/* * intel_idle.c - native hardware idle loop for modern Intel processors * * Copyright (c) 2010, Intel Corporation. * Len Brown * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ /* * intel_idle is a cpuidle driver that loads on specific Intel processors * in lieu of the legacy ACPI processor_idle driver. The intent is to * make Linux more efficient on these processors, as intel_idle knows * more than ACPI, as well as make Linux more immune to ACPI BIOS bugs. */ /* * Design Assumptions * * All CPUs have same idle states as boot CPU * * Chipset BM_STS (bus master status) bit is a NOP * for preventing entry into deep C-stats */ /* * Known limitations * * The driver currently initializes for_each_online_cpu() upon modprobe. * It it unaware of subsequent processors hot-added to the system. * This means that if you boot with maxcpus=n and later online * processors above n, those processors will use C1 only. * * ACPI has a .suspend hack to turn off deep c-statees during suspend * to avoid complications with the lapic timer workaround. * Have not seen issues with suspend, but may need same workaround here. * * There is currently no kernel-based automatic probing/loading mechanism * if the driver is built as a module. */ /* un-comment DEBUG to enable pr_debug() statements */ #define DEBUG #include #include #include #include /* ktime_get_real() */ #include #include #include #include #include #include #define INTEL_IDLE_VERSION "0.4" #define PREFIX "intel_idle: " static struct cpuidle_driver intel_idle_driver = { .name = "intel_idle", .owner = THIS_MODULE, }; /* intel_idle.max_cstate=0 disables driver */ static int max_cstate = MWAIT_MAX_NUM_CSTATES - 1; static unsigned int mwait_substates; #define LAPIC_TIMER_ALWAYS_RELIABLE 0xFFFFFFFF /* Reliable LAPIC Timer States, bit 1 for C1 etc. */ static unsigned int lapic_timer_reliable_states = (1 << 1); /* Default to only C1 */ static struct cpuidle_device __percpu *intel_idle_cpuidle_devices; static int intel_idle(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index); static struct cpuidle_state *cpuidle_state_table; /* * Hardware C-state auto-demotion may not always be optimal. * Indicate which enable bits to clear here. */ static unsigned long long auto_demotion_disable_flags; /* * Set this flag for states where the HW flushes the TLB for us * and so we don't need cross-calls to keep it consistent. * If this flag is set, SW flushes the TLB, so even if the * HW doesn't do the flushing, this flag is safe to use. */ #define CPUIDLE_FLAG_TLB_FLUSHED 0x10000 /* * States are indexed by the cstate number, * which is also the index into the MWAIT hint array. * Thus C0 is a dummy. */ static struct cpuidle_state nehalem_cstates[MWAIT_MAX_NUM_CSTATES] = { { /* MWAIT C0 */ }, { /* MWAIT C1 */ .name = "C1-NHM", .desc = "MWAIT 0x00", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 3, .target_residency = 6, .enter = &intel_idle }, { /* MWAIT C2 */ .name = "C3-NHM", .desc = "MWAIT 0x10", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 20, .target_residency = 80, .enter = &intel_idle }, { /* MWAIT C3 */ .name = "C6-NHM", .desc = "MWAIT 0x20", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 200, .target_residency = 800, .enter = &intel_idle }, }; static struct cpuidle_state snb_cstates[MWAIT_MAX_NUM_CSTATES] = { { /* MWAIT C0 */ }, { /* MWAIT C1 */ .name = "C1-SNB", .desc = "MWAIT 0x00", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 1, .target_residency = 1, .enter = &intel_idle }, { /* MWAIT C2 */ .name = "C3-SNB", .desc = "MWAIT 0x10", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 80, .target_residency = 211, .enter = &intel_idle }, { /* MWAIT C3 */ .name = "C6-SNB", .desc = "MWAIT 0x20", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 104, .target_residency = 345, .enter = &intel_idle }, { /* MWAIT C4 */ .name = "C7-SNB", .desc = "MWAIT 0x30", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 109, .target_residency = 345, .enter = &intel_idle }, }; static struct cpuidle_state atom_cstates[MWAIT_MAX_NUM_CSTATES] = { { /* MWAIT C0 */ }, { /* MWAIT C1 */ .name = "C1-ATM", .desc = "MWAIT 0x00", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 1, .target_residency = 4, .enter = &intel_idle }, { /* MWAIT C2 */ .name = "C2-ATM", .desc = "MWAIT 0x10", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 20, .target_residency = 80, .enter = &intel_idle }, { /* MWAIT C3 */ }, { /* MWAIT C4 */ .name = "C4-ATM", .desc = "MWAIT 0x30", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 100, .target_residency = 400, .enter = &intel_idle }, { /* MWAIT C5 */ }, { /* MWAIT C6 */ .name = "C6-ATM", .desc = "MWAIT 0x52", .flags = CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED, .exit_latency = 140, .target_residency = 560, .enter = &intel_idle }, }; static int get_driver_data(int cstate) { int driver_data; switch (cstate) { case 1: /* MWAIT C1 */ driver_data = 0x00; break; case 2: /* MWAIT C2 */ driver_data = 0x10; break; case 3: /* MWAIT C3 */ driver_data = 0x20; break; case 4: /* MWAIT C4 */ driver_data = 0x30; break; case 5: /* MWAIT C5 */ driver_data = 0x40; break; case 6: /* MWAIT C6 */ driver_data = 0x52; break; default: driver_data = 0x00; } return driver_data; } /** * intel_idle * @dev: cpuidle_device * @drv: cpuidle driver * @index: index of cpuidle state * */ static int intel_idle(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long ecx = 1; /* break on interrupt flag */ struct cpuidle_state *state = &drv->states[index]; struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; unsigned long eax = (unsigned long)cpuidle_get_statedata(state_usage); unsigned int cstate; ktime_t kt_before, kt_after; s64 usec_delta; int cpu = smp_processor_id(); cstate = (((eax) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK) + 1; local_irq_disable(); /* * leave_mm() to avoid costly and often unnecessary wakeups * for flushing the user TLB's associated with the active mm. */ if (state->flags & CPUIDLE_FLAG_TLB_FLUSHED) leave_mm(cpu); if (!(lapic_timer_reliable_states & (1 << (cstate)))) clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); kt_before = ktime_get_real(); stop_critical_timings(); if (!need_resched()) { __monitor((void *)¤t_thread_info()->flags, 0, 0); smp_mb(); if (!need_resched()) __mwait(eax, ecx); } start_critical_timings(); kt_after = ktime_get_real(); usec_delta = ktime_to_us(ktime_sub(kt_after, kt_before)); local_irq_enable(); if (!(lapic_timer_reliable_states & (1 << (cstate)))) clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); /* Update cpuidle counters */ dev->last_residency = (int)usec_delta; return index; } static void __setup_broadcast_timer(void *arg) { unsigned long reason = (unsigned long)arg; int cpu = smp_processor_id(); reason = reason ? CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; clockevents_notify(reason, &cpu); } static int setup_broadcast_cpuhp_notify(struct notifier_block *n, unsigned long action, void *hcpu) { int hotcpu = (unsigned long)hcpu; switch (action & 0xf) { case CPU_ONLINE: smp_call_function_single(hotcpu, __setup_broadcast_timer, (void *)true, 1); break; } return NOTIFY_OK; } static struct notifier_block setup_broadcast_notifier = { .notifier_call = setup_broadcast_cpuhp_notify, }; static void auto_demotion_disable(void *dummy) { unsigned long long msr_bits; rdmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr_bits); msr_bits &= ~auto_demotion_disable_flags; wrmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr_bits); } /* * intel_idle_probe() */ static int intel_idle_probe(void) { unsigned int eax, ebx, ecx; if (max_cstate == 0) { pr_debug(PREFIX "disabled\n"); return -EPERM; } if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return -ENODEV; if (!boot_cpu_has(X86_FEATURE_MWAIT)) return -ENODEV; if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) return -ENODEV; cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates); if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) return -ENODEV; pr_debug(PREFIX "MWAIT substates: 0x%x\n", mwait_substates); if (boot_cpu_data.x86 != 6) /* family 6 */ return -ENODEV; switch (boot_cpu_data.x86_model) { case 0x1A: /* Core i7, Xeon 5500 series */ case 0x1E: /* Core i7 and i5 Processor - Lynnfield Jasper Forest */ case 0x1F: /* Core i7 and i5 Processor - Nehalem */ case 0x2E: /* Nehalem-EX Xeon */ case 0x2F: /* Westmere-EX Xeon */ case 0x25: /* Westmere */ case 0x2C: /* Westmere */ cpuidle_state_table = nehalem_cstates; auto_demotion_disable_flags = (NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE); break; case 0x1C: /* 28 - Atom Processor */ cpuidle_state_table = atom_cstates; break; case 0x26: /* 38 - Lincroft Atom Processor */ cpuidle_state_table = atom_cstates; auto_demotion_disable_flags = ATM_LNC_C6_AUTO_DEMOTE; break; case 0x2A: /* SNB */ case 0x2D: /* SNB Xeon */ cpuidle_state_table = snb_cstates; break; default: pr_debug(PREFIX "does not run on family %d model %d\n", boot_cpu_data.x86, boot_cpu_data.x86_model); return -ENODEV; } if (boot_cpu_has(X86_FEATURE_ARAT)) /* Always Reliable APIC Timer */ lapic_timer_reliable_states = LAPIC_TIMER_ALWAYS_RELIABLE; else { smp_call_function(__setup_broadcast_timer, (void *)true, 1); register_cpu_notifier(&setup_broadcast_notifier); } pr_debug(PREFIX "v" INTEL_IDLE_VERSION " model 0x%X\n", boot_cpu_data.x86_model); pr_debug(PREFIX "lapic_timer_reliable_states 0x%x\n", lapic_timer_reliable_states); return 0; } /* * intel_idle_cpuidle_devices_uninit() * unregister, free cpuidle_devices */ static void intel_idle_cpuidle_devices_uninit(void) { int i; struct cpuidle_device *dev; for_each_online_cpu(i) { dev = per_cpu_ptr(intel_idle_cpuidle_devices, i); cpuidle_unregister_device(dev); } free_percpu(intel_idle_cpuidle_devices); return; } /* * intel_idle_cpuidle_driver_init() * allocate, initialize cpuidle_states */ static int intel_idle_cpuidle_driver_init(void) { int cstate; struct cpuidle_driver *drv = &intel_idle_driver; drv->state_count = 1; for (cstate = 1; cstate < MWAIT_MAX_NUM_CSTATES; ++cstate) { int num_substates; if (cstate > max_cstate) { printk(PREFIX "max_cstate %d reached\n", max_cstate); break; } /* does the state exist in CPUID.MWAIT? */ num_substates = (mwait_substates >> ((cstate) * 4)) & MWAIT_SUBSTATE_MASK; if (num_substates == 0) continue; /* is the state not enabled? */ if (cpuidle_state_table[cstate].enter == NULL) { /* does the driver not know about the state? */ if (*cpuidle_state_table[cstate].name == '\0') pr_debug(PREFIX "unaware of model 0x%x" " MWAIT %d please" " contact lenb@kernel.org", boot_cpu_data.x86_model, cstate); continue; } if ((cstate > 2) && !boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) mark_tsc_unstable("TSC halts in idle" " states deeper than C2"); drv->states[drv->state_count] = /* structure copy */ cpuidle_state_table[cstate]; drv->state_count += 1; } if (auto_demotion_disable_flags) smp_call_function(auto_demotion_disable, NULL, 1); return 0; } /* * intel_idle_cpuidle_devices_init() * allocate, initialize, register cpuidle_devices */ static int intel_idle_cpuidle_devices_init(void) { int i, cstate; struct cpuidle_device *dev; intel_idle_cpuidle_devices = alloc_percpu(struct cpuidle_device); if (intel_idle_cpuidle_devices == NULL) return -ENOMEM; for_each_online_cpu(i) { dev = per_cpu_ptr(intel_idle_cpuidle_devices, i); dev->state_count = 1; for (cstate = 1; cstate < MWAIT_MAX_NUM_CSTATES; ++cstate) { int num_substates; if (cstate > max_cstate) { printk(PREFIX "max_cstate %d reached\n", max_cstate); break; } /* does the state exist in CPUID.MWAIT? */ num_substates = (mwait_substates >> ((cstate) * 4)) & MWAIT_SUBSTATE_MASK; if (num_substates == 0) continue; /* is the state not enabled? */ if (cpuidle_state_table[cstate].enter == NULL) { continue; } dev->states_usage[dev->state_count].driver_data = (void *)get_driver_data(cstate); dev->state_count += 1; } dev->cpu = i; if (cpuidle_register_device(dev)) { pr_debug(PREFIX "cpuidle_register_device %d failed!\n", i); intel_idle_cpuidle_devices_uninit(); return -EIO; } } return 0; } static int __init intel_idle_init(void) { int retval; /* Do not load intel_idle at all for now if idle= is passed */ if (boot_option_idle_override != IDLE_NO_OVERRIDE) return -ENODEV; retval = intel_idle_probe(); if (retval) return retval; intel_idle_cpuidle_driver_init(); retval = cpuidle_register_driver(&intel_idle_driver); if (retval) { printk(KERN_DEBUG PREFIX "intel_idle yielding to %s", cpuidle_get_driver()->name); return retval; } retval = intel_idle_cpuidle_devices_init(); if (retval) { cpuidle_unregister_driver(&intel_idle_driver); return retval; } return 0; } static void __exit intel_idle_exit(void) { intel_idle_cpuidle_devices_uninit(); cpuidle_unregister_driver(&intel_idle_driver); if (lapic_timer_reliable_states != LAPIC_TIMER_ALWAYS_RELIABLE) { smp_call_function(__setup_broadcast_timer, (void *)false, 1); unregister_cpu_notifier(&setup_broadcast_notifier); } return; } module_init(intel_idle_init); module_exit(intel_idle_exit); module_param(max_cstate, int, 0444); MODULE_AUTHOR("Len Brown "); MODULE_DESCRIPTION("Cpuidle driver for Intel Hardware v" INTEL_IDLE_VERSION); MODULE_LICENSE("GPL");