/* * Driver for NEC VR4100 series Real Time Clock unit. * * Copyright (C) 2003-2006 Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/fs.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/rtc.h> #include <linux/spinlock.h> #include <linux/types.h> #include <asm/div64.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/vr41xx/irq.h> MODULE_AUTHOR("Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>"); MODULE_DESCRIPTION("NEC VR4100 series RTC driver"); MODULE_LICENSE("GPL"); #define RTC1_TYPE1_START 0x0b0000c0UL #define RTC1_TYPE1_END 0x0b0000dfUL #define RTC2_TYPE1_START 0x0b0001c0UL #define RTC2_TYPE1_END 0x0b0001dfUL #define RTC1_TYPE2_START 0x0f000100UL #define RTC1_TYPE2_END 0x0f00011fUL #define RTC2_TYPE2_START 0x0f000120UL #define RTC2_TYPE2_END 0x0f00013fUL #define RTC1_SIZE 0x20 #define RTC2_SIZE 0x20 /* RTC 1 registers */ #define ETIMELREG 0x00 #define ETIMEMREG 0x02 #define ETIMEHREG 0x04 /* RFU */ #define ECMPLREG 0x08 #define ECMPMREG 0x0a #define ECMPHREG 0x0c /* RFU */ #define RTCL1LREG 0x10 #define RTCL1HREG 0x12 #define RTCL1CNTLREG 0x14 #define RTCL1CNTHREG 0x16 #define RTCL2LREG 0x18 #define RTCL2HREG 0x1a #define RTCL2CNTLREG 0x1c #define RTCL2CNTHREG 0x1e /* RTC 2 registers */ #define TCLKLREG 0x00 #define TCLKHREG 0x02 #define TCLKCNTLREG 0x04 #define TCLKCNTHREG 0x06 /* RFU */ #define RTCINTREG 0x1e #define TCLOCK_INT 0x08 #define RTCLONG2_INT 0x04 #define RTCLONG1_INT 0x02 #define ELAPSEDTIME_INT 0x01 #define RTC_FREQUENCY 32768 #define MAX_PERIODIC_RATE 6553 static void __iomem *rtc1_base; static void __iomem *rtc2_base; #define rtc1_read(offset) readw(rtc1_base + (offset)) #define rtc1_write(offset, value) writew((value), rtc1_base + (offset)) #define rtc2_read(offset) readw(rtc2_base + (offset)) #define rtc2_write(offset, value) writew((value), rtc2_base + (offset)) static unsigned long epoch = 1970; /* Jan 1 1970 00:00:00 */ static DEFINE_SPINLOCK(rtc_lock); static char rtc_name[] = "RTC"; static unsigned long periodic_frequency; static unsigned long periodic_count; static unsigned int alarm_enabled; struct resource rtc_resource[2] = { { .name = rtc_name, .flags = IORESOURCE_MEM, }, { .name = rtc_name, .flags = IORESOURCE_MEM, }, }; static inline unsigned long read_elapsed_second(void) { unsigned long first_low, first_mid, first_high; unsigned long second_low, second_mid, second_high; do { first_low = rtc1_read(ETIMELREG); first_mid = rtc1_read(ETIMEMREG); first_high = rtc1_read(ETIMEHREG); second_low = rtc1_read(ETIMELREG); second_mid = rtc1_read(ETIMEMREG); second_high = rtc1_read(ETIMEHREG); } while (first_low != second_low || first_mid != second_mid || first_high != second_high); return (first_high << 17) | (first_mid << 1) | (first_low >> 15); } static inline void write_elapsed_second(unsigned long sec) { spin_lock_irq(&rtc_lock); rtc1_write(ETIMELREG, (uint16_t)(sec << 15)); rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1)); rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17)); spin_unlock_irq(&rtc_lock); } static void vr41xx_rtc_release(struct device *dev) { spin_lock_irq(&rtc_lock); rtc1_write(ECMPLREG, 0); rtc1_write(ECMPMREG, 0); rtc1_write(ECMPHREG, 0); rtc1_write(RTCL1LREG, 0); rtc1_write(RTCL1HREG, 0); spin_unlock_irq(&rtc_lock); disable_irq(ELAPSEDTIME_IRQ); disable_irq(RTCLONG1_IRQ); } static int vr41xx_rtc_read_time(struct device *dev, struct rtc_time *time) { unsigned long epoch_sec, elapsed_sec; epoch_sec = mktime(epoch, 1, 1, 0, 0, 0); elapsed_sec = read_elapsed_second(); rtc_time_to_tm(epoch_sec + elapsed_sec, time); return 0; } static int vr41xx_rtc_set_time(struct device *dev, struct rtc_time *time) { unsigned long epoch_sec, current_sec; epoch_sec = mktime(epoch, 1, 1, 0, 0, 0); current_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); write_elapsed_second(current_sec - epoch_sec); return 0; } static int vr41xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) { unsigned long low, mid, high; struct rtc_time *time = &wkalrm->time; spin_lock_irq(&rtc_lock); low = rtc1_read(ECMPLREG); mid = rtc1_read(ECMPMREG); high = rtc1_read(ECMPHREG); wkalrm->enabled = alarm_enabled; spin_unlock_irq(&rtc_lock); rtc_time_to_tm((high << 17) | (mid << 1) | (low >> 15), time); return 0; } static int vr41xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) { unsigned long alarm_sec; struct rtc_time *time = &wkalrm->time; alarm_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); spin_lock_irq(&rtc_lock); if (alarm_enabled) disable_irq(ELAPSEDTIME_IRQ); rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15)); rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1)); rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17)); if (wkalrm->enabled) enable_irq(ELAPSEDTIME_IRQ); alarm_enabled = wkalrm->enabled; spin_unlock_irq(&rtc_lock); return 0; } static int vr41xx_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { unsigned long count; switch (cmd) { case RTC_AIE_ON: spin_lock_irq(&rtc_lock); if (!alarm_enabled) { enable_irq(ELAPSEDTIME_IRQ); alarm_enabled = 1; } spin_unlock_irq(&rtc_lock); break; case RTC_AIE_OFF: spin_lock_irq(&rtc_lock); if (alarm_enabled) { disable_irq(ELAPSEDTIME_IRQ); alarm_enabled = 0; } spin_unlock_irq(&rtc_lock); break; case RTC_PIE_ON: enable_irq(RTCLONG1_IRQ); break; case RTC_PIE_OFF: disable_irq(RTCLONG1_IRQ); break; case RTC_IRQP_READ: return put_user(periodic_frequency, (unsigned long __user *)arg); break; case RTC_IRQP_SET: if (arg > MAX_PERIODIC_RATE) return -EINVAL; periodic_frequency = arg; count = RTC_FREQUENCY; do_div(count, arg); periodic_count = count; spin_lock_irq(&rtc_lock); rtc1_write(RTCL1LREG, count); rtc1_write(RTCL1HREG, count >> 16); spin_unlock_irq(&rtc_lock); break; case RTC_EPOCH_READ: return put_user(epoch, (unsigned long __user *)arg); case RTC_EPOCH_SET: /* Doesn't support before 1900 */ if (arg < 1900) return -EINVAL; epoch = arg; break; default: return -ENOIOCTLCMD; } return 0; } static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id) { struct platform_device *pdev = (struct platform_device *)dev_id; struct rtc_device *rtc = platform_get_drvdata(pdev); rtc2_write(RTCINTREG, ELAPSEDTIME_INT); rtc_update_irq(rtc, 1, RTC_AF); return IRQ_HANDLED; } static irqreturn_t rtclong1_interrupt(int irq, void *dev_id) { struct platform_device *pdev = (struct platform_device *)dev_id; struct rtc_device *rtc = platform_get_drvdata(pdev); unsigned long count = periodic_count; rtc2_write(RTCINTREG, RTCLONG1_INT); rtc1_write(RTCL1LREG, count); rtc1_write(RTCL1HREG, count >> 16); rtc_update_irq(rtc, 1, RTC_PF); return IRQ_HANDLED; } static const struct rtc_class_ops vr41xx_rtc_ops = { .release = vr41xx_rtc_release, .ioctl = vr41xx_rtc_ioctl, .read_time = vr41xx_rtc_read_time, .set_time = vr41xx_rtc_set_time, .read_alarm = vr41xx_rtc_read_alarm, .set_alarm = vr41xx_rtc_set_alarm, }; static int __devinit rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc; unsigned int irq; int retval; if (pdev->num_resources != 2) return -EBUSY; rtc1_base = ioremap(pdev->resource[0].start, RTC1_SIZE); if (rtc1_base == NULL) return -EBUSY; rtc2_base = ioremap(pdev->resource[1].start, RTC2_SIZE); if (rtc2_base == NULL) { iounmap(rtc1_base); rtc1_base = NULL; return -EBUSY; } rtc = rtc_device_register(rtc_name, &pdev->dev, &vr41xx_rtc_ops, THIS_MODULE); if (IS_ERR(rtc)) { iounmap(rtc1_base); iounmap(rtc2_base); rtc1_base = NULL; rtc2_base = NULL; return PTR_ERR(rtc); } spin_lock_irq(&rtc_lock); rtc1_write(ECMPLREG, 0); rtc1_write(ECMPMREG, 0); rtc1_write(ECMPHREG, 0); rtc1_write(RTCL1LREG, 0); rtc1_write(RTCL1HREG, 0); spin_unlock_irq(&rtc_lock); irq = ELAPSEDTIME_IRQ; retval = request_irq(irq, elapsedtime_interrupt, IRQF_DISABLED, "elapsed_time", pdev); if (retval == 0) { irq = RTCLONG1_IRQ; retval = request_irq(irq, rtclong1_interrupt, IRQF_DISABLED, "rtclong1", pdev); } if (retval < 0) { printk(KERN_ERR "rtc: IRQ%d is busy\n", irq); rtc_device_unregister(rtc); if (irq == RTCLONG1_IRQ) free_irq(ELAPSEDTIME_IRQ, NULL); iounmap(rtc1_base); iounmap(rtc2_base); rtc1_base = NULL; rtc2_base = NULL; return retval; } platform_set_drvdata(pdev, rtc); disable_irq(ELAPSEDTIME_IRQ); disable_irq(RTCLONG1_IRQ); printk(KERN_INFO "rtc: Real Time Clock of NEC VR4100 series\n"); return 0; } static int __devexit rtc_remove(struct platform_device *pdev) { struct rtc_device *rtc; rtc = platform_get_drvdata(pdev); if (rtc != NULL) rtc_device_unregister(rtc); platform_set_drvdata(pdev, NULL); free_irq(ELAPSEDTIME_IRQ, NULL); free_irq(RTCLONG1_IRQ, NULL); if (rtc1_base != NULL) iounmap(rtc1_base); if (rtc2_base != NULL) iounmap(rtc2_base); return 0; } static struct platform_device *rtc_platform_device; static struct platform_driver rtc_platform_driver = { .probe = rtc_probe, .remove = __devexit_p(rtc_remove), .driver = { .name = rtc_name, .owner = THIS_MODULE, }, }; static int __init vr41xx_rtc_init(void) { int retval; switch (current_cpu_data.cputype) { case CPU_VR4111: case CPU_VR4121: rtc_resource[0].start = RTC1_TYPE1_START; rtc_resource[0].end = RTC1_TYPE1_END; rtc_resource[1].start = RTC2_TYPE1_START; rtc_resource[1].end = RTC2_TYPE1_END; break; case CPU_VR4122: case CPU_VR4131: case CPU_VR4133: rtc_resource[0].start = RTC1_TYPE2_START; rtc_resource[0].end = RTC1_TYPE2_END; rtc_resource[1].start = RTC2_TYPE2_START; rtc_resource[1].end = RTC2_TYPE2_END; break; default: return -ENODEV; break; } rtc_platform_device = platform_device_alloc("RTC", -1); if (rtc_platform_device == NULL) return -ENOMEM; retval = platform_device_add_resources(rtc_platform_device, rtc_resource, ARRAY_SIZE(rtc_resource)); if (retval == 0) retval = platform_device_add(rtc_platform_device); if (retval < 0) { platform_device_put(rtc_platform_device); return retval; } retval = platform_driver_register(&rtc_platform_driver); if (retval < 0) platform_device_unregister(rtc_platform_device); return retval; } static void __exit vr41xx_rtc_exit(void) { platform_driver_unregister(&rtc_platform_driver); platform_device_unregister(rtc_platform_device); } module_init(vr41xx_rtc_init); module_exit(vr41xx_rtc_exit);