DP_PLL_FREQ_160MHZ; intel_dp->DP |= DP_PLL_FREQ_160MHZ; } else { dpa_ctl |= DP_PLL_FREQ_270MHZ; intel_dp->DP |= DP_PLL_FREQ_270MHZ; } I915_WRITE(DP_A, dpa_ctl); POSTING_READ(DP_A); udelay(500); } static void intel_dp_prepare(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; /* * There are four kinds of DP registers: * * IBX PCH * SNB CPU * IVB CPU * CPT PCH * * IBX PCH and CPU are the same for almost everything, * except that the CPU DP PLL is configured in this * register * * CPT PCH is quite different, having many bits moved * to the TRANS_DP_CTL register instead. That * configuration happens (oddly) in ironlake_pch_enable */ /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; /* Handle DP bits in common between all three register formats */ intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count); if (crtc->config->has_audio) intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; /* Split out the IBX/CPU vs CPT settings */ if (IS_GEN7(dev) && port == PORT_A) { if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; intel_dp->DP |= crtc->pipe << 29; } else if (HAS_PCH_CPT(dev) && port != PORT_A) { u32 trans_dp; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) trans_dp |= TRANS_DP_ENH_FRAMING; else trans_dp &= ~TRANS_DP_ENH_FRAMING; I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); } else { if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev)) intel_dp->DP |= intel_dp->color_range; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; if (IS_CHERRYVIEW(dev)) intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe); else if (crtc->pipe == PIPE_B) intel_dp->DP |= DP_PIPEB_SELECT; } } #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) static void wait_panel_status(struct intel_dp *intel_dp, u32 mask, u32 value) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp_stat_reg, pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", mask, value, I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) { DRM_ERROR("Panel status timeout: status %08x control %08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); } DRM_DEBUG_KMS("Wait complete\n"); } static void wait_panel_on(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power on\n"); wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); } static void wait_panel_off(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power off time\n"); wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); } static void wait_panel_power_cycle(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power cycle\n"); /* When we disable the VDD override bit last we have to do the manual * wait. */ wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle, intel_dp->panel_power_cycle_delay); wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); } static void wait_backlight_on(struct intel_dp *intel_dp) { wait_remaining_ms_from_jiffies(intel_dp->last_power_on, intel_dp->backlight_on_delay); } static void edp_wait_backlight_off(struct intel_dp *intel_dp) { wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, intel_dp->backlight_off_delay); } /* Read the current pp_control value, unlocking the register if it * is locked */ static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 control; lockdep_assert_held(&dev_priv->pps_mutex); control = I915_READ(_pp_ctrl_reg(intel_dp)); if (!IS_BROXTON(dev)) { control &= ~PANEL_UNLOCK_MASK; control |= PANEL_UNLOCK_REGS; } return control; } /* * Must be paired with edp_panel_vdd_off(). * Must hold pps_mutex around the whole on/off sequence. * Can be nested with intel_edp_panel_vdd_{on,off}() calls. */ static bool edp_panel_vdd_on(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; u32 pp; u32 pp_stat_reg, pp_ctrl_reg; bool need_to_disable = !intel_dp->want_panel_vdd; lockdep_assert_held(&dev_priv->pps_mutex); if (!is_edp(intel_dp)) return false; cancel_delayed_work(&intel_dp->panel_vdd_work); intel_dp->want_panel_vdd = true; if (edp_have_panel_vdd(intel_dp)) return need_to_disable; power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_get(dev_priv, power_domain); DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", port_name(intel_dig_port->port)); if (!edp_have_panel_power(intel_dp)) wait_panel_power_cycle(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp |= EDP_FORCE_VDD; pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); /* * If the panel wasn't on, delay before accessing aux channel */ if (!edp_have_panel_power(intel_dp)) { DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", port_name(intel_dig_port->port)); msleep(intel_dp->panel_power_up_delay); } return need_to_disable; } /* * Must be paired with intel_edp_panel_vdd_off() or * intel_edp_panel_off(). * Nested calls to these functions are not allowed since * we drop the lock. Caller must use some higher level * locking to prevent nested calls from other threads. */ void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) { bool vdd; if (!is_edp(intel_dp)) return; pps_lock(intel_dp); vdd = edp_panel_vdd_on(intel_dp); pps_unlock(intel_dp); I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", port_name(dp_to_dig_port(intel_dp)->port)); } static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &intel_dig_port->base; enum intel_display_power_domain power_domain; u32 pp; u32 pp_stat_reg, pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); WARN_ON(intel_dp->want_panel_vdd); if (!edp_have_panel_vdd(intel_dp)) return; DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", port_name(intel_dig_port->port)); pp = ironlake_get_pp_control(intel_dp); pp &= ~EDP_FORCE_VDD; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp_stat_reg = _pp_stat_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); /* Make sure sequencer is idle before allowing subsequent activity */ DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); if ((pp & POWER_TARGET_ON) == 0) intel_dp->last_power_cycle = jiffies; power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_put(dev_priv, power_domain); } static void edp_panel_vdd_work(struct work_struct *__work) { struct intel_dp *intel_dp = container_of(to_delayed_work(__work), struct intel_dp, panel_vdd_work); pps_lock(intel_dp); if (!intel_dp->want_panel_vdd) edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); } static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) { unsigned long delay; /* * Queue the timer to fire a long time from now (relative to the power * down delay) to keep the panel power up across a sequence of * operations. */ delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); schedule_delayed_work(&intel_dp->panel_vdd_work, delay); } /* * Must be paired with edp_panel_vdd_on(). * Must hold pps_mutex around the whole on/off sequence. * Can be nested with intel_edp_panel_vdd_{on,off}() calls. */ static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) { struct drm_i915_private *dev_priv = intel_dp_to_dev(intel_dp)->dev_private; lockdep_assert_held(&dev_priv->pps_mutex); if (!is_edp(intel_dp)) return; I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", port_name(dp_to_dig_port(intel_dp)->port)); intel_dp->want_panel_vdd = false; if (sync) edp_panel_vdd_off_sync(intel_dp); else edp_panel_vdd_schedule_off(intel_dp); } static void edp_panel_on(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", port_name(dp_to_dig_port(intel_dp)->port)); if (WARN(edp_have_panel_power(intel_dp), "eDP port %c panel power already on\n", port_name(dp_to_dig_port(intel_dp)->port))) return; wait_panel_power_cycle(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp = ironlake_get_pp_control(intel_dp); if (IS_GEN5(dev)) { /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); } pp |= POWER_TARGET_ON; if (!IS_GEN5(dev)) pp |= PANEL_POWER_RESET; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); wait_panel_on(intel_dp); intel_dp->last_power_on = jiffies; if (IS_GEN5(dev)) { pp |= PANEL_POWER_RESET; /* restore panel reset bit */ I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); } } void intel_edp_panel_on(struct intel_dp *intel_dp) { if (!is_edp(intel_dp)) return; pps_lock(intel_dp); edp_panel_on(intel_dp); pps_unlock(intel_dp); } static void edp_panel_off(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; u32 pp; u32 pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", port_name(dp_to_dig_port(intel_dp)->port)); WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", port_name(dp_to_dig_port(intel_dp)->port)); pp = ironlake_get_pp_control(intel_dp); /* We need to switch off panel power _and_ force vdd, for otherwise some * panels get very unhappy and cease to work. */ pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | EDP_BLC_ENABLE); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); intel_dp->want_panel_vdd = false; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); intel_dp->last_power_cycle = jiffies; wait_panel_off(intel_dp); /* We got a reference when we enabled the VDD. */ power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_put(dev_priv, power_domain); } void intel_edp_panel_off(struct intel_dp *intel_dp) { if (!is_edp(intel_dp)) return; pps_lock(intel_dp); edp_panel_off(intel_dp); pps_unlock(intel_dp); } /* Enable backlight in the panel power control. */ static void _intel_edp_backlight_on(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ wait_backlight_on(intel_dp); pps_lock(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp |= EDP_BLC_ENABLE; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); pps_unlock(intel_dp); } /* Enable backlight PWM and backlight PP control. */ void intel_edp_backlight_on(struct intel_dp *intel_dp) { if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("\n"); intel_panel_enable_backlight(intel_dp->attached_connector); _intel_edp_backlight_on(intel_dp); } /* Disable backlight in the panel power control. */ static void _intel_edp_backlight_off(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; if (!is_edp(intel_dp)) return; pps_lock(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp &= ~EDP_BLC_ENABLE; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); pps_unlock(intel_dp); intel_dp->last_backlight_off = jiffies; edp_wait_backlight_off(intel_dp); } /* Disable backlight PP control and backlight PWM. */ void intel_edp_backlight_off(struct intel_dp *intel_dp) { if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("\n"); _intel_edp_backlight_off(intel_dp); intel_panel_disable_backlight(intel_dp->attached_connector); } /* * Hook for controlling the panel power control backlight through the bl_power * sysfs attribute. Take care to handle multiple calls. */ static void intel_edp_backlight_power(struct intel_connector *connector, bool enable) { struct intel_dp *intel_dp = intel_attached_dp(&connector->base); bool is_enabled; pps_lock(intel_dp); is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; pps_unlock(intel_dp); if (is_enabled == enable) return; DRM_DEBUG_KMS("panel power control backlight %s\n", enable ? "enable" : "disable"); if (enable) _intel_edp_backlight_on(intel_dp); else _intel_edp_backlight_off(intel_dp); } static void ironlake_edp_pll_on(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = intel_dig_port->base.base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe); DRM_DEBUG_KMS("\n"); dpa_ctl = I915_READ(DP_A); WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n"); WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); /* We don't adjust intel_dp->DP while tearing down the link, to * facilitate link retraining (e.g. after hotplug). Hence clear all * enable bits here to ensure that we don't enable too much. */ intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); intel_dp->DP |= DP_PLL_ENABLE; I915_WRITE(DP_A, intel_dp->DP); POSTING_READ(DP_A); udelay(200); } static void ironlake_edp_pll_off(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = intel_dig_port->base.base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe); dpa_ctl = I915_READ(DP_A); WARN((dpa_ctl & DP_PLL_ENABLE) == 0, "dp pll off, should be on\n"); WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); /* We can't rely on the value tracked for the DP register in * intel_dp->DP because link_down must not change that (otherwise link * re-training will fail. */ dpa_ctl &= ~DP_PLL_ENABLE; I915_WRITE(DP_A, dpa_ctl); POSTING_READ(DP_A); udelay(200); } /* If the sink supports it, try to set the power state appropriately */ void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) { int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DRM_MODE_DPMS_ON) { ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D3); } else { /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; msleep(1); } } if (ret != 1) DRM_DEBUG_KMS("failed to %s sink power state\n", mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); } static bool intel_dp_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; u32 tmp; power_domain = intel_display_port_power_domain(encoder); if (!intel_display_power_is_enabled(dev_priv, power_domain)) return false; tmp = I915_READ(intel_dp->output_reg); if (!(tmp & DP_PORT_EN)) return false; if (IS_GEN7(dev) && port == PORT_A) { *pipe = PORT_TO_PIPE_CPT(tmp); } else if (HAS_PCH_CPT(dev) && port != PORT_A) { enum pipe p; for_each_pipe(dev_priv, p) { u32 trans_dp = I915_READ(TRANS_DP_CTL(p)); if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) { *pipe = p; return true; } } DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg); } else if (IS_CHERRYVIEW(dev)) { *pipe = DP_PORT_TO_PIPE_CHV(tmp); } else { *pipe = PORT_TO_PIPE(tmp); } return true; } static void intel_dp_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); u32 tmp, flags = 0; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = dp_to_dig_port(intel_dp)->port; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); int dotclock; tmp = I915_READ(intel_dp->output_reg); pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; if (HAS_PCH_CPT(dev) && port != PORT_A) { tmp = I915_READ(TRANS_DP_CTL(crtc->pipe)); if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } else { if (tmp & DP_SYNC_HS_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & DP_SYNC_VS_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->base.adjusted_mode.flags |= flags; if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; pipe_config->has_dp_encoder = true; intel_dp_get_m_n(crtc, pipe_config); if (port == PORT_A) { if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ) pipe_config->port_clock = 162000; else pipe_config->port_clock = 270000; } dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A) ironlake_check_encoder_dotclock(pipe_config, dotclock); pipe_config->base.adjusted_mode.crtc_clock = dotclock; if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; } } static void intel_disable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct drm_device *dev = encoder->base.dev; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); if (crtc->config->has_audio) intel_audio_codec_disable(encoder); if (HAS_PSR(dev) && !HAS_DDI(dev)) intel_psr_disable(intel_dp); /* Make sure the panel is off before trying to change the mode. But also * ensure that we have vdd while we switch off the panel. */ intel_edp_panel_vdd_on(intel_dp); intel_edp_backlight_off(intel_dp); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); intel_edp_panel_off(intel_dp); /* disable the port before the pipe on g4x */ if (INTEL_INFO(dev)->gen < 5) intel_dp_link_down(intel_dp); } static void ilk_post_disable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; intel_dp_link_down(intel_dp); if (port == PORT_A) ironlake_edp_pll_off(intel_dp); } static void vlv_post_disable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); intel_dp_link_down(intel_dp); } static void chv_post_disable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel ch = vlv_dport_to_channel(dport); enum pipe pipe = intel_crtc->pipe; u32 val; intel_dp_link_down(intel_dp); mutex_lock(&dev_priv->sb_lock); /* Propagate soft reset to data lane reset */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); mutex_unlock(&dev_priv->sb_lock); } static void _intel_dp_set_link_train(struct intel_dp *intel_dp, uint32_t *DP, uint8_t dp_train_pat) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; if (HAS_DDI(dev)) { uint32_t temp = I915_READ(DP_TP_CTL(port)); if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) temp |= DP_TP_CTL_SCRAMBLE_DISABLE; else temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; break; case DP_TRAINING_PATTERN_1: temp |= DP_TP_CTL_LINK_TRAIN_PAT1; break; case DP_TRAINING_PATTERN_2: temp |= DP_TP_CTL_LINK_TRAIN_PAT2; break; case DP_TRAINING_PATTERN_3: temp |= DP_TP_CTL_LINK_TRAIN_PAT3; break; } I915_WRITE(DP_TP_CTL(port), temp); } else if ((IS_GEN7(dev) && port == PORT_A) || (HAS_PCH_CPT(dev) && port != PORT_A)) { *DP &= ~DP_LINK_TRAIN_MASK_CPT; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF_CPT; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1_CPT; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; case DP_TRAINING_PATTERN_3: DRM_ERROR("DP training pattern 3 not supported\n"); *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; } } else { if (IS_CHERRYVIEW(dev)) *DP &= ~DP_LINK_TRAIN_MASK_CHV; else *DP &= ~DP_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2; break; case DP_TRAINING_PATTERN_3: if (IS_CHERRYVIEW(dev)) { *DP |= DP_LINK_TRAIN_PAT_3_CHV; } else { DRM_ERROR("DP training pattern 3 not supported\n"); *DP |= DP_LINK_TRAIN_PAT_2; } break; } } } static void intel_dp_enable_port(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; /* enable with pattern 1 (as per spec) */ _intel_dp_set_link_train(intel_dp, &intel_dp->DP, DP_TRAINING_PATTERN_1); I915_WRITE(intel_dp->output_reg, intel_dp->DP); POSTING_READ(intel_dp->output_reg); /* * Magic for VLV/CHV. We _must_ first set up the register * without actually enabling the port, and then do another * write to enable the port. Otherwise link training will * fail when the power sequencer is freshly used for this port. */ intel_dp->DP |= DP_PORT_EN; I915_WRITE(intel_dp->output_reg, intel_dp->DP); POSTING_READ(intel_dp->output_reg); } static void intel_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); uint32_t dp_reg = I915_READ(intel_dp->output_reg); unsigned int lane_mask = 0x0; if (WARN_ON(dp_reg & DP_PORT_EN)) return; pps_lock(intel_dp); if (IS_VALLEYVIEW(dev)) vlv_init_panel_power_sequencer(intel_dp); intel_dp_enable_port(intel_dp); edp_panel_vdd_on(intel_dp); edp_panel_on(intel_dp); edp_panel_vdd_off(intel_dp, true); pps_unlock(intel_dp); if (IS_VALLEYVIEW(dev)) vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), lane_mask); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); intel_dp_complete_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); if (crtc->config->has_audio) { DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", pipe_name(crtc->pipe)); intel_audio_codec_enable(encoder); } } static void g4x_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); intel_enable_dp(encoder); intel_edp_backlight_on(intel_dp); } static void vlv_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); intel_edp_backlight_on(intel_dp); intel_psr_enable(intel_dp); } static void g4x_pre_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *dport = dp_to_dig_port(intel_dp); intel_dp_prepare(encoder); /* Only ilk+ has port A */ if (dport->port == PORT_A) { ironlake_set_pll_cpu_edp(intel_dp); ironlake_edp_pll_on(intel_dp); } } static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private; enum pipe pipe = intel_dp->pps_pipe; int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); edp_panel_vdd_off_sync(intel_dp); /* * VLV seems to get confused when multiple power seqeuencers * have the same port selected (even if only one has power/vdd * enabled). The failure manifests as vlv_wait_port_ready() failing * CHV on the other hand doesn't seem to mind having the same port * selected in multiple power seqeuencers, but let's clear the * port select always when logically disconnecting a power sequencer * from a port. */ DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", pipe_name(pipe), port_name(intel_dig_port->port)); I915_WRITE(pp_on_reg, 0); POSTING_READ(pp_on_reg); intel_dp->pps_pipe = INVALID_PIPE; } static void vlv_steal_power_sequencer(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; lockdep_assert_held(&dev_priv->pps_mutex); if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) return; list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { struct intel_dp *intel_dp; enum port port; if (encoder->type != INTEL_OUTPUT_EDP) continue; intel_dp = enc_to_intel_dp(&encoder->base); port = dp_to_dig_port(intel_dp)->port; if (intel_dp->pps_pipe != pipe) continue; DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", pipe_name(pipe), port_name(port)); WARN(encoder->base.crtc, "stealing pipe %c power sequencer from active eDP port %c\n", pipe_name(pipe), port_name(port)); /* make sure vdd is off before we steal it */ vlv_detach_power_sequencer(intel_dp); } } static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); lockdep_assert_held(&dev_priv->pps_mutex); if (!is_edp(intel_dp)) return; if (intel_dp->pps_pipe == crtc->pipe) return; /* * If another power sequencer was being used on this * port previously make sure to turn off vdd there while * we still have control of it. */ if (intel_dp->pps_pipe != INVALID_PIPE) vlv_detach_power_sequencer(intel_dp); /* * We may be stealing the power * sequencer from another port. */ vlv_steal_power_sequencer(dev, crtc->pipe); /* now it's all ours */ intel_dp->pps_pipe = crtc->pipe; DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port)); /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(dev, intel_dp); intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); } static void vlv_pre_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; u32 val; mutex_lock(&dev_priv->sb_lock); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); val = 0; if (pipe) val |= (1<<21); else val &= ~(1<<21); val |= 0x001000c4; vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); mutex_unlock(&dev_priv->sb_lock); intel_enable_dp(encoder); } static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; intel_dp_prepare(encoder); /* Program Tx lane resets to default */ mutex_lock(&dev_priv->sb_lock); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | (1<sb_lock); } static void chv_pre_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel ch = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; int data, i, stagger; u32 val; mutex_lock(&dev_priv->sb_lock); /* allow hardware to manage TX FIFO reset source */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); val &= ~DPIO_LANEDESKEW_STRAP_OVRD; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); val &= ~DPIO_LANEDESKEW_STRAP_OVRD; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); /* Deassert soft data lane reset*/ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); /* Program Tx lane latency optimal setting*/ for (i = 0; i < 4; i++) { /* Set the upar bit */ data = (i == 1) ? 0x0 : 0x1; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), data << DPIO_UPAR_SHIFT); } /* Data lane stagger programming */ if (intel_crtc->config->port_clock > 270000) stagger = 0x18; else if (intel_crtc->config->port_clock > 135000) stagger = 0xd; else if (intel_crtc->config->port_clock > 67500) stagger = 0x7; else if (intel_crtc->config->port_clock > 33750) stagger = 0x4; else stagger = 0x2; val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); val |= DPIO_TX2_STAGGER_MASK(0x1f); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); val |= DPIO_TX2_STAGGER_MASK(0x1f); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch), DPIO_LANESTAGGER_STRAP(stagger) | DPIO_LANESTAGGER_STRAP_OVRD | DPIO_TX1_STAGGER_MASK(0x1f) | DPIO_TX1_STAGGER_MULT(6) | DPIO_TX2_STAGGER_MULT(0)); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch), DPIO_LANESTAGGER_STRAP(stagger) | DPIO_LANESTAGGER_STRAP_OVRD | DPIO_TX1_STAGGER_MASK(0x1f) | DPIO_TX1_STAGGER_MULT(7) | DPIO_TX2_STAGGER_MULT(5)); mutex_unlock(&dev_priv->sb_lock); intel_enable_dp(encoder); } static void chv_dp_pre_pll_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel ch = vlv_dport_to_channel(dport); enum pipe pipe = intel_crtc->pipe; u32 val; intel_dp_prepare(encoder); mutex_lock(&dev_priv->sb_lock); /* program left/right clock distribution */ if (pipe != PIPE_B) { val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); if (ch == DPIO_CH0) val |= CHV_BUFLEFTENA1_FORCE; if (ch == DPIO_CH1) val |= CHV_BUFRIGHTENA1_FORCE; vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); } else { val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); if (ch == DPIO_CH0) val |= CHV_BUFLEFTENA2_FORCE; if (ch == DPIO_CH1) val |= CHV_BUFRIGHTENA2_FORCE; vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); } /* program clock channel usage */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; if (pipe != PIPE_B) val &= ~CHV_PCS_USEDCLKCHANNEL; else val |= CHV_PCS_USEDCLKCHANNEL; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; if (pipe != PIPE_B) val &= ~CHV_PCS_USEDCLKCHANNEL; else val |= CHV_PCS_USEDCLKCHANNEL; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); /* * This a a bit weird since generally CL * matches the pipe, but here we need to * pick the CL based on the port. */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); if (pipe != PIPE_B) val &= ~CHV_CMN_USEDCLKCHANNEL; else val |= CHV_CMN_USEDCLKCHANNEL; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); mutex_unlock(&dev_priv->sb_lock); } /* * Native read with retry for link status and receiver capability reads for * cases where the sink may still be asleep. * * Sinks are *supposed* to come up within 1ms from an off state, but we're also * supposed to retry 3 times per the spec. */ static ssize_t intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset, void *buffer, size_t size) { ssize_t ret; int i; /* * Sometime we just get the same incorrect byte repeated * over the entire buffer. Doing just one throw away read * initially seems to "solve" it. */ drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1); for (i = 0; i < 3; i++) { ret = drm_dp_dpcd_read(aux, offset, buffer, size); if (ret == size) return ret; msleep(1); } return ret; } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ static bool intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) { return intel_dp_dpcd_read_wake(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; } /* These are source-specific values. */ static uint8_t intel_dp_voltage_max(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; enum port port = dp_to_dig_port(intel_dp)->port; if (IS_BROXTON(dev)) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else if (INTEL_INFO(dev)->gen >= 9) { if (dev_priv->edp_low_vswing && port == PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; } else if (IS_VALLEYVIEW(dev)) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else if (IS_GEN7(dev) && port == PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; else if (HAS_PCH_CPT(dev) && port != PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; } static uint8_t intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) { struct drm_device *dev = intel_dp_to_dev(intel_dp); enum port port = dp_to_dig_port(intel_dp)->port; if (INTEL_INFO(dev)->gen >= 9) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_3; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: return DP_TRAIN_PRE_EMPH_LEVEL_0; default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_3; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else if (IS_VALLEYVIEW(dev)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_3; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else if (IS_GEN7(dev) && port == PORT_A) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } } static uint32_t vlv_signal_levels(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc); unsigned long demph_reg_value, preemph_reg_value, uniqtranscale_reg_value; uint8_t train_set = intel_dp->train_set[0]; enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: preemph_reg_value = 0x0004000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x552AB83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5548B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B245555; uniqtranscale_reg_value = 0x5560B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x5598DA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: preemph_reg_value = 0x0002000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5552B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404848; uniqtranscale_reg_value = 0x5580B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: preemph_reg_value = 0x0000000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B305555; uniqtranscale_reg_value = 0x5570B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B2B4040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: preemph_reg_value = 0x0006000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x1B405555; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; default: return 0; } mutex_lock(&dev_priv->sb_lock); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), uniqtranscale_reg_value); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000); mutex_unlock(&dev_priv->sb_lock); return 0; } static uint32_t chv_signal_levels(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc); u32 deemph_reg_value, margin_reg_value, val; uint8_t train_set = intel_dp->train_set[0]; enum dpio_channel ch = vlv_dport_to_channel(dport); enum pipe pipe = intel_crtc->pipe; int i; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 128; margin_reg_value = 52; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 128; margin_reg_value = 77; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 128; margin_reg_value = 102; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: deemph_reg_value = 128; margin_reg_value = 154; /* FIXME extra to set for 1200 */ break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 85; margin_reg_value = 78; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 85; margin_reg_value = 116; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 85; margin_reg_value = 154; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 64; margin_reg_value = 104; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 64; margin_reg_value = 154; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 43; margin_reg_value = 154; break; default: return 0; } break; default: return 0; } mutex_lock(&dev_priv->sb_lock); /* Clear calc init */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch)); val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch)); val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val); /* Program swing deemph */ for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); val &= ~DPIO_SWING_DEEMPH9P5_MASK; val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); } /* Program swing margin */ for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); val &= ~DPIO_SWING_MARGIN000_MASK; val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); } /* Disable unique transition scale */ for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); } if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0) && ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) { /* * The document said it needs to set bit 27 for ch0 and bit 26 * for ch1. Might be a typo in the doc. * For now, for this unique transition scale selection, set bit * 27 for ch0 and ch1. */ for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); } for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT); vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); } } /* Start swing calculation */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); /* LRC Bypass */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); val |= DPIO_LRC_BYPASS; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val); mutex_unlock(&dev_priv->sb_lock); return 0; } static void intel_get_adjust_train(struct intel_dp *intel_dp, const uint8_t link_status[DP_LINK_STATUS_SIZE]) { uint8_t v = 0; uint8_t p = 0; int lane; uint8_t voltage_max; uint8_t preemph_max; for (lane = 0; lane < intel_dp->lane_count; lane++) { uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane); uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } voltage_max = intel_dp_voltage_max(intel_dp); if (v >= voltage_max) v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); if (p >= preemph_max) p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; for (lane = 0; lane < 4; lane++) intel_dp->train_set[lane] = v | p; } static uint32_t gen4_signal_levels(uint8_t train_set) { uint32_t signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPH_LEVEL_1: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPH_LEVEL_2: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPH_LEVEL_3: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } /* Gen6's DP voltage swing and pre-emphasis control */ static uint32_t gen6_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } /* Gen7's DP voltage swing and pre-emphasis control */ static uint32_t gen7_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400MV_6DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_600MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_800MV_3_5DB_IVB; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_500MV_0DB_IVB; } } /* Properly updates "DP" with the correct signal levels. */ static void intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->port; struct drm_device *dev = intel_dig_port->base.base.dev; uint32_t signal_levels, mask = 0; uint8_t train_set = intel_dp->train_set[0]; if (HAS_DDI(dev)) { signal_levels = ddi_signal_levels(intel_dp); if (IS_BROXTON(dev)) signal_levels = 0; else mask = DDI_BUF_EMP_MASK; } else if (IS_CHERRYVIEW(dev)) { signal_levels = chv_signal_levels(intel_dp); } else if (IS_VALLEYVIEW(dev)) { signal_levels = vlv_signal_levels(intel_dp); } else if (IS_GEN7(dev) && port == PORT_A) { signal_levels = gen7_edp_signal_levels(train_set); mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; } else if (IS_GEN6(dev) && port == PORT_A) { signal_levels = gen6_edp_signal_levels(train_set); mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; } else { signal_levels = gen4_signal_levels(train_set); mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; } if (mask) DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); DRM_DEBUG_KMS("Using vswing level %d\n", train_set & DP_TRAIN_VOLTAGE_SWING_MASK); DRM_DEBUG_KMS("Using pre-emphasis level %d\n", (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); *DP = (*DP & ~mask) | signal_levels; } static bool intel_dp_set_link_train(struct intel_dp *intel_dp, uint32_t *DP, uint8_t dp_train_pat) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint8_t buf[sizeof(intel_dp->train_set) + 1]; int ret, len; _intel_dp_set_link_train(intel_dp, DP, dp_train_pat); I915_WRITE(intel_dp->output_reg, *DP); POSTING_READ(intel_dp->output_reg); buf[0] = dp_train_pat; if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) == DP_TRAINING_PATTERN_DISABLE) { /* don't write DP_TRAINING_LANEx_SET on disable */ len = 1; } else { /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */ memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count); len = intel_dp->lane_count + 1; } ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET, buf, len); return ret == len; } static bool intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP, uint8_t dp_train_pat) { if (!intel_dp->train_set_valid) memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); intel_dp_set_signal_levels(intel_dp, DP); return intel_dp_set_link_train(intel_dp, DP, dp_train_pat); } static bool intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP, const uint8_t link_status[DP_LINK_STATUS_SIZE]) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; intel_get_adjust_train(intel_dp, link_status); intel_dp_set_signal_levels(intel_dp, DP); I915_WRITE(intel_dp->output_reg, *DP); POSTING_READ(intel_dp->output_reg); ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET, intel_dp->train_set, intel_dp->lane_count); return ret == intel_dp->lane_count; } static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; uint32_t val; if (!HAS_DDI(dev)) return; val = I915_READ(DP_TP_CTL(port)); val &= ~DP_TP_CTL_LINK_TRAIN_MASK; val |= DP_TP_CTL_LINK_TRAIN_IDLE; I915_WRITE(DP_TP_CTL(port), val); /* * On PORT_A we can have only eDP in SST mode. There the only reason * we need to set idle transmission mode is to work around a HW issue * where we enable the pipe while not in idle link-training mode. * In this case there is requirement to wait for a minimum number of * idle patterns to be sent. */ if (port == PORT_A) return; if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE), 1)) DRM_ERROR("Timed out waiting for DP idle patterns\n"); } /* Enable corresponding port and start training pattern 1 */ void intel_dp_start_link_train(struct intel_dp *intel_dp) { struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base; struct drm_device *dev = encoder->dev; int i; uint8_t voltage; int voltage_tries, loop_tries; uint32_t DP = intel_dp->DP; uint8_t link_config[2]; if (HAS_DDI(dev)) intel_ddi_prepare_link_retrain(encoder); /* Write the link configuration data */ link_config[0] = intel_dp->link_bw; link_config[1] = intel_dp->lane_count; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2); if (intel_dp->num_sink_rates) drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET, &intel_dp->rate_select, 1); link_config[0] = 0; link_config[1] = DP_SET_ANSI_8B10B; drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2); DP |= DP_PORT_EN; /* clock recovery */ if (!intel_dp_reset_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE)) { DRM_ERROR("failed to enable link training\n"); return; } voltage = 0xff; voltage_tries = 0; loop_tries = 0; for (;;) { uint8_t link_status[DP_LINK_STATUS_SIZE]; drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd); if (!intel_dp_get_link_status(intel_dp, link_status)) { DRM_ERROR("failed to get link status\n"); break; } if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { DRM_DEBUG_KMS("clock recovery OK\n"); break; } /* * if we used previously trained voltage and pre-emphasis values * and we don't get clock recovery, reset link training values */ if (intel_dp->train_set_valid) { DRM_DEBUG_KMS("clock recovery not ok, reset"); /* clear the flag as we are not reusing train set */ intel_dp->train_set_valid = false; if (!intel_dp_reset_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE)) { DRM_ERROR("failed to enable link training\n"); return; } continue; } /* Check to see if we've tried the max voltage */ for (i = 0; i < intel_dp->lane_count; i++) if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; if (i == intel_dp->lane_count) { ++loop_tries; if (loop_tries == 5) { DRM_ERROR("too many full retries, give up\n"); break; } intel_dp_reset_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE); voltage_tries = 0; continue; } /* Check to see if we've tried the same voltage 5 times */ if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++voltage_tries; if (voltage_tries == 5) { DRM_ERROR("too many voltage retries, give up\n"); break; } } else voltage_tries = 0; voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Update training set as requested by target */ if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { DRM_ERROR("failed to update link training\n"); break; } } intel_dp->DP = DP; } void intel_dp_complete_link_train(struct intel_dp *intel_dp) { bool channel_eq = false; int tries, cr_tries; uint32_t DP = intel_dp->DP; uint32_t training_pattern = DP_TRAINING_PATTERN_2; /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/ if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3) training_pattern = DP_TRAINING_PATTERN_3; /* channel equalization */ if (!intel_dp_set_link_train(intel_dp, &DP, training_pattern | DP_LINK_SCRAMBLING_DISABLE)) { DRM_ERROR("failed to start channel equalization\n"); return; } tries = 0; cr_tries = 0; channel_eq = false; for (;;) { uint8_t link_status[DP_LINK_STATUS_SIZE]; if (cr_tries > 5) { DRM_ERROR("failed to train DP, aborting\n"); break; } drm_dp_link_train_channel_eq_delay(intel_dp->dpcd); if (!intel_dp_get_link_status(intel_dp, link_status)) { DRM_ERROR("failed to get link status\n"); break; } /* Make sure clock is still ok */ if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { intel_dp->train_set_valid = false; intel_dp_start_link_train(intel_dp); intel_dp_set_link_train(intel_dp, &DP, training_pattern | DP_LINK_SCRAMBLING_DISABLE); cr_tries++; continue; } if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { channel_eq = true; break; } /* Try 5 times, then try clock recovery if that fails */ if (tries > 5) { intel_dp->train_set_valid = false; intel_dp_start_link_train(intel_dp); intel_dp_set_link_train(intel_dp, &DP, training_pattern | DP_LINK_SCRAMBLING_DISABLE); tries = 0; cr_tries++; continue; } /* Update training set as requested by target */ if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { DRM_ERROR("failed to update link training\n"); break; } ++tries; } intel_dp_set_idle_link_train(intel_dp); intel_dp->DP = DP; if (channel_eq) { intel_dp->train_set_valid = true; DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n"); } } void intel_dp_stop_link_train(struct intel_dp *intel_dp) { intel_dp_set_link_train(intel_dp, &intel_dp->DP, DP_TRAINING_PATTERN_DISABLE); } static void intel_dp_link_down(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); enum port port = intel_dig_port->port; struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t DP = intel_dp->DP; if (WARN_ON(HAS_DDI(dev))) return; if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) return; DRM_DEBUG_KMS("\n"); if ((IS_GEN7(dev) && port == PORT_A) || (HAS_PCH_CPT(dev) && port != PORT_A)) { DP &= ~DP_LINK_TRAIN_MASK_CPT; DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; } else { if (IS_CHERRYVIEW(dev)) DP &= ~DP_LINK_TRAIN_MASK_CHV; else DP &= ~DP_LINK_TRAIN_MASK; DP |= DP_LINK_TRAIN_PAT_IDLE; } I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching HDMI port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) { /* always enable with pattern 1 (as per spec) */ DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK); DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1; I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); DP &= ~DP_PORT_EN; I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); } msleep(intel_dp->panel_power_down_delay); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint8_t rev; if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd, sizeof(intel_dp->dpcd)) < 0) return false; /* aux transfer failed */ DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); if (intel_dp->dpcd[DP_DPCD_REV] == 0) return false; /* DPCD not present */ /* Check if the panel supports PSR */ memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd)); if (is_edp(intel_dp)) { intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) { dev_priv->psr.sink_support = true; DRM_DEBUG_KMS("Detected EDP PSR Panel.\n"); } if (INTEL_INFO(dev)->gen >= 9 && (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) { uint8_t frame_sync_cap; dev_priv->psr.sink_support = true; intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP, &frame_sync_cap, 1); dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false; /* PSR2 needs frame sync as well */ dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync; DRM_DEBUG_KMS("PSR2 %s on sink", dev_priv->psr.psr2_support ? "supported" : "not supported"); } } /* Training Pattern 3 support, Intel platforms that support HBR2 alone * have support for TP3 hence that check is used along with dpcd check * to ensure TP3 can be enabled. * SKL < B0: due it's WaDisableHBR2 is the only exception where TP3 is * supported but still not enabled. */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 && intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED && intel_dp_source_supports_hbr2(dev)) { intel_dp->use_tps3 = true; DRM_DEBUG_KMS("Displayport TPS3 supported\n"); } else intel_dp->use_tps3 = false; /* Intermediate frequency support */ if (is_edp(intel_dp) && (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) && (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) && (rev >= 0x03)) { /* eDp v1.4 or higher */ __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; int i; intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { int val = le16_to_cpu(sink_rates[i]); if (val == 0) break; /* Value read is in kHz while drm clock is saved in deca-kHz */ intel_dp->sink_rates[i] = (val * 200) / 10; } intel_dp->num_sink_rates = i; } intel_dp_print_rates(intel_dp); if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) return true; /* native DP sink */ if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) return true; /* no per-port downstream info */ if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, intel_dp->downstream_ports, DP_MAX_DOWNSTREAM_PORTS) < 0) return false; /* downstream port status fetch failed */ return true; } static void intel_dp_probe_oui(struct intel_dp *intel_dp) { u8 buf[3]; if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) return; if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3) DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3) DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); } static bool intel_dp_probe_mst(struct intel_dp *intel_dp) { u8 buf[1]; if (!intel_dp->can_mst) return false; if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) return false; if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) { if (buf[0] & DP_MST_CAP) { DRM_DEBUG_KMS("Sink is MST capable\n"); intel_dp->is_mst = true; } else { DRM_DEBUG_KMS("Sink is not MST capable\n"); intel_dp->is_mst = false; } } drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); return intel_dp->is_mst; } static void intel_dp_sink_crc_stop(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc); u8 buf; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) { DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n"); return; } if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START) < 0) DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n"); hsw_enable_ips(intel_crtc); } static int intel_dp_sink_crc_start(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc); u8 buf; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) return -EIO; if (!(buf & DP_TEST_CRC_SUPPORTED)) return -ENOTTY; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) return -EIO; hsw_disable_ips(intel_crtc); if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, buf | DP_TEST_SINK_START) < 0) { hsw_enable_ips(intel_crtc); return -EIO; } return 0; } int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc); u8 buf; int test_crc_count; int attempts = 6; int ret; ret = intel_dp_sink_crc_start(intel_dp); if (ret) return ret; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) { ret = -EIO; goto stop; } test_crc_count = buf & DP_TEST_COUNT_MASK; do { if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) { ret = -EIO; goto stop; } intel_wait_for_vblank(dev, intel_crtc->pipe); } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count); if (attempts == 0) { DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n"); ret = -ETIMEDOUT; goto stop; } if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) ret = -EIO; stop: intel_dp_sink_crc_stop(intel_dp); return ret; } static bool intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) { return intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector, 1) == 1; } static bool intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) { int ret; ret = intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT_ESI, sink_irq_vector, 14); if (ret != 14) return false; return true; } static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp) { uint8_t test_result = DP_TEST_ACK; return test_result; } static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) { uint8_t test_result = DP_TEST_NAK; return test_result; } static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp) { uint8_t test_result = DP_TEST_NAK; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; if (intel_connector->detect_edid == NULL || connector->edid_corrupt || intel_dp->aux.i2c_defer_count > 6) { /* Check EDID read for NACKs, DEFERs and corruption * (DP CTS 1.2 Core r1.1) * 4.2.2.4 : Failed EDID read, I2C_NAK * 4.2.2.5 : Failed EDID read, I2C_DEFER * 4.2.2.6 : EDID corruption detected * Use failsafe mode for all cases */ if (intel_dp->aux.i2c_nack_count > 0 || intel_dp->aux.i2c_defer_count > 0) DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", intel_dp->aux.i2c_nack_count, intel_dp->aux.i2c_defer_count); intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE; } else { struct edid *block = intel_connector->detect_edid; /* We have to write the checksum * of the last block read */ block += intel_connector->detect_edid->extensions; if (!drm_dp_dpcd_write(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, &block->checksum, 1)) DRM_DEBUG_KMS("Failed to write EDID checksum\n"); test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance_test_active = 1; return test_result; } static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) { uint8_t test_result = DP_TEST_NAK; return test_result; } static void intel_dp_handle_test_request(struct intel_dp *intel_dp) { uint8_t response = DP_TEST_NAK; uint8_t rxdata = 0; int status = 0; intel_dp->compliance_test_active = 0; intel_dp->compliance_test_type = 0; intel_dp->compliance_test_data = 0; intel_dp->aux.i2c_nack_count = 0; intel_dp->aux.i2c_defer_count = 0; status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1); if (status <= 0) { DRM_DEBUG_KMS("Could not read test request from sink\n"); goto update_status; } switch (rxdata) { case DP_TEST_LINK_TRAINING: DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING; response = intel_dp_autotest_link_training(intel_dp); break; case DP_TEST_LINK_VIDEO_PATTERN: DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN; response = intel_dp_autotest_video_pattern(intel_dp); break; case DP_TEST_LINK_EDID_READ: DRM_DEBUG_KMS("EDID test requested\n"); intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ; response = intel_dp_autotest_edid(intel_dp); break; case DP_TEST_LINK_PHY_TEST_PATTERN: DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN; response = intel_dp_autotest_phy_pattern(intel_dp); break; default: DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata); break; } update_status: status = drm_dp_dpcd_write(&intel_dp->aux, DP_TEST_RESPONSE, &response, 1); if (status <= 0) DRM_DEBUG_KMS("Could not write test response to sink\n"); } static int intel_dp_check_mst_status(struct intel_dp *intel_dp) { bool bret; if (intel_dp->is_mst) { u8 esi[16] = { 0 }; int ret = 0; int retry; bool handled; bret = intel_dp_get_sink_irq_esi(intel_dp, esi); go_again: if (bret == true) { /* check link status - esi[10] = 0x200c */ if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); intel_dp_start_link_train(intel_dp); intel_dp_complete_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); } DRM_DEBUG_KMS("got esi %3ph\n", esi); ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); if (handled) { for (retry = 0; retry < 3; retry++) { int wret; wret = drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI+1, &esi[1], 3); if (wret == 3) { break; } } bret = intel_dp_get_sink_irq_esi(intel_dp, esi); if (bret == true) { DRM_DEBUG_KMS("got esi2 %3ph\n", esi); goto go_again; } } else ret = 0; return ret; } else { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); /* send a hotplug event */ drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev); } } return -EINVAL; } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt */ static void intel_dp_check_link_status(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; u8 sink_irq_vector; u8 link_status[DP_LINK_STATUS_SIZE]; WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); if (!intel_encoder->base.crtc) return; if (!to_intel_crtc(intel_encoder->base.crtc)->active) return; /* Try to read receiver status if the link appears to be up */ if (!intel_dp_get_link_status(intel_dp, link_status)) { return; } /* Now read the DPCD to see if it's actually running */ if (!intel_dp_get_dpcd(intel_dp)) { return; } /* Try to read the source of the interrupt */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { /* Clear interrupt source */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector); if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) DRM_DEBUG_DRIVER("Test request in short pulse not handled\n"); if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); } if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", intel_encoder->base.name); intel_dp_start_link_train(intel_dp); intel_dp_complete_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); } } /* XXX this is probably wrong for multiple downstream ports */ static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { uint8_t *dpcd = intel_dp->dpcd; uint8_t type; if (!intel_dp_get_dpcd(intel_dp)) return connector_status_disconnected; /* if there's no downstream port, we're done */ if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) return connector_status_connected; /* If we're HPD-aware, SINK_COUNT changes dynamically */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { uint8_t reg; if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT, ®, 1) < 0) return connector_status_unknown; return DP_GET_SINK_COUNT(reg) ? connector_status_connected : connector_status_disconnected; } /* If no HPD, poke DDC gently */ if (drm_probe_ddc(&intel_dp->aux.ddc)) return connector_status_connected; /* Well we tried, say unknown for unreliable port types */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) return connector_status_unknown; } else { type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || type == DP_DWN_STRM_PORT_TYPE_OTHER) return connector_status_unknown; } /* Anything else is out of spec, warn and ignore */ DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); return connector_status_disconnected; } static enum drm_connector_status edp_detect(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); enum drm_connector_status status; status = intel_panel_detect(dev); if (status == connector_status_unknown) status = connector_status_connected; return status; } static enum drm_connector_status ironlake_dp_detect(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) return connector_status_disconnected; return intel_dp_detect_dpcd(intel_dp); } static int g4x_digital_port_connected(struct drm_device *dev, struct intel_digital_port *intel_dig_port) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t bit; if (IS_VALLEYVIEW(dev)) { switch (intel_dig_port->port) { case PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_VLV; break; case PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_VLV; break; case PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_VLV; break; default: return -EINVAL; } } else { switch (intel_dig_port->port) { case PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; break; case PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; break; case PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; break; default: return -EINVAL; } } if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0) return 0; return 1; } static enum drm_connector_status g4x_dp_detect(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); int ret; /* Can't disconnect eDP, but you can close the lid... */ if (is_edp(intel_dp)) { enum drm_connector_status status; status = intel_panel_detect(dev); if (status == connector_status_unknown) status = connector_status_connected; return status; } ret = g4x_digital_port_connected(dev, intel_dig_port); if (ret == -EINVAL) return connector_status_unknown; else if (ret == 0) return connector_status_disconnected; return intel_dp_detect_dpcd(intel_dp); } static struct edid * intel_dp_get_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; /* use cached edid if we have one */ if (intel_connector->edid) { /* invalid edid */ if (IS_ERR(intel_connector->edid)) return NULL; return drm_edid_duplicate(intel_connector->edid); } else return drm_get_edid(&intel_connector->base, &intel_dp->aux.ddc); } static void intel_dp_set_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct edid *edid; edid = intel_dp_get_edid(intel_dp); intel_connector->detect_edid = edid; if (intel_dp->force_audio != HDMI_AUDIO_AUTO) intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON; else intel_dp->has_audio = drm_detect_monitor_audio(edid); } static void intel_dp_unset_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; kfree(intel_connector->detect_edid); intel_connector->detect_edid = NULL; intel_dp->has_audio = false; } static enum intel_display_power_domain intel_dp_power_get(struct intel_dp *dp) { struct intel_encoder *encoder = &dp_to_dig_port(dp)->base; enum intel_display_power_domain power_domain; power_domain = intel_display_port_power_domain(encoder); intel_display_power_get(to_i915(encoder->base.dev), power_domain); return power_domain; } static void intel_dp_power_put(struct intel_dp *dp, enum intel_display_power_domain power_domain) { struct intel_encoder *encoder = &dp_to_dig_port(dp)->base; intel_display_power_put(to_i915(encoder->base.dev), power_domain); } static enum drm_connector_status intel_dp_detect(struct drm_connector *connector, bool force) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = connector->dev; enum drm_connector_status status; enum intel_display_power_domain power_domain; bool ret; u8 sink_irq_vector; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_dp_unset_edid(intel_dp); if (intel_dp->is_mst) { /* MST devices are disconnected from a monitor POV */ if (intel_encoder->type != INTEL_OUTPUT_EDP) intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; return connector_status_disconnected; } power_domain = intel_dp_power_get(intel_dp); /* Can't disconnect eDP, but you can close the lid... */ if (is_edp(intel_dp)) status = edp_detect(intel_dp); else if (HAS_PCH_SPLIT(dev)) status = ironlake_dp_detect(intel_dp); else status = g4x_dp_detect(intel_dp); if (status != connector_status_connected) goto out; intel_dp_probe_oui(intel_dp); ret = intel_dp_probe_mst(intel_dp); if (ret) { /* if we are in MST mode then this connector won't appear connected or have anything with EDID on it */ if (intel_encoder->type != INTEL_OUTPUT_EDP) intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; status = connector_status_disconnected; goto out; } intel_dp_set_edid(intel_dp); if (intel_encoder->type != INTEL_OUTPUT_EDP) intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; status = connector_status_connected; /* Try to read the source of the interrupt */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { /* Clear interrupt source */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector); if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); } out: intel_dp_power_put(intel_dp, power_domain); return status; } static void intel_dp_force(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; enum intel_display_power_domain power_domain; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_dp_unset_edid(intel_dp); if (connector->status != connector_status_connected) return; power_domain = intel_dp_power_get(intel_dp); intel_dp_set_edid(intel_dp); intel_dp_power_put(intel_dp, power_domain); if (intel_encoder->type != INTEL_OUTPUT_EDP) intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct edid *edid; edid = intel_connector->detect_edid; if (edid) { int ret = intel_connector_update_modes(connector, edid); if (ret) return ret; } /* if eDP has no EDID, fall back to fixed mode */ if (is_edp(intel_attached_dp(connector)) && intel_connector->panel.fixed_mode) { struct drm_display_mode *mode; mode = drm_mode_duplicate(connector->dev, intel_connector->panel.fixed_mode); if (mode) { drm_mode_probed_add(connector, mode); return 1; } } return 0; } static bool intel_dp_detect_audio(struct drm_connector *connector) { bool has_audio = false; struct edid *edid; edid = to_intel_connector(connector)->detect_edid; if (edid) has_audio = drm_detect_monitor_audio(edid); return has_audio; } static int intel_dp_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_i915_private *dev_priv = connector->dev->dev_private; struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); int ret; ret = drm_object_property_set_value(&connector->base, property, val); if (ret) return ret; if (property == dev_priv->force_audio_property) { int i = val; bool has_audio; if (i == intel_dp->force_audio) return 0; intel_dp->force_audio = i; if (i == HDMI_AUDIO_AUTO) has_audio = intel_dp_detect_audio(connector); else has_audio = (i == HDMI_AUDIO_ON); if (has_audio == intel_dp->has_audio) return 0; intel_dp->has_audio = has_audio; goto done; } if (property == dev_priv->broadcast_rgb_property) { bool old_auto = intel_dp->color_range_auto; uint32_t old_range = intel_dp->color_range; switch (val) { case INTEL_BROADCAST_RGB_AUTO: intel_dp->color_range_auto = true; break; case INTEL_BROADCAST_RGB_FULL: intel_dp->color_range_auto = false; intel_dp->color_range = 0; break; case INTEL_BROADCAST_RGB_LIMITED: intel_dp->color_range_auto = false; intel_dp->color_range = DP_COLOR_RANGE_16_235; break; default: return -EINVAL; } if (old_auto == intel_dp->color_range_auto && old_range == intel_dp->color_range) return 0; goto done; } if (is_edp(intel_dp) && property == connector->dev->mode_config.scaling_mode_property) { if (val == DRM_MODE_SCALE_NONE) { DRM_DEBUG_KMS("no scaling not supported\n"); return -EINVAL; } if (intel_connector->panel.fitting_mode == val) { /* the eDP scaling property is not changed */ return 0; } intel_connector->panel.fitting_mode = val; goto done; } return -EINVAL; done: if (intel_encoder->base.crtc) intel_crtc_restore_mode(intel_encoder->base.crtc); return 0; } static void intel_dp_connector_destroy(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); kfree(intel_connector->detect_edid); if (!IS_ERR_OR_NULL(intel_connector->edid)) kfree(intel_connector->edid); /* Can't call is_edp() since the encoder may have been destroyed * already. */ if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) intel_panel_fini(&intel_connector->panel); drm_connector_cleanup(connector); kfree(connector); } void intel_dp_encoder_destroy(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp = &intel_dig_port->dp; drm_dp_aux_unregister(&intel_dp->aux); intel_dp_mst_encoder_cleanup(intel_dig_port); if (is_edp(intel_dp)) { cancel_delayed_work_sync(&intel_dp->panel_vdd_work); /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ pps_lock(intel_dp); edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); if (intel_dp->edp_notifier.notifier_call) { unregister_reboot_notifier(&intel_dp->edp_notifier); intel_dp->edp_notifier.notifier_call = NULL; } } drm_encoder_cleanup(encoder); kfree(intel_dig_port); } static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); if (!is_edp(intel_dp)) return; /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ cancel_delayed_work_sync(&intel_dp->panel_vdd_work); pps_lock(intel_dp); edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); } static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; lockdep_assert_held(&dev_priv->pps_mutex); if (!edp_have_panel_vdd(intel_dp)) return; /* * The VDD bit needs a power domain reference, so if the bit is * already enabled when we boot or resume, grab this reference and * schedule a vdd off, so we don't hold on to the reference * indefinitely. */ DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); power_domain = intel_display_port_power_domain(&intel_dig_port->base); intel_display_power_get(dev_priv, power_domain); edp_panel_vdd_schedule_off(intel_dp); } static void intel_dp_encoder_reset(struct drm_encoder *encoder) { struct intel_dp *intel_dp; if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP) return; intel_dp = enc_to_intel_dp(encoder); pps_lock(intel_dp); /* * Read out the current power sequencer assignment, * in case the BIOS did something with it. */ if (IS_VALLEYVIEW(encoder->dev)) vlv_initial_power_sequencer_setup(intel_dp); intel_edp_panel_vdd_sanitize(intel_dp); pps_unlock(intel_dp); } static const struct drm_connector_funcs intel_dp_connector_funcs = { .dpms = drm_atomic_helper_connector_dpms, .detect = intel_dp_detect, .force = intel_dp_force, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = intel_dp_set_property, .atomic_get_property = intel_connector_atomic_get_property, .destroy = intel_dp_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_encoder_funcs intel_dp_enc_funcs = { .reset = intel_dp_encoder_reset, .destroy = intel_dp_encoder_destroy, }; enum irqreturn intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) { struct intel_dp *intel_dp = &intel_dig_port->dp; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; enum irqreturn ret = IRQ_NONE; if (intel_dig_port->base.type != INTEL_OUTPUT_EDP) intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT; if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { /* * vdd off can generate a long pulse on eDP which * would require vdd on to handle it, and thus we * would end up in an endless cycle of * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." */ DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", port_name(intel_dig_port->port)); return IRQ_HANDLED; } DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", port_name(intel_dig_port->port), long_hpd ? "long" : "short"); power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_get(dev_priv, power_domain); if (long_hpd) { /* indicate that we need to restart link training */ intel_dp->train_set_valid = false; if (HAS_PCH_SPLIT(dev)) { if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) goto mst_fail; } else { if (g4x_digital_port_connected(dev, intel_dig_port) != 1) goto mst_fail; } if (!intel_dp_get_dpcd(intel_dp)) { goto mst_fail; } intel_dp_probe_oui(intel_dp); if (!intel_dp_probe_mst(intel_dp)) { drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); intel_dp_check_link_status(intel_dp); drm_modeset_unlock(&dev->mode_config.connection_mutex); goto mst_fail; } } else { if (intel_dp->is_mst) { if (intel_dp_check_mst_status(intel_dp) == -EINVAL) goto mst_fail; } if (!intel_dp->is_mst) { drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); intel_dp_check_link_status(intel_dp); drm_modeset_unlock(&dev->mode_config.connection_mutex); } } ret = IRQ_HANDLED; goto put_power; mst_fail: /* if we were in MST mode, and device is not there get out of MST mode */ if (intel_dp->is_mst) { DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } put_power: intel_display_power_put(dev_priv, power_domain); return ret; } /* Return which DP Port should be selected for Transcoder DP control */ int intel_trans_dp_port_sel(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_encoder *intel_encoder; struct intel_dp *intel_dp; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { intel_dp = enc_to_intel_dp(&intel_encoder->base); if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || intel_encoder->type == INTEL_OUTPUT_EDP) return intel_dp->output_reg; } return -1; } /* check the VBT to see whether the eDP is on another port */ bool intel_dp_is_edp(struct drm_device *dev, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; union child_device_config *p_child; int i; static const short port_mapping[] = { [PORT_B] = DVO_PORT_DPB, [PORT_C] = DVO_PORT_DPC, [PORT_D] = DVO_PORT_DPD, [PORT_E] = DVO_PORT_DPE, }; if (port == PORT_A) return true; if (!dev_priv->vbt.child_dev_num) return false; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { p_child = dev_priv->vbt.child_dev + i; if (p_child->common.dvo_port == port_mapping[port] && (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) == (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) return true; } return false; } void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); intel_dp->color_range_auto = true; if (is_edp(intel_dp)) { drm_mode_create_scaling_mode_property(connector->dev); drm_object_attach_property( &connector->base, connector->dev->mode_config.scaling_mode_property, DRM_MODE_SCALE_ASPECT); intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT; } } static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) { intel_dp->last_power_cycle = jiffies; intel_dp->last_power_on = jiffies; intel_dp->last_backlight_off = jiffies; } static void intel_dp_init_panel_power_sequencer(struct drm_device *dev, struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dev->dev_private; struct edp_power_seq cur, vbt, spec, *final = &intel_dp->pps_delays; u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0; int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0; lockdep_assert_held(&dev_priv->pps_mutex); /* already initialized? */ if (final->t11_t12 != 0) return; if (IS_BROXTON(dev)) { /* * TODO: BXT has 2 sets of PPS registers. * Correct Register for Broxton need to be identified * using VBT. hardcoding for now */ pp_ctrl_reg = BXT_PP_CONTROL(0); pp_on_reg = BXT_PP_ON_DELAYS(0); pp_off_reg = BXT_PP_OFF_DELAYS(0); } else if (HAS_PCH_SPLIT(dev)) { pp_ctrl_reg = PCH_PP_CONTROL; pp_on_reg = PCH_PP_ON_DELAYS; pp_off_reg = PCH_PP_OFF_DELAYS; pp_div_reg = PCH_PP_DIVISOR; } else { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); } /* Workaround: Need to write PP_CONTROL with the unlock key as * the very first thing. */ pp_ctl = ironlake_get_pp_control(intel_dp); pp_on = I915_READ(pp_on_reg); pp_off = I915_READ(pp_off_reg); if (!IS_BROXTON(dev)) { I915_WRITE(pp_ctrl_reg, pp_ctl); pp_div = I915_READ(pp_div_reg); } /* Pull timing values out of registers */ cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> PANEL_POWER_UP_DELAY_SHIFT; cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> PANEL_LIGHT_ON_DELAY_SHIFT; cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> PANEL_LIGHT_OFF_DELAY_SHIFT; cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> PANEL_POWER_DOWN_DELAY_SHIFT; if (IS_BROXTON(dev)) { u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >> BXT_POWER_CYCLE_DELAY_SHIFT; if (tmp > 0) cur.t11_t12 = (tmp - 1) * 1000; else cur.t11_t12 = 0; } else { cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; } DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); vbt = dev_priv->vbt.edp_pps; /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of * our hw here, which are all in 100usec. */ spec.t1_t3 = 210 * 10; spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ spec.t10 = 500 * 10; /* This one is special and actually in units of 100ms, but zero * based in the hw (so we need to add 100 ms). But the sw vbt * table multiplies it with 1000 to make it in units of 100usec, * too. */ spec.t11_t12 = (510 + 100) * 10; DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12); /* Use the max of the register settings and vbt. If both are * unset, fall back to the spec limits. */ #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ spec.field : \ max(cur.field, vbt.field)) assign_final(t1_t3); assign_final(t8); assign_final(t9); assign_final(t10); assign_final(t11_t12); #undef assign_final #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) intel_dp->panel_power_up_delay = get_delay(t1_t3); intel_dp->backlight_on_delay = get_delay(t8); intel_dp->backlight_off_delay = get_delay(t9); intel_dp->panel_power_down_delay = get_delay(t10); intel_dp->panel_power_cycle_delay = get_delay(t11_t12); #undef get_delay DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, intel_dp->panel_power_cycle_delay); DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); } static void intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp_on, pp_off, pp_div, port_sel = 0; int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev); int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg; enum port port = dp_to_dig_port(intel_dp)->port; const struct edp_power_seq *seq = &intel_dp->pps_delays; lockdep_assert_held(&dev_priv->pps_mutex); if (IS_BROXTON(dev)) { /* * TODO: BXT has 2 sets of PPS registers. * Correct Register for Broxton need to be identified * using VBT. hardcoding for now */ pp_ctrl_reg = BXT_PP_CONTROL(0); pp_on_reg = BXT_PP_ON_DELAYS(0); pp_off_reg = BXT_PP_OFF_DELAYS(0); } else if (HAS_PCH_SPLIT(dev)) { pp_on_reg = PCH_PP_ON_DELAYS; pp_off_reg = PCH_PP_OFF_DELAYS; pp_div_reg = PCH_PP_DIVISOR; } else { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); } /* * And finally store the new values in the power sequencer. The * backlight delays are set to 1 because we do manual waits on them. For * T8, even BSpec recommends doing it. For T9, if we don't do this, * we'll end up waiting for the backlight off delay twice: once when we * do the manual sleep, and once when we disable the panel and wait for * the PP_STATUS bit to become zero. */ pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) | (1 << PANEL_LIGHT_ON_DELAY_SHIFT); pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) | (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT); /* Compute the divisor for the pp clock, simply match the Bspec * formula. */ if (IS_BROXTON(dev)) { pp_div = I915_READ(pp_ctrl_reg); pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK; pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000) << BXT_POWER_CYCLE_DELAY_SHIFT); } else { pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT; pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) << PANEL_POWER_CYCLE_DELAY_SHIFT); } /* Haswell doesn't have any port selection bits for the panel * power sequencer any more. */ if (IS_VALLEYVIEW(dev)) { port_sel = PANEL_PORT_SELECT_VLV(port); } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { if (port == PORT_A) port_sel = PANEL_PORT_SELECT_DPA; else port_sel = PANEL_PORT_SELECT_DPD; } pp_on |= port_sel; I915_WRITE(pp_on_reg, pp_on); I915_WRITE(pp_off_reg, pp_off); if (IS_BROXTON(dev)) I915_WRITE(pp_ctrl_reg, pp_div); else I915_WRITE(pp_div_reg, pp_div); DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", I915_READ(pp_on_reg), I915_READ(pp_off_reg), IS_BROXTON(dev) ? (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) : I915_READ(pp_div_reg)); } /** * intel_dp_set_drrs_state - program registers for RR switch to take effect * @dev: DRM device * @refresh_rate: RR to be programmed * * This function gets called when refresh rate (RR) has to be changed from * one frequency to another. Switches can be between high and low RR * supported by the panel or to any other RR based on media playback (in * this case, RR value needs to be passed from user space). * * The caller of this function needs to take a lock on dev_priv->drrs. */ static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; struct intel_digital_port *dig_port = NULL; struct intel_dp *intel_dp = dev_priv->drrs.dp; struct intel_crtc_state *config = NULL; struct intel_crtc *intel_crtc = NULL; u32 reg, val; enum drrs_refresh_rate_type index = DRRS_HIGH_RR; if (refresh_rate <= 0) { DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); return; } if (intel_dp == NULL) { DRM_DEBUG_KMS("DRRS not supported.\n"); return; } /* * FIXME: This needs proper synchronization with psr state for some * platforms that cannot have PSR and DRRS enabled at the same time. */ dig_port = dp_to_dig_port(intel_dp); encoder = &dig_port->base; intel_crtc = to_intel_crtc(encoder->base.crtc); if (!intel_crtc) { DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); return; } config = intel_crtc->config; if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); return; } if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == refresh_rate) index = DRRS_LOW_RR; if (index == dev_priv->drrs.refresh_rate_type) { DRM_DEBUG_KMS( "DRRS requested for previously set RR...ignoring\n"); return; } if (!intel_crtc->active) { DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); return; } if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) { switch (index) { case DRRS_HIGH_RR: intel_dp_set_m_n(intel_crtc, M1_N1); break; case DRRS_LOW_RR: intel_dp_set_m_n(intel_crtc, M2_N2); break; case DRRS_MAX_RR: default: DRM_ERROR("Unsupported refreshrate type\n"); } } else if (INTEL_INFO(dev)->gen > 6) { reg = PIPECONF(intel_crtc->config->cpu_transcoder); val = I915_READ(reg); if (index > DRRS_HIGH_RR) { if (IS_VALLEYVIEW(dev)) val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; else val |= PIPECONF_EDP_RR_MODE_SWITCH; } else { if (IS_VALLEYVIEW(dev)) val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; else val &= ~PIPECONF_EDP_RR_MODE_SWITCH; } I915_WRITE(reg, val); } dev_priv->drrs.refresh_rate_type = index; DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); } /** * intel_edp_drrs_enable - init drrs struct if supported * @intel_dp: DP struct * * Initializes frontbuffer_bits and drrs.dp */ void intel_edp_drrs_enable(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = dig_port->base.base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (!intel_crtc->config->has_drrs) { DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); return; } mutex_lock(&dev_priv->drrs.mutex); if (WARN_ON(dev_priv->drrs.dp)) { DRM_ERROR("DRRS already enabled\n"); goto unlock; } dev_priv->drrs.busy_frontbuffer_bits = 0; dev_priv->drrs.dp = intel_dp; unlock: mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_disable - Disable DRRS * @intel_dp: DP struct * */ void intel_edp_drrs_disable(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = dig_port->base.base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (!intel_crtc->config->has_drrs) return; mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv->dev, intel_dp->attached_connector->panel. fixed_mode->vrefresh); dev_priv->drrs.dp = NULL; mutex_unlock(&dev_priv->drrs.mutex); cancel_delayed_work_sync(&dev_priv->drrs.work); } static void intel_edp_drrs_downclock_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), drrs.work.work); struct intel_dp *intel_dp; mutex_lock(&dev_priv->drrs.mutex); intel_dp = dev_priv->drrs.dp; if (!intel_dp) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. */ if (dev_priv->drrs.busy_frontbuffer_bits) goto unlock; if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv->dev, intel_dp->attached_connector->panel. downclock_mode->vrefresh); unlock: mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_invalidate - Disable Idleness DRRS * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called everytime rendering on the given planes start. * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). * * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. */ void intel_edp_drrs_invalidate(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; enum pipe pipe; if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) return; cancel_delayed_work(&dev_priv->drrs.work); mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; /* invalidate means busy screen hence upclock */ if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv->dev, dev_priv->drrs.dp->attached_connector->panel. fixed_mode->vrefresh); mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_flush - Restart Idleness DRRS * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called every time rendering on the given planes has * completed or flip on a crtc is completed. So DRRS should be upclocked * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, * if no other planes are dirty. * * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. */ void intel_edp_drrs_flush(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; enum pipe pipe; if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) return; cancel_delayed_work(&dev_priv->drrs.work); mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; /* flush means busy screen hence upclock */ if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv->dev, dev_priv->drrs.dp->attached_connector->panel. fixed_mode->vrefresh); /* * flush also means no more activity hence schedule downclock, if all * other fbs are quiescent too */ if (!dev_priv->drrs.busy_frontbuffer_bits) schedule_delayed_work(&dev_priv->drrs.work, msecs_to_jiffies(1000)); mutex_unlock(&dev_priv->drrs.mutex); } /** * DOC: Display Refresh Rate Switching (DRRS) * * Display Refresh Rate Switching (DRRS) is a power conservation feature * which enables swtching between low and high refresh rates, * dynamically, based on the usage scenario. This feature is applicable * for internal panels. * * Indication that the panel supports DRRS is given by the panel EDID, which * would list multiple refresh rates for one resolution. * * DRRS is of 2 types - static and seamless. * Static DRRS involves changing refresh rate (RR) by doing a full modeset * (may appear as a blink on screen) and is used in dock-undock scenario. * Seamless DRRS involves changing RR without any visual effect to the user * and can be used during normal system usage. This is done by programming * certain registers. * * Support for static/seamless DRRS may be indicated in the VBT based on * inputs from the panel spec. * * DRRS saves power by switching to low RR based on usage scenarios. * * eDP DRRS:- * The implementation is based on frontbuffer tracking implementation. * When there is a disturbance on the screen triggered by user activity or a * periodic system activity, DRRS is disabled (RR is changed to high RR). * When there is no movement on screen, after a timeout of 1 second, a switch * to low RR is made. * For integration with frontbuffer tracking code, * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called. * * DRRS can be further extended to support other internal panels and also * the scenario of video playback wherein RR is set based on the rate * requested by userspace. */ /** * intel_dp_drrs_init - Init basic DRRS work and mutex. * @intel_connector: eDP connector * @fixed_mode: preferred mode of panel * * This function is called only once at driver load to initialize basic * DRRS stuff. * * Returns: * Downclock mode if panel supports it, else return NULL. * DRRS support is determined by the presence of downclock mode (apart * from VBT setting). */ static struct drm_display_mode * intel_dp_drrs_init(struct intel_connector *intel_connector, struct drm_display_mode *fixed_mode) { struct drm_connector *connector = &intel_connector->base; struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_display_mode *downclock_mode = NULL; INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); mutex_init(&dev_priv->drrs.mutex); if (INTEL_INFO(dev)->gen <= 6) { DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); return NULL; } if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); return NULL; } downclock_mode = intel_find_panel_downclock (dev, fixed_mode, connector); if (!downclock_mode) { DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); return NULL; } dev_priv->drrs.type = dev_priv->vbt.drrs_type; dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); return downclock_mode; } static bool intel_edp_init_connector(struct intel_dp *intel_dp, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_display_mode *fixed_mode = NULL; struct drm_display_mode *downclock_mode = NULL; bool has_dpcd; struct drm_display_mode *scan; struct edid *edid; enum pipe pipe = INVALID_PIPE; if (!is_edp(intel_dp)) return true; pps_lock(intel_dp); intel_edp_panel_vdd_sanitize(intel_dp); pps_unlock(intel_dp); /* Cache DPCD and EDID for edp. */ has_dpcd = intel_dp_get_dpcd(intel_dp); if (has_dpcd) { if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_NO_AUX_HANDSHAKE_LINK_TRAINING; } else { /* if this fails, presume the device is a ghost */ DRM_INFO("failed to retrieve link info, disabling eDP\n"); return false; } /* We now know it's not a ghost, init power sequence regs. */ pps_lock(intel_dp); intel_dp_init_panel_power_sequencer_registers(dev, intel_dp); pps_unlock(intel_dp); mutex_lock(&dev->mode_config.mutex); edid = drm_get_edid(connector, &intel_dp->aux.ddc); if (edid) { if (drm_add_edid_modes(connector, edid)) { drm_mode_connector_update_edid_property(connector, edid); drm_edid_to_eld(connector, edid); } else { kfree(edid); edid = ERR_PTR(-EINVAL); } } else { edid = ERR_PTR(-ENOENT); } intel_connector->edid = edid; /* prefer fixed mode from EDID if available */ list_for_each_entry(scan, &connector->probed_modes, head) { if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { fixed_mode = drm_mode_duplicate(dev, scan); downclock_mode = intel_dp_drrs_init( intel_connector, fixed_mode); break; } } /* fallback to VBT if available for eDP */ if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) { fixed_mode = drm_mode_duplicate(dev, dev_priv->vbt.lfp_lvds_vbt_mode); if (fixed_mode) fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; } mutex_unlock(&dev->mode_config.mutex); if (IS_VALLEYVIEW(dev)) { intel_dp->edp_notifier.notifier_call = edp_notify_handler; register_reboot_notifier(&intel_dp->edp_notifier); /* * Figure out the current pipe for the initial backlight setup. * If the current pipe isn't valid, try the PPS pipe, and if that * fails just assume pipe A. */ if (IS_CHERRYVIEW(dev)) pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP); else pipe = PORT_TO_PIPE(intel_dp->DP); if (pipe != PIPE_A && pipe != PIPE_B) pipe = intel_dp->pps_pipe; if (pipe != PIPE_A && pipe != PIPE_B) pipe = PIPE_A; DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", pipe_name(pipe)); } intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); intel_connector->panel.backlight_power = intel_edp_backlight_power; intel_panel_setup_backlight(connector, pipe); return true; } bool intel_dp_init_connector(struct intel_digital_port *intel_dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_dp *intel_dp = &intel_dig_port->dp; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; int type; intel_dp->pps_pipe = INVALID_PIPE; /* intel_dp vfuncs */ if (INTEL_INFO(dev)->gen >= 9) intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; else if (IS_VALLEYVIEW(dev)) intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider; else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; else if (HAS_PCH_SPLIT(dev)) intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; else intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider; if (INTEL_INFO(dev)->gen >= 9) intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; else intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl; /* Preserve the current hw state. */ intel_dp->DP = I915_READ(intel_dp->output_reg); intel_dp->attached_connector = intel_connector; if (intel_dp_is_edp(dev, port)) type = DRM_MODE_CONNECTOR_eDP; else type = DRM_MODE_CONNECTOR_DisplayPort; /* * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but * for DP the encoder type can be set by the caller to * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. */ if (type == DRM_MODE_CONNECTOR_eDP) intel_encoder->type = INTEL_OUTPUT_EDP; /* eDP only on port B and/or C on vlv/chv */ if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) && port != PORT_B && port != PORT_C)) return false; DRM_DEBUG_KMS("Adding %s connector on port %c\n", type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", port_name(port)); drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); connector->interlace_allowed = true; connector->doublescan_allowed = 0; INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); intel_connector_attach_encoder(intel_connector, intel_encoder); drm_connector_register(connector); if (HAS_DDI(dev)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; intel_connector->unregister = intel_dp_connector_unregister; /* Set up the hotplug pin. */ switch (port) { case PORT_A: intel_encoder->hpd_pin = HPD_PORT_A; break; case PORT_B: intel_encoder->hpd_pin = HPD_PORT_B; break; case PORT_C: intel_encoder->hpd_pin = HPD_PORT_C; break; case PORT_D: intel_encoder->hpd_pin = HPD_PORT_D; break; case PORT_E: intel_encoder->hpd_pin = HPD_PORT_E; break; default: BUG(); } if (is_edp(intel_dp)) { pps_lock(intel_dp); intel_dp_init_panel_power_timestamps(intel_dp); if (IS_VALLEYVIEW(dev)) vlv_initial_power_sequencer_setup(intel_dp); else intel_dp_init_panel_power_sequencer(dev, intel_dp); pps_unlock(intel_dp); } intel_dp_aux_init(intel_dp, intel_connector); /* init MST on ports that can support it */ if (HAS_DP_MST(dev) && (port == PORT_B || port == PORT_C || port == PORT_D)) intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id); if (!intel_edp_init_connector(intel_dp, intel_connector)) { drm_dp_aux_unregister(&intel_dp->aux); if (is_edp(intel_dp)) { cancel_delayed_work_sync(&intel_dp->panel_vdd_work); /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ pps_lock(intel_dp); edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); } drm_connector_unregister(connector); drm_connector_cleanup(connector); return false; } intel_dp_add_properties(intel_dp, connector); /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G4X(dev) && !IS_GM45(dev)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } i915_debugfs_connector_add(connector); return true; } void intel_dp_init(struct drm_device *dev, int output_reg, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(intel_dig_port); return; } intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS); intel_encoder->compute_config = intel_dp_compute_config; intel_encoder->disable = intel_disable_dp; intel_encoder->get_hw_state = intel_dp_get_hw_state; intel_encoder->get_config = intel_dp_get_config; intel_encoder->suspend = intel_dp_encoder_suspend; if (IS_CHERRYVIEW(dev)) { intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; intel_encoder->pre_enable = chv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->post_disable = chv_post_disable_dp; } else if (IS_VALLEYVIEW(dev)) { intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; intel_encoder->pre_enable = vlv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->post_disable = vlv_post_disable_dp; } else { intel_encoder->pre_enable = g4x_pre_enable_dp; intel_encoder->enable = g4x_enable_dp; if (INTEL_INFO(dev)->gen >= 5) intel_encoder->post_disable = ilk_post_disable_dp; } intel_dig_port->port = port; intel_dig_port->dp.output_reg = output_reg; intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; if (IS_CHERRYVIEW(dev)) { if (port == PORT_D) intel_encoder->crtc_mask = 1 << 2; else intel_encoder->crtc_mask = (1 << 0) | (1 << 1); } else { intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); } intel_encoder->cloneable = 0; intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; dev_priv->hotplug.irq_port[port] = intel_dig_port; if (!intel_dp_init_connector(intel_dig_port, intel_connector)) { drm_encoder_cleanup(encoder); kfree(intel_dig_port); kfree(intel_connector); } } void intel_dp_mst_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i; /* disable MST */ for (i = 0; i < I915_MAX_PORTS; i++) { struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i]; if (!intel_dig_port) continue; if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { if (!intel_dig_port->dp.can_mst) continue; if (intel_dig_port->dp.is_mst) drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr); } } } void intel_dp_mst_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i; for (i = 0; i < I915_MAX_PORTS; i++) { struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i]; if (!intel_dig_port) continue; if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { int ret; if (!intel_dig_port->dp.can_mst) continue; ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr); if (ret != 0) { intel_dp_check_mst_status(&intel_dig_port->dp); } } } }