/* * AMD 10Gb Ethernet driver * * This file is available to you under your choice of the following two * licenses: * * License 1: GPLv2 * * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. * * This file is free software; you may copy, redistribute and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or (at * your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * * License 2: Modified BSD * * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "xgbe.h" #include "xgbe-common.h" static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata) { return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; } static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec) { unsigned long rate; unsigned int ret; DBGPR("-->xgbe_usec_to_riwt\n"); rate = pdata->sysclk_rate; /* * Convert the input usec value to the watchdog timer value. Each * watchdog timer value is equivalent to 256 clock cycles. * Calculate the required value as: * ( usec * ( system_clock_mhz / 10^6 ) / 256 */ ret = (usec * (rate / 1000000)) / 256; DBGPR("<--xgbe_usec_to_riwt\n"); return ret; } static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt) { unsigned long rate; unsigned int ret; DBGPR("-->xgbe_riwt_to_usec\n"); rate = pdata->sysclk_rate; /* * Convert the input watchdog timer value to the usec value. Each * watchdog timer value is equivalent to 256 clock cycles. * Calculate the required value as: * ( riwt * 256 ) / ( system_clock_mhz / 10^6 ) */ ret = (riwt * 256) / (rate / 1000000); DBGPR("<--xgbe_riwt_to_usec\n"); return ret; } static int xgbe_config_pblx8(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8, pdata->pblx8); return 0; } static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata) { return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL); } static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL, pdata->tx_pbl); } return 0; } static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata) { return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL); } static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL, pdata->rx_pbl); } return 0; } static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP, pdata->tx_osp_mode); } return 0; } static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val) { unsigned int i; for (i = 0; i < pdata->rx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val); return 0; } static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val) { unsigned int i; for (i = 0; i < pdata->tx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val); return 0; } static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val) { unsigned int i; for (i = 0; i < pdata->rx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val); return 0; } static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val) { unsigned int i; for (i = 0; i < pdata->tx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val); return 0; } static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT, pdata->rx_riwt); } return 0; } static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata) { return 0; } static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ, pdata->rx_buf_size); } } static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1); } } static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1); } XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE); } static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type, unsigned int index, unsigned int val) { unsigned int wait; int ret = 0; mutex_lock(&pdata->rss_mutex); if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) { ret = -EBUSY; goto unlock; } XGMAC_IOWRITE(pdata, MAC_RSSDR, val); XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index); XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type); XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0); XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1); wait = 1000; while (wait--) { if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) goto unlock; usleep_range(1000, 1500); } ret = -EBUSY; unlock: mutex_unlock(&pdata->rss_mutex); return ret; } static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata) { unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32); unsigned int *key = (unsigned int *)&pdata->rss_key; int ret; while (key_regs--) { ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE, key_regs, *key++); if (ret) return ret; } return 0; } static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata) { unsigned int i; int ret; for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) { ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i, pdata->rss_table[i]); if (ret) return ret; } return 0; } static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key) { memcpy(pdata->rss_key, key, sizeof(pdata->rss_key)); return xgbe_write_rss_hash_key(pdata); } static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const u32 *table) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]); return xgbe_write_rss_lookup_table(pdata); } static int xgbe_enable_rss(struct xgbe_prv_data *pdata) { int ret; if (!pdata->hw_feat.rss) return -EOPNOTSUPP; /* Program the hash key */ ret = xgbe_write_rss_hash_key(pdata); if (ret) return ret; /* Program the lookup table */ ret = xgbe_write_rss_lookup_table(pdata); if (ret) return ret; /* Set the RSS options */ XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options); /* Enable RSS */ XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1); return 0; } static int xgbe_disable_rss(struct xgbe_prv_data *pdata) { if (!pdata->hw_feat.rss) return -EOPNOTSUPP; XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0); return 0; } static void xgbe_config_rss(struct xgbe_prv_data *pdata) { int ret; if (!pdata->hw_feat.rss) return; if (pdata->netdev->features & NETIF_F_RXHASH) ret = xgbe_enable_rss(pdata); else ret = xgbe_disable_rss(pdata); if (ret) netdev_err(pdata->netdev, "error configuring RSS, RSS disabled\n"); } static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata, unsigned int queue) { unsigned int prio, tc; for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { /* Does this queue handle the priority? */ if (pdata->prio2q_map[prio] != queue) continue; /* Get the Traffic Class for this priority */ tc = pdata->ets->prio_tc[prio]; /* Check if PFC is enabled for this traffic class */ if (pdata->pfc->pfc_en & (1 << tc)) return true; } return false; } static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata) { unsigned int max_q_count, q_count; unsigned int reg, reg_val; unsigned int i; /* Clear MTL flow control */ for (i = 0; i < pdata->rx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0); /* Clear MAC flow control */ max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); reg = MAC_Q0TFCR; for (i = 0; i < q_count; i++) { reg_val = XGMAC_IOREAD(pdata, reg); XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0); XGMAC_IOWRITE(pdata, reg, reg_val); reg += MAC_QTFCR_INC; } return 0; } static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata) { struct ieee_pfc *pfc = pdata->pfc; struct ieee_ets *ets = pdata->ets; unsigned int max_q_count, q_count; unsigned int reg, reg_val; unsigned int i; /* Set MTL flow control */ for (i = 0; i < pdata->rx_q_count; i++) { unsigned int ehfc = 0; if (pdata->rx_rfd[i]) { /* Flow control thresholds are established */ if (pfc && ets) { if (xgbe_is_pfc_queue(pdata, i)) ehfc = 1; } else { ehfc = 1; } } XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc); netif_dbg(pdata, drv, pdata->netdev, "flow control %s for RXq%u\n", ehfc ? "enabled" : "disabled", i); } /* Set MAC flow control */ max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES; q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count); reg = MAC_Q0TFCR; for (i = 0; i < q_count; i++) { reg_val = XGMAC_IOREAD(pdata, reg); /* Enable transmit flow control */ XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1); /* Set pause time */ XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff); XGMAC_IOWRITE(pdata, reg, reg_val); reg += MAC_QTFCR_INC; } return 0; } static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata) { XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0); return 0; } static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata) { XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1); return 0; } static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata) { struct ieee_pfc *pfc = pdata->pfc; if (pdata->tx_pause || (pfc && pfc->pfc_en)) xgbe_enable_tx_flow_control(pdata); else xgbe_disable_tx_flow_control(pdata); return 0; } static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata) { struct ieee_pfc *pfc = pdata->pfc; if (pdata->rx_pause || (pfc && pfc->pfc_en)) xgbe_enable_rx_flow_control(pdata); else xgbe_disable_rx_flow_control(pdata); return 0; } static void xgbe_config_flow_control(struct xgbe_prv_data *pdata) { struct ieee_pfc *pfc = pdata->pfc; xgbe_config_tx_flow_control(pdata); xgbe_config_rx_flow_control(pdata); XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, (pfc && pfc->pfc_en) ? 1 : 0); } static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int dma_ch_isr, dma_ch_ier; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { /* Clear all the interrupts which are set */ dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR); XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr); /* Clear all interrupt enable bits */ dma_ch_ier = 0; /* Enable following interrupts * NIE - Normal Interrupt Summary Enable * AIE - Abnormal Interrupt Summary Enable * FBEE - Fatal Bus Error Enable */ XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1); if (channel->tx_ring) { /* Enable the following Tx interrupts * TIE - Transmit Interrupt Enable (unless using * per channel interrupts) */ if (!pdata->per_channel_irq) XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); } if (channel->rx_ring) { /* Enable following Rx interrupts * RBUE - Receive Buffer Unavailable Enable * RIE - Receive Interrupt Enable (unless using * per channel interrupts) */ XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1); if (!pdata->per_channel_irq) XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); } XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier); } } static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata) { unsigned int mtl_q_isr; unsigned int q_count, i; q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt); for (i = 0; i < q_count; i++) { /* Clear all the interrupts which are set */ mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR); XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr); /* No MTL interrupts to be enabled */ XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0); } } static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata) { unsigned int mac_ier = 0; /* Enable Timestamp interrupt */ XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1); XGMAC_IOWRITE(pdata, MAC_IER, mac_ier); /* Enable all counter interrupts */ XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff); XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff); } static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata) { if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x3) return 0; XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3); return 0; } static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata) { if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x2) return 0; XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2); return 0; } static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata) { if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0) return 0; XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0); return 0; } static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata) { /* Put the VLAN tag in the Rx descriptor */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1); /* Don't check the VLAN type */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1); /* Check only C-TAG (0x8100) packets */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0); /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0); /* Enable VLAN tag stripping */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3); return 0; } static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata) { XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0); return 0; } static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata) { /* Enable VLAN filtering */ XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1); /* Enable VLAN Hash Table filtering */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1); /* Disable VLAN tag inverse matching */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0); /* Only filter on the lower 12-bits of the VLAN tag */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1); /* In order for the VLAN Hash Table filtering to be effective, * the VLAN tag identifier in the VLAN Tag Register must not * be zero. Set the VLAN tag identifier to "1" to enable the * VLAN Hash Table filtering. This implies that a VLAN tag of * 1 will always pass filtering. */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1); return 0; } static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata) { /* Disable VLAN filtering */ XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0); return 0; } static u32 xgbe_vid_crc32_le(__le16 vid_le) { u32 poly = 0xedb88320; /* CRCPOLY_LE */ u32 crc = ~0; u32 temp = 0; unsigned char *data = (unsigned char *)&vid_le; unsigned char data_byte = 0; int i, bits; bits = get_bitmask_order(VLAN_VID_MASK); for (i = 0; i < bits; i++) { if ((i % 8) == 0) data_byte = data[i / 8]; temp = ((crc & 1) ^ data_byte) & 1; crc >>= 1; data_byte >>= 1; if (temp) crc ^= poly; } return crc; } static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata) { u32 crc; u16 vid; __le16 vid_le; u16 vlan_hash_table = 0; /* Generate the VLAN Hash Table value */ for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) { /* Get the CRC32 value of the VLAN ID */ vid_le = cpu_to_le16(vid); crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28; vlan_hash_table |= (1 << crc); } /* Set the VLAN Hash Table filtering register */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table); return 0; } static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable) { unsigned int val = enable ? 1 : 0; if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val) return 0; netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n", enable ? "entering" : "leaving"); XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val); /* Hardware will still perform VLAN filtering in promiscuous mode */ if (enable) { xgbe_disable_rx_vlan_filtering(pdata); } else { if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) xgbe_enable_rx_vlan_filtering(pdata); } return 0; } static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable) { unsigned int val = enable ? 1 : 0; if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val) return 0; netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n", enable ? "entering" : "leaving"); XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val); return 0; } static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata, struct netdev_hw_addr *ha, unsigned int *mac_reg) { unsigned int mac_addr_hi, mac_addr_lo; u8 *mac_addr; mac_addr_lo = 0; mac_addr_hi = 0; if (ha) { mac_addr = (u8 *)&mac_addr_lo; mac_addr[0] = ha->addr[0]; mac_addr[1] = ha->addr[1]; mac_addr[2] = ha->addr[2]; mac_addr[3] = ha->addr[3]; mac_addr = (u8 *)&mac_addr_hi; mac_addr[0] = ha->addr[4]; mac_addr[1] = ha->addr[5]; netif_dbg(pdata, drv, pdata->netdev, "adding mac address %pM at %#x\n", ha->addr, *mac_reg); XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1); } XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi); *mac_reg += MAC_MACA_INC; XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo); *mac_reg += MAC_MACA_INC; } static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata) { struct net_device *netdev = pdata->netdev; struct netdev_hw_addr *ha; unsigned int mac_reg; unsigned int addn_macs; mac_reg = MAC_MACA1HR; addn_macs = pdata->hw_feat.addn_mac; if (netdev_uc_count(netdev) > addn_macs) { xgbe_set_promiscuous_mode(pdata, 1); } else { netdev_for_each_uc_addr(ha, netdev) { xgbe_set_mac_reg(pdata, ha, &mac_reg); addn_macs--; } if (netdev_mc_count(netdev) > addn_macs) { xgbe_set_all_multicast_mode(pdata, 1); } else { netdev_for_each_mc_addr(ha, netdev) { xgbe_set_mac_reg(pdata, ha, &mac_reg); addn_macs--; } } } /* Clear remaining additional MAC address entries */ while (addn_macs--) xgbe_set_mac_reg(pdata, NULL, &mac_reg); } static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata) { struct net_device *netdev = pdata->netdev; struct netdev_hw_addr *ha; unsigned int hash_reg; unsigned int hash_table_shift, hash_table_count; u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE]; u32 crc; unsigned int i; hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7); hash_table_count = pdata->hw_feat.hash_table_size / 32; memset(hash_table, 0, sizeof(hash_table)); /* Build the MAC Hash Table register values */ netdev_for_each_uc_addr(ha, netdev) { crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); crc >>= hash_table_shift; hash_table[crc >> 5] |= (1 << (crc & 0x1f)); } netdev_for_each_mc_addr(ha, netdev) { crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)); crc >>= hash_table_shift; hash_table[crc >> 5] |= (1 << (crc & 0x1f)); } /* Set the MAC Hash Table registers */ hash_reg = MAC_HTR0; for (i = 0; i < hash_table_count; i++) { XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]); hash_reg += MAC_HTR_INC; } } static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata) { if (pdata->hw_feat.hash_table_size) xgbe_set_mac_hash_table(pdata); else xgbe_set_mac_addn_addrs(pdata); return 0; } static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr) { unsigned int mac_addr_hi, mac_addr_lo; mac_addr_hi = (addr[5] << 8) | (addr[4] << 0); mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | (addr[0] << 0); XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi); XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo); return 0; } static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata) { struct net_device *netdev = pdata->netdev; unsigned int pr_mode, am_mode; pr_mode = ((netdev->flags & IFF_PROMISC) != 0); am_mode = ((netdev->flags & IFF_ALLMULTI) != 0); xgbe_set_promiscuous_mode(pdata, pr_mode); xgbe_set_all_multicast_mode(pdata, am_mode); xgbe_add_mac_addresses(pdata); return 0; } static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg) { unsigned long flags; unsigned int mmd_address; int mmd_data; if (mmd_reg & MII_ADDR_C45) mmd_address = mmd_reg & ~MII_ADDR_C45; else mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); /* The PCS registers are accessed using mmio. The underlying APB3 * management interface uses indirect addressing to access the MMD * register sets. This requires accessing of the PCS register in two * phases, an address phase and a data phase. * * The mmio interface is based on 32-bit offsets and values. All * register offsets must therefore be adjusted by left shifting the * offset 2 bits and reading 32 bits of data. */ spin_lock_irqsave(&pdata->xpcs_lock, flags); XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8); mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2); spin_unlock_irqrestore(&pdata->xpcs_lock, flags); return mmd_data; } static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg, int mmd_data) { unsigned int mmd_address; unsigned long flags; if (mmd_reg & MII_ADDR_C45) mmd_address = mmd_reg & ~MII_ADDR_C45; else mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff); /* The PCS registers are accessed using mmio. The underlying APB3 * management interface uses indirect addressing to access the MMD * register sets. This requires accessing of the PCS register in two * phases, an address phase and a data phase. * * The mmio interface is based on 32-bit offsets and values. All * register offsets must therefore be adjusted by left shifting the * offset 2 bits and reading 32 bits of data. */ spin_lock_irqsave(&pdata->xpcs_lock, flags); XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8); XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data); spin_unlock_irqrestore(&pdata->xpcs_lock, flags); } static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc) { return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN); } static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata) { XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0); return 0; } static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata) { XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1); return 0; } static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata) { struct xgbe_ring_desc *rdesc = rdata->rdesc; /* Reset the Tx descriptor * Set buffer 1 (lo) address to zero * Set buffer 1 (hi) address to zero * Reset all other control bits (IC, TTSE, B2L & B1L) * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc) */ rdesc->desc0 = 0; rdesc->desc1 = 0; rdesc->desc2 = 0; rdesc->desc3 = 0; /* Make sure ownership is written to the descriptor */ dma_wmb(); } static void xgbe_tx_desc_init(struct xgbe_channel *channel) { struct xgbe_ring *ring = channel->tx_ring; struct xgbe_ring_data *rdata; int i; int start_index = ring->cur; DBGPR("-->tx_desc_init\n"); /* Initialze all descriptors */ for (i = 0; i < ring->rdesc_count; i++) { rdata = XGBE_GET_DESC_DATA(ring, i); /* Initialize Tx descriptor */ xgbe_tx_desc_reset(rdata); } /* Update the total number of Tx descriptors */ XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1); /* Update the starting address of descriptor ring */ rdata = XGBE_GET_DESC_DATA(ring, start_index); XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI, upper_32_bits(rdata->rdesc_dma)); XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO, lower_32_bits(rdata->rdesc_dma)); DBGPR("<--tx_desc_init\n"); } static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata, struct xgbe_ring_data *rdata, unsigned int index) { struct xgbe_ring_desc *rdesc = rdata->rdesc; unsigned int rx_usecs = pdata->rx_usecs; unsigned int rx_frames = pdata->rx_frames; unsigned int inte; dma_addr_t hdr_dma, buf_dma; if (!rx_usecs && !rx_frames) { /* No coalescing, interrupt for every descriptor */ inte = 1; } else { /* Set interrupt based on Rx frame coalescing setting */ if (rx_frames && !((index + 1) % rx_frames)) inte = 1; else inte = 0; } /* Reset the Rx descriptor * Set buffer 1 (lo) address to header dma address (lo) * Set buffer 1 (hi) address to header dma address (hi) * Set buffer 2 (lo) address to buffer dma address (lo) * Set buffer 2 (hi) address to buffer dma address (hi) and * set control bits OWN and INTE */ hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off; buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off; rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma)); rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma)); rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma)); rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma)); XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte); /* Since the Rx DMA engine is likely running, make sure everything * is written to the descriptor(s) before setting the OWN bit * for the descriptor */ dma_wmb(); XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1); /* Make sure ownership is written to the descriptor */ dma_wmb(); } static void xgbe_rx_desc_init(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_ring *ring = channel->rx_ring; struct xgbe_ring_data *rdata; unsigned int start_index = ring->cur; unsigned int i; DBGPR("-->rx_desc_init\n"); /* Initialize all descriptors */ for (i = 0; i < ring->rdesc_count; i++) { rdata = XGBE_GET_DESC_DATA(ring, i); /* Initialize Rx descriptor */ xgbe_rx_desc_reset(pdata, rdata, i); } /* Update the total number of Rx descriptors */ XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1); /* Update the starting address of descriptor ring */ rdata = XGBE_GET_DESC_DATA(ring, start_index); XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI, upper_32_bits(rdata->rdesc_dma)); XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO, lower_32_bits(rdata->rdesc_dma)); /* Update the Rx Descriptor Tail Pointer */ rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1); XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, lower_32_bits(rdata->rdesc_dma)); DBGPR("<--rx_desc_init\n"); } static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata, unsigned int addend) { /* Set the addend register value and tell the device */ XGMAC_IOWRITE(pdata, MAC_TSAR, addend); XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1); /* Wait for addend update to complete */ while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG)) udelay(5); } static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec, unsigned int nsec) { /* Set the time values and tell the device */ XGMAC_IOWRITE(pdata, MAC_STSUR, sec); XGMAC_IOWRITE(pdata, MAC_STNUR, nsec); XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1); /* Wait for time update to complete */ while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT)) udelay(5); } static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata) { u64 nsec; nsec = XGMAC_IOREAD(pdata, MAC_STSR); nsec *= NSEC_PER_SEC; nsec += XGMAC_IOREAD(pdata, MAC_STNR); return nsec; } static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata) { unsigned int tx_snr; u64 nsec; tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS)) return 0; nsec = XGMAC_IOREAD(pdata, MAC_TXSSR); nsec *= NSEC_PER_SEC; nsec += tx_snr; return nsec; } static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet, struct xgbe_ring_desc *rdesc) { u64 nsec; if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) && !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) { nsec = le32_to_cpu(rdesc->desc1); nsec <<= 32; nsec |= le32_to_cpu(rdesc->desc0); if (nsec != 0xffffffffffffffffULL) { packet->rx_tstamp = nsec; XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RX_TSTAMP, 1); } } } static int xgbe_config_tstamp(struct xgbe_prv_data *pdata, unsigned int mac_tscr) { /* Set one nano-second accuracy */ XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1); /* Set fine timestamp update */ XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1); /* Overwrite earlier timestamps */ XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1); XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr); /* Exit if timestamping is not enabled */ if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA)) return 0; /* Initialize time registers */ XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC); XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC); xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend); xgbe_set_tstamp_time(pdata, 0, 0); /* Initialize the timecounter */ timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc, ktime_to_ns(ktime_get_real())); return 0; } static void xgbe_tx_start_xmit(struct xgbe_channel *channel, struct xgbe_ring *ring) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_ring_data *rdata; /* Make sure everything is written before the register write */ wmb(); /* Issue a poll command to Tx DMA by writing address * of next immediate free descriptor */ rdata = XGBE_GET_DESC_DATA(ring, ring->cur); XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO, lower_32_bits(rdata->rdesc_dma)); /* Start the Tx timer */ if (pdata->tx_usecs && !channel->tx_timer_active) { channel->tx_timer_active = 1; mod_timer(&channel->tx_timer, jiffies + usecs_to_jiffies(pdata->tx_usecs)); } ring->tx.xmit_more = 0; } static void xgbe_dev_xmit(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_ring *ring = channel->tx_ring; struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; struct xgbe_packet_data *packet = &ring->packet_data; unsigned int csum, tso, vlan; unsigned int tso_context, vlan_context; unsigned int tx_set_ic; int start_index = ring->cur; int cur_index = ring->cur; int i; DBGPR("-->xgbe_dev_xmit\n"); csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, CSUM_ENABLE); tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, TSO_ENABLE); vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, VLAN_CTAG); if (tso && (packet->mss != ring->tx.cur_mss)) tso_context = 1; else tso_context = 0; if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag)) vlan_context = 1; else vlan_context = 0; /* Determine if an interrupt should be generated for this Tx: * Interrupt: * - Tx frame count exceeds the frame count setting * - Addition of Tx frame count to the frame count since the * last interrupt was set exceeds the frame count setting * No interrupt: * - No frame count setting specified (ethtool -C ethX tx-frames 0) * - Addition of Tx frame count to the frame count since the * last interrupt was set does not exceed the frame count setting */ ring->coalesce_count += packet->tx_packets; if (!pdata->tx_frames) tx_set_ic = 0; else if (packet->tx_packets > pdata->tx_frames) tx_set_ic = 1; else if ((ring->coalesce_count % pdata->tx_frames) < packet->tx_packets) tx_set_ic = 1; else tx_set_ic = 0; rdata = XGBE_GET_DESC_DATA(ring, cur_index); rdesc = rdata->rdesc; /* Create a context descriptor if this is a TSO packet */ if (tso_context || vlan_context) { if (tso_context) { netif_dbg(pdata, tx_queued, pdata->netdev, "TSO context descriptor, mss=%u\n", packet->mss); /* Set the MSS size */ XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2, MSS, packet->mss); /* Mark it as a CONTEXT descriptor */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, CTXT, 1); /* Indicate this descriptor contains the MSS */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, TCMSSV, 1); ring->tx.cur_mss = packet->mss; } if (vlan_context) { netif_dbg(pdata, tx_queued, pdata->netdev, "VLAN context descriptor, ctag=%u\n", packet->vlan_ctag); /* Mark it as a CONTEXT descriptor */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, CTXT, 1); /* Set the VLAN tag */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, VT, packet->vlan_ctag); /* Indicate this descriptor contains the VLAN tag */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3, VLTV, 1); ring->tx.cur_vlan_ctag = packet->vlan_ctag; } cur_index++; rdata = XGBE_GET_DESC_DATA(ring, cur_index); rdesc = rdata->rdesc; } /* Update buffer address (for TSO this is the header) */ rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); /* Update the buffer length */ XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, rdata->skb_dma_len); /* VLAN tag insertion check */ if (vlan) XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR, TX_NORMAL_DESC2_VLAN_INSERT); /* Timestamp enablement check */ if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1); /* Mark it as First Descriptor */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1); /* Mark it as a NORMAL descriptor */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); /* Set OWN bit if not the first descriptor */ if (cur_index != start_index) XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); if (tso) { /* Enable TSO */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1); XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL, packet->tcp_payload_len); XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN, packet->tcp_header_len / 4); pdata->ext_stats.tx_tso_packets++; } else { /* Enable CRC and Pad Insertion */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0); /* Enable HW CSUM */ if (csum) XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CIC, 0x3); /* Set the total length to be transmitted */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL, packet->length); } for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) { cur_index++; rdata = XGBE_GET_DESC_DATA(ring, cur_index); rdesc = rdata->rdesc; /* Update buffer address */ rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma)); rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma)); /* Update the buffer length */ XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L, rdata->skb_dma_len); /* Set OWN bit */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); /* Mark it as NORMAL descriptor */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0); /* Enable HW CSUM */ if (csum) XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CIC, 0x3); } /* Set LAST bit for the last descriptor */ XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1); /* Set IC bit based on Tx coalescing settings */ if (tx_set_ic) XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1); /* Save the Tx info to report back during cleanup */ rdata->tx.packets = packet->tx_packets; rdata->tx.bytes = packet->tx_bytes; /* In case the Tx DMA engine is running, make sure everything * is written to the descriptor(s) before setting the OWN bit * for the first descriptor */ dma_wmb(); /* Set OWN bit for the first descriptor */ rdata = XGBE_GET_DESC_DATA(ring, start_index); rdesc = rdata->rdesc; XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1); if (netif_msg_tx_queued(pdata)) xgbe_dump_tx_desc(pdata, ring, start_index, packet->rdesc_count, 1); /* Make sure ownership is written to the descriptor */ smp_wmb(); ring->cur = cur_index + 1; if (!packet->skb->xmit_more || netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev, channel->queue_index))) xgbe_tx_start_xmit(channel, ring); else ring->tx.xmit_more = 1; DBGPR(" %s: descriptors %u to %u written\n", channel->name, start_index & (ring->rdesc_count - 1), (ring->cur - 1) & (ring->rdesc_count - 1)); DBGPR("<--xgbe_dev_xmit\n"); } static int xgbe_dev_read(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_ring *ring = channel->rx_ring; struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; struct xgbe_packet_data *packet = &ring->packet_data; struct net_device *netdev = pdata->netdev; unsigned int err, etlt, l34t; DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur); rdata = XGBE_GET_DESC_DATA(ring, ring->cur); rdesc = rdata->rdesc; /* Check for data availability */ if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN)) return 1; /* Make sure descriptor fields are read after reading the OWN bit */ dma_rmb(); if (netif_msg_rx_status(pdata)) xgbe_dump_rx_desc(pdata, ring, ring->cur); if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) { /* Timestamp Context Descriptor */ xgbe_get_rx_tstamp(packet, rdesc); XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 1); XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT_NEXT, 0); return 0; } /* Normal Descriptor, be sure Context Descriptor bit is off */ XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0); /* Indicate if a Context Descriptor is next */ if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA)) XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT_NEXT, 1); /* Get the header length */ if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) { rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, HL); if (rdata->rx.hdr_len) pdata->ext_stats.rx_split_header_packets++; } /* Get the RSS hash */ if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) { XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RSS_HASH, 1); packet->rss_hash = le32_to_cpu(rdesc->desc1); l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T); switch (l34t) { case RX_DESC3_L34T_IPV4_TCP: case RX_DESC3_L34T_IPV4_UDP: case RX_DESC3_L34T_IPV6_TCP: case RX_DESC3_L34T_IPV6_UDP: packet->rss_hash_type = PKT_HASH_TYPE_L4; break; default: packet->rss_hash_type = PKT_HASH_TYPE_L3; } } /* Get the packet length */ rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL); if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) { /* Not all the data has been transferred for this packet */ XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, INCOMPLETE, 1); return 0; } /* This is the last of the data for this packet */ XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, INCOMPLETE, 0); /* Set checksum done indicator as appropriate */ if (netdev->features & NETIF_F_RXCSUM) XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CSUM_DONE, 1); /* Check for errors (only valid in last descriptor) */ err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES); etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT); netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt); if (!err || !etlt) { /* No error if err is 0 or etlt is 0 */ if ((etlt == 0x09) && (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) { XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, VLAN_CTAG, 1); packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0, RX_NORMAL_DESC0, OVT); netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n", packet->vlan_ctag); } } else { if ((etlt == 0x05) || (etlt == 0x06)) XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CSUM_DONE, 0); else XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS, FRAME, 1); } DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur); return 0; } static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc) { /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */ return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT); } static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc) { /* Rx and Tx share LD bit, so check TDES3.LD bit */ return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD); } static int xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id) { unsigned int dma_ch_ier; dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER); switch (int_id) { case XGMAC_INT_DMA_CH_SR_TI: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); break; case XGMAC_INT_DMA_CH_SR_TPS: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1); break; case XGMAC_INT_DMA_CH_SR_TBU: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1); break; case XGMAC_INT_DMA_CH_SR_RI: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); break; case XGMAC_INT_DMA_CH_SR_RBU: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1); break; case XGMAC_INT_DMA_CH_SR_RPS: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1); break; case XGMAC_INT_DMA_CH_SR_TI_RI: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); break; case XGMAC_INT_DMA_CH_SR_FBE: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1); break; case XGMAC_INT_DMA_ALL: dma_ch_ier |= channel->saved_ier; break; default: return -1; } XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier); return 0; } static int xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id) { unsigned int dma_ch_ier; dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER); switch (int_id) { case XGMAC_INT_DMA_CH_SR_TI: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0); break; case XGMAC_INT_DMA_CH_SR_TPS: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0); break; case XGMAC_INT_DMA_CH_SR_TBU: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0); break; case XGMAC_INT_DMA_CH_SR_RI: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0); break; case XGMAC_INT_DMA_CH_SR_RBU: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0); break; case XGMAC_INT_DMA_CH_SR_RPS: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0); break; case XGMAC_INT_DMA_CH_SR_TI_RI: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0); break; case XGMAC_INT_DMA_CH_SR_FBE: XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0); break; case XGMAC_INT_DMA_ALL: channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK; dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK; break; default: return -1; } XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier); return 0; } static int xgbe_exit(struct xgbe_prv_data *pdata) { unsigned int count = 2000; DBGPR("-->xgbe_exit\n"); /* Issue a software reset */ XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1); usleep_range(10, 15); /* Poll Until Poll Condition */ while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR)) usleep_range(500, 600); if (!count) return -EBUSY; DBGPR("<--xgbe_exit\n"); return 0; } static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata) { unsigned int i, count; if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21) return 0; for (i = 0; i < pdata->tx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1); /* Poll Until Poll Condition */ for (i = 0; i < pdata->tx_q_count; i++) { count = 2000; while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i, MTL_Q_TQOMR, FTQ)) usleep_range(500, 600); if (!count) return -EBUSY; } return 0; } static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata) { /* Set enhanced addressing mode */ XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1); /* Set the System Bus mode */ XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1); XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1); } static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata) { unsigned int arcache, awcache; arcache = 0; XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache); XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain); XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache); XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain); XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache); XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain); XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache); awcache = 0; XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache); XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain); XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache); } static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata) { unsigned int i; /* Set Tx to weighted round robin scheduling algorithm */ XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR); /* Set Tx traffic classes to use WRR algorithm with equal weights */ for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, MTL_TSA_ETS); XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1); } /* Set Rx to strict priority algorithm */ XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP); } static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata, unsigned int queue, unsigned int q_fifo_size) { unsigned int frame_fifo_size; unsigned int rfa, rfd; frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata)); if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) { /* PFC is active for this queue */ rfa = pdata->pfc_rfa; rfd = rfa + frame_fifo_size; if (rfd > XGMAC_FLOW_CONTROL_MAX) rfd = XGMAC_FLOW_CONTROL_MAX; if (rfa >= XGMAC_FLOW_CONTROL_MAX) rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT; } else { /* This path deals with just maximum frame sizes which are * limited to a jumbo frame of 9,000 (plus headers, etc.) * so we can never exceed the maximum allowable RFA/RFD * values. */ if (q_fifo_size <= 2048) { /* rx_rfd to zero to signal no flow control */ pdata->rx_rfa[queue] = 0; pdata->rx_rfd[queue] = 0; return; } if (q_fifo_size <= 4096) { /* Between 2048 and 4096 */ pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */ pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */ return; } if (q_fifo_size <= frame_fifo_size) { /* Between 4096 and max-frame */ pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */ pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */ return; } if (q_fifo_size <= (frame_fifo_size * 3)) { /* Between max-frame and 3 max-frames, * trigger if we get just over a frame of data and * resume when we have just under half a frame left. */ rfa = q_fifo_size - frame_fifo_size; rfd = rfa + (frame_fifo_size / 2); } else { /* Above 3 max-frames - trigger when just over * 2 frames of space available */ rfa = frame_fifo_size * 2; rfa += XGMAC_FLOW_CONTROL_UNIT; rfd = rfa + frame_fifo_size; } } pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa); pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd); } static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata, unsigned int *fifo) { unsigned int q_fifo_size; unsigned int i; for (i = 0; i < pdata->rx_q_count; i++) { q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT; xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size); } } static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata) { unsigned int i; for (i = 0; i < pdata->rx_q_count; i++) { XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, pdata->rx_rfa[i]); XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, pdata->rx_rfd[i]); } } static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata) { unsigned int fifo_size; /* Calculate the configured fifo size */ fifo_size = 1 << (pdata->hw_feat.tx_fifo_size + 7); /* The configured value may not be the actual amount of fifo RAM */ return min_t(unsigned int, XGMAC_FIFO_TX_MAX, fifo_size); } static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata) { unsigned int fifo_size; /* Calculate the configured fifo size */ fifo_size = 1 << (pdata->hw_feat.rx_fifo_size + 7); /* The configured value may not be the actual amount of fifo RAM */ return min_t(unsigned int, XGMAC_FIFO_RX_MAX, fifo_size); } static void xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count, unsigned int *fifo) { unsigned int q_fifo_size; unsigned int p_fifo; unsigned int i; q_fifo_size = fifo_size / queue_count; /* Calculate the fifo setting by dividing the queue's fifo size * by the fifo allocation increment (with 0 representing the * base allocation increment so decrement the result by 1). */ p_fifo = q_fifo_size / XGMAC_FIFO_UNIT; if (p_fifo) p_fifo--; /* Distribute the fifo equally amongst the queues */ for (i = 0; i < queue_count; i++) fifo[i] = p_fifo; } static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count, unsigned int *fifo) { unsigned int i; BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC); if (queue_count <= IEEE_8021QAZ_MAX_TCS) return fifo_size; /* Rx queues 9 and up are for specialized packets, * such as PTP or DCB control packets, etc. and * don't require a large fifo */ for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) { fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1; fifo_size -= XGMAC_FIFO_MIN_ALLOC; } return fifo_size; } static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata) { unsigned int delay; /* If a delay has been provided, use that */ if (pdata->pfc->delay) return pdata->pfc->delay / 8; /* Allow for two maximum size frames */ delay = xgbe_get_max_frame(pdata); delay += XGMAC_ETH_PREAMBLE; delay *= 2; /* Allow for PFC frame */ delay += XGMAC_PFC_DATA_LEN; delay += ETH_HLEN + ETH_FCS_LEN; delay += XGMAC_ETH_PREAMBLE; /* Allow for miscellaneous delays (LPI exit, cable, etc.) */ delay += XGMAC_PFC_DELAYS; return delay; } static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata) { unsigned int count, prio_queues; unsigned int i; if (!pdata->pfc->pfc_en) return 0; count = 0; prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); for (i = 0; i < prio_queues; i++) { if (!xgbe_is_pfc_queue(pdata, i)) continue; pdata->pfcq[i] = 1; count++; } return count; } static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata, unsigned int fifo_size, unsigned int *fifo) { unsigned int q_fifo_size, rem_fifo, addn_fifo; unsigned int prio_queues; unsigned int pfc_count; unsigned int i; q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata)); prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); pfc_count = xgbe_get_pfc_queues(pdata); if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) { /* No traffic classes with PFC enabled or can't do lossless */ xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); return; } /* Calculate how much fifo we have to play with */ rem_fifo = fifo_size - (q_fifo_size * prio_queues); /* Calculate how much more than base fifo PFC needs, which also * becomes the threshold activation point (RFA) */ pdata->pfc_rfa = xgbe_get_pfc_delay(pdata); pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa); if (pdata->pfc_rfa > q_fifo_size) { addn_fifo = pdata->pfc_rfa - q_fifo_size; addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo); } else { addn_fifo = 0; } /* Calculate DCB fifo settings: * - distribute remaining fifo between the VLAN priority * queues based on traffic class PFC enablement and overall * priority (0 is lowest priority, so start at highest) */ i = prio_queues; while (i > 0) { i--; fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1; if (!pdata->pfcq[i] || !addn_fifo) continue; if (addn_fifo > rem_fifo) { netdev_warn(pdata->netdev, "RXq%u cannot set needed fifo size\n", i); if (!rem_fifo) continue; addn_fifo = rem_fifo; } fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT); rem_fifo -= addn_fifo; } if (rem_fifo) { unsigned int inc_fifo = rem_fifo / prio_queues; /* Distribute remaining fifo across queues */ for (i = 0; i < prio_queues; i++) fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT); } } static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata) { unsigned int fifo_size; unsigned int fifo[XGBE_MAX_QUEUES]; unsigned int i; fifo_size = xgbe_get_tx_fifo_size(pdata); xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo); for (i = 0; i < pdata->tx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]); netif_info(pdata, drv, pdata->netdev, "%d Tx hardware queues, %d byte fifo per queue\n", pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); } static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata) { unsigned int fifo_size; unsigned int fifo[XGBE_MAX_QUEUES]; unsigned int prio_queues; unsigned int i; /* Clear any DCB related fifo/queue information */ memset(pdata->pfcq, 0, sizeof(pdata->pfcq)); pdata->pfc_rfa = 0; fifo_size = xgbe_get_rx_fifo_size(pdata); prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); /* Assign a minimum fifo to the non-VLAN priority queues */ fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo); if (pdata->pfc && pdata->ets) xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo); else xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo); for (i = 0; i < pdata->rx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]); xgbe_calculate_flow_control_threshold(pdata, fifo); xgbe_config_flow_control_threshold(pdata); if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) { netif_info(pdata, drv, pdata->netdev, "%u Rx hardware queues\n", pdata->rx_q_count); for (i = 0; i < pdata->rx_q_count; i++) netif_info(pdata, drv, pdata->netdev, "RxQ%u, %u byte fifo queue\n", i, ((fifo[i] + 1) * XGMAC_FIFO_UNIT)); } else { netif_info(pdata, drv, pdata->netdev, "%u Rx hardware queues, %u byte fifo per queue\n", pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT)); } } static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata) { unsigned int qptc, qptc_extra, queue; unsigned int prio_queues; unsigned int ppq, ppq_extra, prio; unsigned int mask; unsigned int i, j, reg, reg_val; /* Map the MTL Tx Queues to Traffic Classes * Note: Tx Queues >= Traffic Classes */ qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt; qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt; for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) { for (j = 0; j < qptc; j++) { netif_dbg(pdata, drv, pdata->netdev, "TXq%u mapped to TC%u\n", queue, i); XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, Q2TCMAP, i); pdata->q2tc_map[queue++] = i; } if (i < qptc_extra) { netif_dbg(pdata, drv, pdata->netdev, "TXq%u mapped to TC%u\n", queue, i); XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR, Q2TCMAP, i); pdata->q2tc_map[queue++] = i; } } /* Map the 8 VLAN priority values to available MTL Rx queues */ prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count); ppq = IEEE_8021QAZ_MAX_TCS / prio_queues; ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues; reg = MAC_RQC2R; reg_val = 0; for (i = 0, prio = 0; i < prio_queues;) { mask = 0; for (j = 0; j < ppq; j++) { netif_dbg(pdata, drv, pdata->netdev, "PRIO%u mapped to RXq%u\n", prio, i); mask |= (1 << prio); pdata->prio2q_map[prio++] = i; } if (i < ppq_extra) { netif_dbg(pdata, drv, pdata->netdev, "PRIO%u mapped to RXq%u\n", prio, i); mask |= (1 << prio); pdata->prio2q_map[prio++] = i; } reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3)); if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues)) continue; XGMAC_IOWRITE(pdata, reg, reg_val); reg += MAC_RQC2_INC; reg_val = 0; } /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */ reg = MTL_RQDCM0R; reg_val = 0; for (i = 0; i < pdata->rx_q_count;) { reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3)); if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count)) continue; XGMAC_IOWRITE(pdata, reg, reg_val); reg += MTL_RQDCM_INC; reg_val = 0; } } static void xgbe_config_tc(struct xgbe_prv_data *pdata) { unsigned int offset, queue, prio; u8 i; netdev_reset_tc(pdata->netdev); if (!pdata->num_tcs) return; netdev_set_num_tc(pdata->netdev, pdata->num_tcs); for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) { while ((queue < pdata->tx_q_count) && (pdata->q2tc_map[queue] == i)) queue++; netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n", i, offset, queue - 1); netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset); offset = queue; } if (!pdata->ets) return; for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) netdev_set_prio_tc_map(pdata->netdev, prio, pdata->ets->prio_tc[prio]); } static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata) { struct ieee_ets *ets = pdata->ets; unsigned int total_weight, min_weight, weight; unsigned int mask, reg, reg_val; unsigned int i, prio; if (!ets) return; /* Set Tx to deficit weighted round robin scheduling algorithm (when * traffic class is using ETS algorithm) */ XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR); /* Set Traffic Class algorithms */ total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt; min_weight = total_weight / 100; if (!min_weight) min_weight = 1; for (i = 0; i < pdata->hw_feat.tc_cnt; i++) { /* Map the priorities to the traffic class */ mask = 0; for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) { if (ets->prio_tc[prio] == i) mask |= (1 << prio); } mask &= 0xff; netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n", i, mask); reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG)); reg_val = XGMAC_IOREAD(pdata, reg); reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3)); reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3)); XGMAC_IOWRITE(pdata, reg, reg_val); /* Set the traffic class algorithm */ switch (ets->tc_tsa[i]) { case IEEE_8021QAZ_TSA_STRICT: netif_dbg(pdata, drv, pdata->netdev, "TC%u using SP\n", i); XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, MTL_TSA_SP); break; case IEEE_8021QAZ_TSA_ETS: weight = total_weight * ets->tc_tx_bw[i] / 100; weight = clamp(weight, min_weight, total_weight); netif_dbg(pdata, drv, pdata->netdev, "TC%u using DWRR (weight %u)\n", i, weight); XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA, MTL_TSA_ETS); XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, weight); break; } } xgbe_config_tc(pdata); } static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata) { if (!test_bit(XGBE_DOWN, &pdata->dev_state)) { /* Just stop the Tx queues while Rx fifo is changed */ netif_tx_stop_all_queues(pdata->netdev); /* Suspend Rx so that fifo's can be adjusted */ pdata->hw_if.disable_rx(pdata); } xgbe_config_rx_fifo_size(pdata); xgbe_config_flow_control(pdata); if (!test_bit(XGBE_DOWN, &pdata->dev_state)) { /* Resume Rx */ pdata->hw_if.enable_rx(pdata); /* Resume Tx queues */ netif_tx_start_all_queues(pdata->netdev); } } static void xgbe_config_mac_address(struct xgbe_prv_data *pdata) { xgbe_set_mac_address(pdata, pdata->netdev->dev_addr); /* Filtering is done using perfect filtering and hash filtering */ if (pdata->hw_feat.hash_table_size) { XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1); XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1); XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1); } } static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata) { unsigned int val; val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0; XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val); } static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata) { switch (pdata->phy_speed) { case SPEED_10000: xgbe_set_xgmii_speed(pdata); break; case SPEED_2500: xgbe_set_gmii_2500_speed(pdata); break; case SPEED_1000: xgbe_set_gmii_speed(pdata); break; } } static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata) { if (pdata->netdev->features & NETIF_F_RXCSUM) xgbe_enable_rx_csum(pdata); else xgbe_disable_rx_csum(pdata); } static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata) { /* Indicate that VLAN Tx CTAGs come from context descriptors */ XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0); XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1); /* Set the current VLAN Hash Table register value */ xgbe_update_vlan_hash_table(pdata); if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) xgbe_enable_rx_vlan_filtering(pdata); else xgbe_disable_rx_vlan_filtering(pdata); if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) xgbe_enable_rx_vlan_stripping(pdata); else xgbe_disable_rx_vlan_stripping(pdata); } static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo) { bool read_hi; u64 val; switch (reg_lo) { /* These registers are always 64 bit */ case MMC_TXOCTETCOUNT_GB_LO: case MMC_TXOCTETCOUNT_G_LO: case MMC_RXOCTETCOUNT_GB_LO: case MMC_RXOCTETCOUNT_G_LO: read_hi = true; break; default: read_hi = false; } val = XGMAC_IOREAD(pdata, reg_lo); if (read_hi) val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32); return val; } static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata) { struct xgbe_mmc_stats *stats = &pdata->mmc_stats; unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB)) stats->txoctetcount_gb += xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB)) stats->txframecount_gb += xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G)) stats->txbroadcastframes_g += xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G)) stats->txmulticastframes_g += xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB)) stats->tx64octets_gb += xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB)) stats->tx65to127octets_gb += xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB)) stats->tx128to255octets_gb += xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB)) stats->tx256to511octets_gb += xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB)) stats->tx512to1023octets_gb += xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB)) stats->tx1024tomaxoctets_gb += xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB)) stats->txunicastframes_gb += xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB)) stats->txmulticastframes_gb += xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB)) stats->txbroadcastframes_g += xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR)) stats->txunderflowerror += xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G)) stats->txoctetcount_g += xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G)) stats->txframecount_g += xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES)) stats->txpauseframes += xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G)) stats->txvlanframes_g += xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); } static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata) { struct xgbe_mmc_stats *stats = &pdata->mmc_stats; unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB)) stats->rxframecount_gb += xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB)) stats->rxoctetcount_gb += xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G)) stats->rxoctetcount_g += xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G)) stats->rxbroadcastframes_g += xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G)) stats->rxmulticastframes_g += xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR)) stats->rxcrcerror += xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR)) stats->rxrunterror += xgbe_mmc_read(pdata, MMC_RXRUNTERROR); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR)) stats->rxjabbererror += xgbe_mmc_read(pdata, MMC_RXJABBERERROR); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G)) stats->rxundersize_g += xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G)) stats->rxoversize_g += xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB)) stats->rx64octets_gb += xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB)) stats->rx65to127octets_gb += xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB)) stats->rx128to255octets_gb += xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB)) stats->rx256to511octets_gb += xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB)) stats->rx512to1023octets_gb += xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB)) stats->rx1024tomaxoctets_gb += xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G)) stats->rxunicastframes_g += xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR)) stats->rxlengtherror += xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE)) stats->rxoutofrangetype += xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES)) stats->rxpauseframes += xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW)) stats->rxfifooverflow += xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB)) stats->rxvlanframes_gb += xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR)) stats->rxwatchdogerror += xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); } static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata) { struct xgbe_mmc_stats *stats = &pdata->mmc_stats; /* Freeze counters */ XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1); stats->txoctetcount_gb += xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO); stats->txframecount_gb += xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO); stats->txbroadcastframes_g += xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO); stats->txmulticastframes_g += xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO); stats->tx64octets_gb += xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO); stats->tx65to127octets_gb += xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO); stats->tx128to255octets_gb += xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO); stats->tx256to511octets_gb += xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO); stats->tx512to1023octets_gb += xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO); stats->tx1024tomaxoctets_gb += xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO); stats->txunicastframes_gb += xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO); stats->txmulticastframes_gb += xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO); stats->txbroadcastframes_g += xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO); stats->txunderflowerror += xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO); stats->txoctetcount_g += xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO); stats->txframecount_g += xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO); stats->txpauseframes += xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO); stats->txvlanframes_g += xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO); stats->rxframecount_gb += xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO); stats->rxoctetcount_gb += xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO); stats->rxoctetcount_g += xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO); stats->rxbroadcastframes_g += xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO); stats->rxmulticastframes_g += xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO); stats->rxcrcerror += xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO); stats->rxrunterror += xgbe_mmc_read(pdata, MMC_RXRUNTERROR); stats->rxjabbererror += xgbe_mmc_read(pdata, MMC_RXJABBERERROR); stats->rxundersize_g += xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G); stats->rxoversize_g += xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G); stats->rx64octets_gb += xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO); stats->rx65to127octets_gb += xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO); stats->rx128to255octets_gb += xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO); stats->rx256to511octets_gb += xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO); stats->rx512to1023octets_gb += xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO); stats->rx1024tomaxoctets_gb += xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO); stats->rxunicastframes_g += xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO); stats->rxlengtherror += xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO); stats->rxoutofrangetype += xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO); stats->rxpauseframes += xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO); stats->rxfifooverflow += xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO); stats->rxvlanframes_gb += xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO); stats->rxwatchdogerror += xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR); /* Un-freeze counters */ XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0); } static void xgbe_config_mmc(struct xgbe_prv_data *pdata) { /* Set counters to reset on read */ XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1); /* Reset the counters */ XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1); } static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, struct xgbe_channel *channel) { unsigned int tx_dsr, tx_pos, tx_qidx; unsigned int tx_status; unsigned long tx_timeout; /* Calculate the status register to read and the position within */ if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) { tx_dsr = DMA_DSR0; tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START; } else { tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE; tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC); tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) + DMA_DSRX_TPS_START; } /* The Tx engine cannot be stopped if it is actively processing * descriptors. Wait for the Tx engine to enter the stopped or * suspended state. Don't wait forever though... */ tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); while (time_before(jiffies, tx_timeout)) { tx_status = XGMAC_IOREAD(pdata, tx_dsr); tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH); if ((tx_status == DMA_TPS_STOPPED) || (tx_status == DMA_TPS_SUSPENDED)) break; usleep_range(500, 1000); } if (!time_before(jiffies, tx_timeout)) netdev_info(pdata->netdev, "timed out waiting for Tx DMA channel %u to stop\n", channel->queue_index); } static void xgbe_enable_tx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Enable each Tx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1); } /* Enable each Tx queue */ for (i = 0; i < pdata->tx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, MTL_Q_ENABLED); /* Enable MAC Tx */ XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); } static void xgbe_disable_tx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Prepare for Tx DMA channel stop */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; xgbe_prepare_tx_stop(pdata, channel); } /* Disable MAC Tx */ XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); /* Disable each Tx queue */ for (i = 0; i < pdata->tx_q_count; i++) XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0); /* Disable each Tx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0); } } static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue) { unsigned int rx_status; unsigned long rx_timeout; /* The Rx engine cannot be stopped if it is actively processing * packets. Wait for the Rx queue to empty the Rx fifo. Don't * wait forever though... */ rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ); while (time_before(jiffies, rx_timeout)) { rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR); if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) && (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0)) break; usleep_range(500, 1000); } if (!time_before(jiffies, rx_timeout)) netdev_info(pdata->netdev, "timed out waiting for Rx queue %u to empty\n", queue); } static void xgbe_enable_rx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int reg_val, i; /* Enable each Rx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1); } /* Enable each Rx queue */ reg_val = 0; for (i = 0; i < pdata->rx_q_count; i++) reg_val |= (0x02 << (i << 1)); XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val); /* Enable MAC Rx */ XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1); XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1); XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1); XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1); } static void xgbe_disable_rx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Disable MAC Rx */ XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0); XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0); XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0); XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0); /* Prepare for Rx DMA channel stop */ for (i = 0; i < pdata->rx_q_count; i++) xgbe_prepare_rx_stop(pdata, i); /* Disable each Rx queue */ XGMAC_IOWRITE(pdata, MAC_RQC0R, 0); /* Disable each Rx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0); } } static void xgbe_powerup_tx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Enable each Tx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1); } /* Enable MAC Tx */ XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1); } static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Prepare for Tx DMA channel stop */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; xgbe_prepare_tx_stop(pdata, channel); } /* Disable MAC Tx */ XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0); /* Disable each Tx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0); } } static void xgbe_powerup_rx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Enable each Rx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1); } } static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; /* Disable each Rx DMA channel */ channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->rx_ring) break; XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0); } } static int xgbe_init(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; int ret; DBGPR("-->xgbe_init\n"); /* Flush Tx queues */ ret = xgbe_flush_tx_queues(pdata); if (ret) return ret; /* * Initialize DMA related features */ xgbe_config_dma_bus(pdata); xgbe_config_dma_cache(pdata); xgbe_config_osp_mode(pdata); xgbe_config_pblx8(pdata); xgbe_config_tx_pbl_val(pdata); xgbe_config_rx_pbl_val(pdata); xgbe_config_rx_coalesce(pdata); xgbe_config_tx_coalesce(pdata); xgbe_config_rx_buffer_size(pdata); xgbe_config_tso_mode(pdata); xgbe_config_sph_mode(pdata); xgbe_config_rss(pdata); desc_if->wrapper_tx_desc_init(pdata); desc_if->wrapper_rx_desc_init(pdata); xgbe_enable_dma_interrupts(pdata); /* * Initialize MTL related features */ xgbe_config_mtl_mode(pdata); xgbe_config_queue_mapping(pdata); xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode); xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode); xgbe_config_tx_threshold(pdata, pdata->tx_threshold); xgbe_config_rx_threshold(pdata, pdata->rx_threshold); xgbe_config_tx_fifo_size(pdata); xgbe_config_rx_fifo_size(pdata); /*TODO: Error Packet and undersized good Packet forwarding enable (FEP and FUP) */ xgbe_config_dcb_tc(pdata); xgbe_enable_mtl_interrupts(pdata); /* * Initialize MAC related features */ xgbe_config_mac_address(pdata); xgbe_config_rx_mode(pdata); xgbe_config_jumbo_enable(pdata); xgbe_config_flow_control(pdata); xgbe_config_mac_speed(pdata); xgbe_config_checksum_offload(pdata); xgbe_config_vlan_support(pdata); xgbe_config_mmc(pdata); xgbe_enable_mac_interrupts(pdata); DBGPR("<--xgbe_init\n"); return 0; } void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) { DBGPR("-->xgbe_init_function_ptrs\n"); hw_if->tx_complete = xgbe_tx_complete; hw_if->set_mac_address = xgbe_set_mac_address; hw_if->config_rx_mode = xgbe_config_rx_mode; hw_if->enable_rx_csum = xgbe_enable_rx_csum; hw_if->disable_rx_csum = xgbe_disable_rx_csum; hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping; hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping; hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering; hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering; hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table; hw_if->read_mmd_regs = xgbe_read_mmd_regs; hw_if->write_mmd_regs = xgbe_write_mmd_regs; hw_if->set_gmii_speed = xgbe_set_gmii_speed; hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed; hw_if->set_xgmii_speed = xgbe_set_xgmii_speed; hw_if->enable_tx = xgbe_enable_tx; hw_if->disable_tx = xgbe_disable_tx; hw_if->enable_rx = xgbe_enable_rx; hw_if->disable_rx = xgbe_disable_rx; hw_if->powerup_tx = xgbe_powerup_tx; hw_if->powerdown_tx = xgbe_powerdown_tx; hw_if->powerup_rx = xgbe_powerup_rx; hw_if->powerdown_rx = xgbe_powerdown_rx; hw_if->dev_xmit = xgbe_dev_xmit; hw_if->dev_read = xgbe_dev_read; hw_if->enable_int = xgbe_enable_int; hw_if->disable_int = xgbe_disable_int; hw_if->init = xgbe_init; hw_if->exit = xgbe_exit; /* Descriptor related Sequences have to be initialized here */ hw_if->tx_desc_init = xgbe_tx_desc_init; hw_if->rx_desc_init = xgbe_rx_desc_init; hw_if->tx_desc_reset = xgbe_tx_desc_reset; hw_if->rx_desc_reset = xgbe_rx_desc_reset; hw_if->is_last_desc = xgbe_is_last_desc; hw_if->is_context_desc = xgbe_is_context_desc; hw_if->tx_start_xmit = xgbe_tx_start_xmit; /* For FLOW ctrl */ hw_if->config_tx_flow_control = xgbe_config_tx_flow_control; hw_if->config_rx_flow_control = xgbe_config_rx_flow_control; /* For RX coalescing */ hw_if->config_rx_coalesce = xgbe_config_rx_coalesce; hw_if->config_tx_coalesce = xgbe_config_tx_coalesce; hw_if->usec_to_riwt = xgbe_usec_to_riwt; hw_if->riwt_to_usec = xgbe_riwt_to_usec; /* For RX and TX threshold config */ hw_if->config_rx_threshold = xgbe_config_rx_threshold; hw_if->config_tx_threshold = xgbe_config_tx_threshold; /* For RX and TX Store and Forward Mode config */ hw_if->config_rsf_mode = xgbe_config_rsf_mode; hw_if->config_tsf_mode = xgbe_config_tsf_mode; /* For TX DMA Operating on Second Frame config */ hw_if->config_osp_mode = xgbe_config_osp_mode; /* For RX and TX PBL config */ hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val; hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val; hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val; hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val; hw_if->config_pblx8 = xgbe_config_pblx8; /* For MMC statistics support */ hw_if->tx_mmc_int = xgbe_tx_mmc_int; hw_if->rx_mmc_int = xgbe_rx_mmc_int; hw_if->read_mmc_stats = xgbe_read_mmc_stats; /* For PTP config */ hw_if->config_tstamp = xgbe_config_tstamp; hw_if->update_tstamp_addend = xgbe_update_tstamp_addend; hw_if->set_tstamp_time = xgbe_set_tstamp_time; hw_if->get_tstamp_time = xgbe_get_tstamp_time; hw_if->get_tx_tstamp = xgbe_get_tx_tstamp; /* For Data Center Bridging config */ hw_if->config_tc = xgbe_config_tc; hw_if->config_dcb_tc = xgbe_config_dcb_tc; hw_if->config_dcb_pfc = xgbe_config_dcb_pfc; /* For Receive Side Scaling */ hw_if->enable_rss = xgbe_enable_rss; hw_if->disable_rss = xgbe_disable_rss; hw_if->set_rss_hash_key = xgbe_set_rss_hash_key; hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table; DBGPR("<--xgbe_init_function_ptrs\n"); }